Thermodynamics and Statistical Mechanics Kinetic Theory of Gases Thermo & Stat Mech Spring 2006 Class 14 1 Mixing of Two Ideal Gases Change of Gibbs Function Gi n1 g1i n2 g 2i G f n1 g1 f n2 g 2 f G f Gi G n1 ( g1 f g1i ) n2 ( g 2 f g 2i ) An expression is needed for the specific Gibbs function. Thermo & Stat Mech - Spring 2006 Class 14 2 Specific Gibbs Function g u Pv Ts h Ts dh cP for an ideal gas, so dT h cPT h0 g cPT Ts h0 Thermo & Stat Mech - Spring 2006 Class 14 3 Specific Entropy Tds du Pdv cv dT Pdv (cP R )dT Pdv cP dT RdT Pdv cP dT Pdv vdP Pdv Tds cP dT vdP dT v dT dP ds cP dP cP R T T T P Thermo & Stat Mech - Spring 2006 Class 14 4 Specific Gibbs Function dT dP ds cP R T P s cP ln T R ln P s0 g cPT Ts h0 g cPT T (cP ln T R ln P s0 ) h0 g RT ln P cPT cPT ln T Ts0 h0 Thermo & Stat Mech - Spring 2006 Class 14 5 Specific Gibbs Function g RT ln P cPT cPT ln T Ts0 h0 cP cP ln T s0 h0 g RT ln P RT R RT g RT (ln P ) Thermo & Stat Mech - Spring 2006 Class 14 6 Mixing of Two Ideal Gases g RT (ln P ) G n1 ( g1 f g1i ) n2 ( g 2 f g 2i ) G RT [n1 (ln P1 f ln P1i ) n2 (ln P2 f ln P2i )] P1 f G RT n1 ln P1i P2 f n2 ln P2i Thermo & Stat Mech - Spring 2006 Class 14 7 For the Same Pressure P1 f G RT n1 ln P1i P1i P2i P P2 f n2 ln P2i n1 n1 P1 f x1 P P P n1 n2 n n2 n2 P2 f x2 P P P n1 n2 n so so Thermo & Stat Mech - Spring 2006 Class 14 P1 f P1i P2 f P2i x1 x2 8 For the Same Pressure G RT n1 ln x1 n2 ln x2 n1 n2 G nRT ln x1 ln x2 n n G nRT x1 ln x1 x2 ln x2 (G ) S nRx1 ln x1 x2 ln x2 T P Thermo & Stat Mech - Spring 2006 Class 14 9 For the Same Volume P1 f P2 f n2 ln G RT n1 ln P1i P2i T is constant, so P V 1 V1i G RT n1 ln V1 f V2i n2 ln V 2f 1 1 G RT n1 ln n2 ln 2 2 Thermo & Stat Mech - Spring 2006 Class 14 10 For the Same Volume 1 1 G RT n1 ln n2 ln 2 2 1 G (n1 n2 ) RT ln 2 G (n1 n2 ) RT ln 2 S (n1 n2 ) R ln 2 Thermo & Stat Mech - Spring 2006 Class 14 11 Basic Assumptions 1. A macroscopic volume contains a large number of molecules. 2. The separation of molecules is large compared to molecular dimensions. 3. No forces exist between molecules except those associated with collisions 4. The collisions are elastic. Thermo & Stat Mech - Spring 2006 Class 14 12 Basic Assumptions When no external forces are applied: 5. The molecules are uniformly distributed within a container. 6. The directions of the velocities of the molecules are uniformly distributed. The fraction of molecules with speeds in the range v to v + dv is: f (v) dv Thermo & Stat Mech - Spring 2006 Class 14 13 Molecular Speeds f (v) is the probability density. 0 f (v)dv 1 v vf (v)dv 0 Mean or average speed v v f (v)dv Mean square speed 2 2 0 vrms v 2 Root mean square speed Thermo & Stat Mech - Spring 2006 Class 14 14 Gas Pressure Thermo & Stat Mech - Spring 2006 Class 14 15 Gas Pressure F dF dp P F p mv A dA dt p mv cos (mv cos ) p 2mv cos dp (v, , ) dN (v, , ) 2mv cos dt dt dp dN (v, , ) 2mv cos dvdd dt dt Thermo & Stat Mech - Spring 2006 Class 14 16 Gas Pressure Thermo & Stat Mech - Spring 2006 Class 14 17 Molecular Flux N n V sin