Irini Angelidaki, Kanokwan Boe and Lars Ellegaard Presentation content • Biogas in Denmark: A typical Centralized Biogas Plant • Main Results of the investigation • Conclusions Location of Centralized biogas plants in Denmark Typical centralized biogas plant Ribe biogas plant Full-scale investigation Process stability Process efficiency Microbiology Potential methods to improve recovery efficiency from manure - Increase stabilily of the digestion process - Pre-treatment of incoming substrate (to increase degradability) - Increase retention time of the manure reactor(s) - Arrange post-digestion systems (to increase degradation efficiency) Stability in Danish Biogas Plants 14 12 Total VFA (g/L) 10 8 6 4 2 0 Apr-02 Jun-02 Aug-02 Oct-02 Dec-02 Jan-03 Apr-03 Jun-03 Aug-03 Oct-03 Date Blaabjerg Blaahoej Fangel Farsø Filskov Grindsted Hashøj Lemvig Lintrup Nysted Revninge Sinding-Oerre Snertinge Studsgaard Thorsø I Vaarst-Fjellerad I Vegger I Århus I VFA, g/L Correlation between ammonia and VFA. 8 7 6 5 4 3 2 1 0 0 2 4 Ammonium, g/L 6 8 Residual methane production 55oC 25oC 20oC 15oC 55oC 55oC 25oC 20oC 15oC Residual methane production 7 ml-CH4/ml-sample 6 5 55 oC 4 25 oC 20 oC 3 15 oC 2 1 0 0 20 40 60 Time (days) 80 100 Ve st er Si n di n År Hj. hu Fe g b s m -04 Bl åb ma Sn je r r-04 e r g ju ti n ng N e f 03 ys e te b -0 d m 4 H as ar-0 Le hø 4 m j ju v l R ev ig m .03 ni ng ar0 Li e m 3 n a Va tru p r-0 4 ar s t aug -0 Fj . Th M 3 or a rsø 04 f Bl åh eb0 Ve øj m 4 gg a r-0 e Fa r fe 4 St ng b-0 4 u d el sg feb å -0 4 År rd f hu eb s t m o4 Fi l s arko 04 v ok t-0 3 Metan (m3/m3-biomasse) Residual methane production Sluttab - metan tab 12 10 8 6 4 2 0 Bl å Ve bje st rg j er u H n-0 j. Fe 3 År bhu 0 s sa Si 4 nd m in Sn let er m g ti n ar ge -04 Th fe or b 0 s N ø fe 4 ys te b-0 d 4 Li m nt ar ru -0 p 4 a ug H as -0 Le høj 3 m j vi u l.0 g Fa m 3 ng arR 03 ev el f e ni ng b-0 e 4 Bl ma Va åhø r-0 ar j m 4 st ar Fj -0 Ve . M 4 gg ar -0 St 4 u d er sg feb år d 04 Fi feb ls ko -04 v ok t-0 3 % Restgastab i forhold til total produktion Tab i forhold til praktisk opnåelig produktion 30 >15% 10-15% Termofil Mesofil Term+mes 25 20 15 10 5 0 < 10% ju n03 Sn S er ti n i ndi ng ge Th fe b or sø -04 Li fe nt bru 04 p Le au m gvi 03 g m Bl ar å -0 Va hø 3 j ar m st ar -0 Fj . M 4 Ve g g a r04 St e ud r f sg eb04 år d fe Fi b ls k o -04 Ve v st ok er t-0 H j. Fe 3 N ys te b-0 4 d m H as ar-0 4 h Fa øj ju ng l.0 R 3 ev el f e ni ng b-0 4 e m ar -0 4 Bl åb je rg % Temperature and residual methane Tab i forhold til praktisk opnåelig produktion Termofil Mesofil 30 25 20 15 10 5 0 Distribution of the total methane potential OPTIMAL TOTAL CH4 PRODUCTION 70 m3-CH4/m3-Bio 60 50 40 30 20 10 0 e gg Ve r H h as j. tF øj V rs aa Ve er st H j. ga ut St rd Reactor production (on the bottom) d te N ys R ni ev e ng øj åh l B S ng rt i e n v ko e ls Fi B bj la g er n Fa l ge ru nt Li p ug -a -0 2 ru nt Li After-Storage production (in the middle) p ug -a -0 3 ru nt Li ja p- n- 03 R e ib ø o Th rs Lost production (on the top) Main reactor residual methane loss versus retention time 35 % restidual loss 30 25 20 15 10 5 0 0 5 10 15 HRT (days) Mesophilic plants 20 25 Thermophilic plant 30 Relative overall activity Temperature effect on residual biogas potential 120% 100% 80% 60% 40% 20% 0% 0 10 40 30 20 Post digestion temperature (oC) Thermophilic Mesophilic 50 60 Model curve Thermophilic Model curve Mesophilic INCREASING TEMPERATURE Samples previously incubated at 10 -15C for a long period have been moved to process temperature (37-54C): Studsgård (R) Revninge 8 7 m3 CH4/m3 Bio m3-CH4/ m3-Bio 9 9 8 7 6 5 4 3 2 1 0 6 5 4 3 2 1 0 0 20 40 60 80 100 120 Time (d) Spec. Prod. At 10 C Spec. Prod at 37 C Spec. Prod from 10 cto 37 C 140 160 0 10 20 30 40 50 60 70 80 90 Time (d) Spec. Prod. at 54 C Spec. Prod at 15 C Spec. Prod from 15 C to 37 C spec. Perod from 15C to 54C 100 INNOVATIVE SOLUTIONS SITUATION: •The majority of the biogas plants have Reactors with good efficiency; •Many plants are loosing a lot and the gap between the theoretical and the practical potential is still wide; MAIN OBSTACLE: hydrolysis is the real rate limiting step for the further methanogenesis increase HRT to provide a better substrate hydrolysis SOLUTIONS: TRADITIONAL SOLUTIONS INNOVATIVE SOLUTIONS Increase the HRT in main reactor New process configurataion: Utilization of the After-Storage. Conclusions • Significant amounts of CH4 are lost (5-30%) • Plants with HRT< 15 days are lossing more CH4 from the main reactor • Post-digestion is highly influenced by the temperature • Post-digestion at low temperature are increasing the total methane potential of the material • Manure-plants are dominated by Methanosarcina, while sludge plants by Methanosaeta. Acknowledgements The study was funded by the Danish Energy Agency,“Development of Renewable Energy” The operational staff of the Biogas Plants participating in the investigation is greatly acknowledged Researchers: Kanokwan Boe Lars Ellegaard Dimitar Karakshlev Damien Batstone Irini Angelidaki Students: Simone Labo Lucía Fernández García Eva Arler He Zhen Chao Pan Troels Hilstrøm Søren H. Laursen Technicians: Hector Garcia Majbrit Staun Jensen
© Copyright 2026 Paperzz