1 Definition 0.1. The p-Set-Packing problem is : Instance : a family F and k ∈ N Parameter : k Problem : Decide whether F contains at least k pairwise disjoint sets. Proposition 0.2. Show that p-Set-Packing is A[1]-complete. Definition 0.3. An homomorphism from a structure A to B is a mapping that preserve the membership in all relations. A strong homomorphism also preserve non-membership. An embedding is an isomorphism of substructures. A strong embedding is an embedding wich is also a strong homomorphism. The p-X problem is : Instance : Structures A and B Parameter : ||A|| Problem : Decide whether there exist a X from A to B. Proposition 0.4. All those p-X problems are A[1]-complete. Definition 0.5. The p-short-PCP is : Instance : Pairs of strings over Σ (a1 , b1 ) . . . (an , bn ), k ∈ N Parameter : k Problem : Decide if there are i1 , . . . , ik ∈ [1, n] such that ai1 .ai2 . . . ain = bi1 .bi2 . . . bin Proposition 0.6. All p-short-PCP is A[1]-complete. Definition 0.7. The p-WD[φ] is : Instance : A structure A and k ∈ N Parameter : k Problem : Decide whether A |= ϕ(S) for a relation S of size k. Define Clique, vertex-cover, dominating-set and hitting-set that way. Definition 0.8. a circuit C is k-satisfiable if it is satisfied by a tuple of weight k, ie with k true variables. The p-WSAT is : Instance : A circuit C and k ∈ N Parameter : k Problem : Decide whether C is k satisfiable. Definition 0.9. The p-Bounded-NTM-Halt problem is : Instance : A non-deterministic Turing machine M , n ∈ N in unary, and k ∈ N Parameter : k Problem : Decide whether M accepts the empty string in at most n steps and using at most k non-deterministic steps. show that p − W SAT ≡FPT p − Bounded − N T M − Halt.
© Copyright 2026 Paperzz