dd dN (v, , ) (dA cos )(vdt)n f (v)dv 4 dN (v, , ) n dA [vf (v)dv] sin cos dd dt 4 Thermo & Stat Mech - Spring 2006 Class 14 18 Molecular Flux Thermo & Stat Mech - Spring 2006 Class 14 19 Molecular Flux n dN (v, , ) d dAdt 4 n 2 vf (v)dv 0 4 0 [vf (v)dv] sin cos dd 2 sin cos d d 0 1 1 (v ) (2 ) n v 4 4 2 n Thermo & Stat Mech - Spring 2006 Class 14 20 Gas Pressure dp dN (v, , ) 2mv cos dvdd dt dt dN (v, , ) n dA [vf (v)dv] sin cos dd dt 4 2 2 dp 2m n dA 2 2 v f (v)dv cos sin d d 0 0 0 dt 4 2m n 2 1 dp 1 P v (2 ) n m v 2 dAdt 4 3 3 Thermo & Stat Mech - Spring 2006 Class 14 21 Ideal Gas Law 1 P n m v2 3 1 1 21 2 2 2 PV n V m v Nmv Nmv 3 3 32 N PV nRT n NA N PV RT NkT NA R k NA Thermo & Stat Mech - Spring 2006 Class 14 22 Molecular Kinetic Energy 21 2 PV Nmv 32 PV NkT 21 2 Nmv NkT 32 1 2 3 mv kT 2 2 Thermo & Stat Mech - Spring 2006 Class 14 23 Equipartition of Energy 1 2 3 mv kT 2 2 1 3 2 2 2 m v x v y v z kT 2 2 1 2 1 mvi kT 2 2 1 kT Energy per degree of freedom 2 Thermo & Stat Mech - Spring 2006 Class 14 24 Internal Energy 1 Degrees of Freedom U Nf kT f 2 Molecule Monatomic gas f 3 3 3 U NkT nRT 2 2 Diatomic gas f 5 dU 3 CV nR dT 2 5 5 U NkT nRT 2 2 dU 5 CV nR dT 2 Thermo & Stat Mech - Spring 2006 Class 14 25 Heat Capacities 1 1 U Nf kT nf RT 2 2 dU f CV nR dT 2 f f C P CV nR nR nR 1nR 2 2 f 1 nR C 2 2 P 1 f CV f nR 2 Thermo & Stat Mech - Spring 2006 Class 14 26 Maxwell Velocity Distribution Consider a gas at equilibrium. The number of molecules in any range of velocity does not change. Collisions cause individual molecules to change velocity, but the distribution does not change. For every collision that changes the distribution, there must be one that changes it back. Let : F (v )dv number between v and v dv Thermo & Stat Mech - Spring 2006 Class 14 27 Molecular Collisions Thermo & Stat Mech - Spring 2006 Class 14 28 Molecular Collisions v1 v2 v1 'v2 ' Probabilit y of such a collision F (v1 ) F (v2 ) Probabilit y of reverse collision F (v1 ' ) F (v2 ' ) F (v1 ) F (v2 ) F (v1 ' ) F (v2 ' ) Collisions are elastic so : 2 2 2 2 v1 v2 v '1 v '2 v v Then : F (v ) Ae Thermo & Stat Mech - Spring 2006 Class 14 29 Maxwell Distribution N (v)dv Number of speeds from v to v dv N (v)dv Ae v 2 4 v dv 2 0 0 N N (v)dv 4 A v e 3 2 2 v 2 dv NkT m v N (v)dv 1 2 2 0 3 NkT 4 v 4 A v e dv 0 m 2 Thermo & Stat Mech - Spring 2006 Class 14 30 Evaluation of Constants I2 v e 2 v 2 0 I4 v e 0 4 v 2 dv 32 4 I 2 3 dv 52 8 3 3kT I 4 8 5 2 3 m I2 2 32 4 Thermo & Stat Mech - Spring 2006 Class 14 31 Maxwell Distribution m 2kT A N 32 32 m N 2 kT mv 2 2 2 kT m v e N (v)dv 4 N 2 kT dv 32 mv 2 2 2 kT m N (v)dv v e 4 f (v)dv N 2 kT Thermo & Stat Mech - Spring 2006 Class 14 32 dv 32 Maxwell Distribution Maxwell Distribution 0.0025 Probability 0.002 0.0015 0.001 0.0005 0 0 200 400 600 800 1000 1200 1400 v (m /s) Thermo & Stat Mech - Spring 2006 Class 14 33 Some Molecular Speeds v 0 8kT vf (v)dv m 3kT v v f (v)dv 0 m 3kT 2 vrms v m 2 vmax 2 2kT m Most Probable Thermo & Stat Mech - Spring 2006 Class 14 34
© Copyright 2026 Paperzz