2.3 Formal Definition of Limit Definition: The statement lim → means that for every number | 0, there exists a corresponding number | then| | 0 such that if 0suchthatforallxintheinterval| Inexamples1‐3,usethegraphstofinda guaranteethatthefunctionvalues willbewithin 0ofthenumberL. 1. Solution: Findtheminimumdistancefromc 1toeachendpoint. 25 9 1 16 16 9 7 1 16 16 Therefore, Thatisif| 1| 7 then √ 16 1 | will 2. Solution: Findtheminimumdistancefromc ‐1toeachendpoint. √3 √3 2 1 0.13397 2 2 2 √5 √5 1 0.1180 2 2 √ Therefore, Thatisif| 1| √ then| 4 3| 0.25 3. Solution: Findtheminimumdistancefrom 1 1 1 1.99 2 398 1 1 1 2 2.01 402 Therefore, Thatisif 1 402 then toeachendpoint. 2 0.01 Inexamples4and5,usetheformaldefinitionofalimittoprovethefollowinglimitstatements. 4.lim 2 → 7 1 Proof: Givenanumber 0 thenwemustshowthereexistsacorrespondingnumber 0 such thatwheneverxiswithin of4then f ( x ) willbewithin of1.Thatisweneedtoshow 1| whenever| thereexistsanumber 0 suchthat| 4| . Scratchwork: | 1| 2 x 7 1 2 x 8 2 x 4 Choose Assume| 2 4| | 1| |2 5. lim 3 2 ⁄2Then 7 1| |2 8| 2| 4| 2 → 2 7 Proof: Givenanumber 0 thenwemustshowthereexistsacorrespondingnumber 0 such thatwheneverxiswithin of‐3then f ( x ) willbewithin of‐7.Thatisweneedtoshow 7 | whenever| thereexistsanumber 0 suchthat| 3 | . Scratchwork: | 7 | 3 x 2 7 3 x 9 3 x 3 Choose Assume| | 3 3| 7 | |3 3Then 2 7| |3 9| 3| 3| 3 3
© Copyright 2026 Paperzz