SI Azhar et al to publish

Supplementary information
Channeling of electron transport to improve collection efficiency in
mesoporous TiO2 dye sensitized solar cell stacks
Azhar Fakharuddin,a Irfan Ahmed,a Zulkeflee Khalidin,b Mashitah M. Yusoff,a Rajan Jose*a1
a
Nanostructured Renewable Energy Materials Laboratory, Faculty of Industrial Sciences &
Technology, Universiti Malaysia Pahang, 26300, Malaysia;
b
Faculty of Electrical and Electronics Engineering, Universiti Malaysia Pahang, 26300,
Malaysia.
* Author to whom correspondence should be addressed. Email: [email protected] or [email protected]. Nanostructured Renewable
Energy Materials Laboratory, Faculty of Industrial Sciences & Technology, Universiti Malaysia Pahang, 26300, Malaysia.
1
Supplementary information
Table SM 1: Analysis of current densities of few large area devices.
Type of
JSC
connection
mA/cm2
η (%)
Parallel (Grid
1
Reference
Ref. 1
12
5.5
10
5.1
Coated)
Parallel (Grid
2
Ref. 2
Coated)
Parallel (Grid
3
Ref. 3
11
5.8
15.1
7.4
~3
2.5
6.3
5.8
Coated)
Parallel (Grid
4
Ref. 4
Coated)
5
Series +
Ref. 5
parallel
6
Series +
Ref. 6
parallel
7
Z-type series
Ref. 7
9.7
3.53
~3
4.6
connection
8
Series
Ref. 8
connection
9
Monolithic
series
Ref. 9
~5
5**
connection
10
Single cell
21
11
Ref. 10
11
Single cell
20
>10
Ref. 11
12
Single cell
19
12.3
Ref. 12
* Values at 84 mW/cm2, ** Values calculated from graphs in article.
2
Supplementary information
Increment in current density
60
JSC increment (%)
(b)
51.78%
(a)
S-3
S1
40
S2
21.15 %
20
S-2
S3
0
S-1
S-1
S-3
S-2
Device
Figure SM1(a): A comparison of increment in current density of S2 and S3 with S1, (b) Working
electrodes of prototypes with total active similar for all the three devices.
3
Supplementary information
Electrochemical Impedance spectroscopy of the DSCs
For a porous thin layer, an infinite transmission line is used for circuit modeling but
for simplicity, the model is generalized for representative elements only. Figure S2 shows a
generalized model used for fitting the impedance data. This model corresponds to four
interfaces in a DSC (Figure S2) and various processes at those interfaces, i.e. (i) electron
transfer at FTO/semiconductor interface, (ii) electron transport and recombination at
semiconductor/electrolyte interface, (iii) diffusion of iodide/triodide ions in electrolyte, and
(iv) electron transfer at Pt/counter electrode interface. The impedance response of such a
system is represented as,13
1

 2
1
1
 R
2
2
 RT RREC 



i

T
Z 
coth
1


 R  

CT  
CT  

 1  i  

REC 

(2)
Here, RT is transport resistance, RREC is the recombination resistance from photoelectrode
to the electrolyte and ωCT is the recombination frequency at which recombination occurs. The
electrical equivalent of devices characterized by a high recombination resistance can be
represented as Figure S2.
Figure SM2: A simplified transmission line model used for fitting impedance data.
Here, RFTO/TiO2 is the FTO/semiconductor interface resistance, ZW1 is the Warburg
diffusion element related to diffusion of I3- inside TiO2 and ZW2 is diffusion element related to
I3- diffusion in the electrolyte.
4
Supplementary information
Reflectance (%)
100
80
60
40
20
0
400
600
(nm)
800
Figure SM3: Reflectance curves of the devices.
As the absorbance at 550 nm is ~90%, the values of α.d=1. 14,15
5
Supplementary information
Table SM 2: Calculated collection efficiency of devices equation 2 in manuscript.
Device
JSC (mA/cm2)
Thickness(µm)
Ln/L
ηc (%)
S1
10.93
14.1
1.08
84.05
S2
13.24
14.2
1.83
92.7
S3
16.6
14.1
3.96
98.3
6
Supplementary information
References
1.
W. J. Lee, E. Ramasamy, D. Y. Lee and J. S. Song, Sol. Energy Mater. Sol. Cells 91 (18), 16761680 (2007).
2.
K. Okada, H. Matsui, T. Kawashima, T. Ezure and N. Tanabe, J. Photochem. Photobiol. 164 (13), 193-198 (2004).
3.
P. M. Sommeling, M. Späth, H. J. P. Smit, N. J. Bakker and J. M. Kroon, J. Photochem.
Photobiol. 164 (1-3), 137-144 (2004).
4.
G. R. A. Kumara, S. Kawasaki, P. V. V. Jayaweera, E. V. A. Premalal and S. Kaneko, Thin Solid
Films 520 (12), 4119-4121 (2012).
5.
N. Kato, Y. Takeda, K. Higuchi, A. Takeichi, E. Sudo, H. Tanaka, T. Motohiro, T. Sano and T.
Toyoda, Sol. Energy Mater. Sol. Cells 93 (6-7), 893-897 (2009).
6.
T. C. Wei, S. P. Feng, Y. H. Chang, S. J. Cherng, Y. J. Lin, C. M. Chen and H. H. Chen, Int. J.
Electrochem. Sci. 7 (12), 11904-11916 (2012).
7.
R. Sastrawan, J. Beier, U. Belledin, S. Hemming, A. Hinsch, R. Kern, C. Vetter, F. M. Petrat, A.
Prodi-Schwab, P. Lechner and W. Hoffmann, Sol. Energy Mater. Sol. Cells 90 (11), 1680-1691
(2006).
8.
A. Hinsch, H. Brandt, W. Veurman, S. Hemming, M. Nittel, U. Würfel, P. Putyra, C. LangKoetz, M. Stabe, S. Beucker and K. Fichter, Sol. Energy Mater. Sol. Cells 93 (6–7), 820-824
(2009).
9.
Y. Takeda, N. Kato, K. Higuchi, A. Takeichi, T. Motohiro, S. Fukumoto, T. Sano and T. Toyoda,
Sol. Energy Mater. Sol. Cells 93 (6-7), 808-811 (2009).
10. L. Han, A. Islam, H. Chen, C. Malapaka, B. Chiranjeevi, S. Zhang, X. Yang and M. Yanagida,
Energy Environ.Sci. 5 (3), 6057-6060 (2012).
11. S. Ito, T. N. Murakami, P. Comte, P. Liska, C. Grätzel, M. K. Nazeeruddin and M. Grätzel, Thin
Solid Films 516 (14), 4613-4619 (2008).
12. A. Yella, H.-W. Lee, H. N. Tsao, C. Yi, A. K. Chandiran, M. K. Nazeeruddin, E. W.-G. Diau, C.Y. Yeh, S. M. Zakeeruddin and M. Grätzel, Science 334 (6056), 629-634 (2011).
7
Supplementary information
13. J. Bisquert, J. Phys. Chem. B 106 (2), 325-333 (2002).
14. J. Halme, G. Boschloo, A. Hagfeldt and P. Lund, J. Phys. Chem. C 112 (14), 5623-5637 (2008).
15. P. Y. Chen, X. Dang, M. T. Klug, J. Qi, N. M. Dorval Courchesne, F. J. Burpo, N. Fang, P. T.
Hammond and A. M. Belcher, ACS Nano 7 (8), 6563-6574 (2013).
8