Supplementary information Channeling of electron transport to improve collection efficiency in mesoporous TiO2 dye sensitized solar cell stacks Azhar Fakharuddin,a Irfan Ahmed,a Zulkeflee Khalidin,b Mashitah M. Yusoff,a Rajan Jose*a1 a Nanostructured Renewable Energy Materials Laboratory, Faculty of Industrial Sciences & Technology, Universiti Malaysia Pahang, 26300, Malaysia; b Faculty of Electrical and Electronics Engineering, Universiti Malaysia Pahang, 26300, Malaysia. * Author to whom correspondence should be addressed. Email: [email protected] or [email protected]. Nanostructured Renewable Energy Materials Laboratory, Faculty of Industrial Sciences & Technology, Universiti Malaysia Pahang, 26300, Malaysia. 1 Supplementary information Table SM 1: Analysis of current densities of few large area devices. Type of JSC connection mA/cm2 η (%) Parallel (Grid 1 Reference Ref. 1 12 5.5 10 5.1 Coated) Parallel (Grid 2 Ref. 2 Coated) Parallel (Grid 3 Ref. 3 11 5.8 15.1 7.4 ~3 2.5 6.3 5.8 Coated) Parallel (Grid 4 Ref. 4 Coated) 5 Series + Ref. 5 parallel 6 Series + Ref. 6 parallel 7 Z-type series Ref. 7 9.7 3.53 ~3 4.6 connection 8 Series Ref. 8 connection 9 Monolithic series Ref. 9 ~5 5** connection 10 Single cell 21 11 Ref. 10 11 Single cell 20 >10 Ref. 11 12 Single cell 19 12.3 Ref. 12 * Values at 84 mW/cm2, ** Values calculated from graphs in article. 2 Supplementary information Increment in current density 60 JSC increment (%) (b) 51.78% (a) S-3 S1 40 S2 21.15 % 20 S-2 S3 0 S-1 S-1 S-3 S-2 Device Figure SM1(a): A comparison of increment in current density of S2 and S3 with S1, (b) Working electrodes of prototypes with total active similar for all the three devices. 3 Supplementary information Electrochemical Impedance spectroscopy of the DSCs For a porous thin layer, an infinite transmission line is used for circuit modeling but for simplicity, the model is generalized for representative elements only. Figure S2 shows a generalized model used for fitting the impedance data. This model corresponds to four interfaces in a DSC (Figure S2) and various processes at those interfaces, i.e. (i) electron transfer at FTO/semiconductor interface, (ii) electron transport and recombination at semiconductor/electrolyte interface, (iii) diffusion of iodide/triodide ions in electrolyte, and (iv) electron transfer at Pt/counter electrode interface. The impedance response of such a system is represented as,13 1 2 1 1 R 2 2 RT RREC i T Z coth 1 R CT CT 1 i REC (2) Here, RT is transport resistance, RREC is the recombination resistance from photoelectrode to the electrolyte and ωCT is the recombination frequency at which recombination occurs. The electrical equivalent of devices characterized by a high recombination resistance can be represented as Figure S2. Figure SM2: A simplified transmission line model used for fitting impedance data. Here, RFTO/TiO2 is the FTO/semiconductor interface resistance, ZW1 is the Warburg diffusion element related to diffusion of I3- inside TiO2 and ZW2 is diffusion element related to I3- diffusion in the electrolyte. 4 Supplementary information Reflectance (%) 100 80 60 40 20 0 400 600 (nm) 800 Figure SM3: Reflectance curves of the devices. As the absorbance at 550 nm is ~90%, the values of α.d=1. 14,15 5 Supplementary information Table SM 2: Calculated collection efficiency of devices equation 2 in manuscript. Device JSC (mA/cm2) Thickness(µm) Ln/L ηc (%) S1 10.93 14.1 1.08 84.05 S2 13.24 14.2 1.83 92.7 S3 16.6 14.1 3.96 98.3 6 Supplementary information References 1. W. J. Lee, E. Ramasamy, D. Y. Lee and J. S. Song, Sol. Energy Mater. Sol. Cells 91 (18), 16761680 (2007). 2. K. Okada, H. Matsui, T. Kawashima, T. Ezure and N. Tanabe, J. Photochem. Photobiol. 164 (13), 193-198 (2004). 3. P. M. Sommeling, M. Späth, H. J. P. Smit, N. J. Bakker and J. M. Kroon, J. Photochem. Photobiol. 164 (1-3), 137-144 (2004). 4. G. R. A. Kumara, S. Kawasaki, P. V. V. Jayaweera, E. V. A. Premalal and S. Kaneko, Thin Solid Films 520 (12), 4119-4121 (2012). 5. N. Kato, Y. Takeda, K. Higuchi, A. Takeichi, E. Sudo, H. Tanaka, T. Motohiro, T. Sano and T. Toyoda, Sol. Energy Mater. Sol. Cells 93 (6-7), 893-897 (2009). 6. T. C. Wei, S. P. Feng, Y. H. Chang, S. J. Cherng, Y. J. Lin, C. M. Chen and H. H. Chen, Int. J. Electrochem. Sci. 7 (12), 11904-11916 (2012). 7. R. Sastrawan, J. Beier, U. Belledin, S. Hemming, A. Hinsch, R. Kern, C. Vetter, F. M. Petrat, A. Prodi-Schwab, P. Lechner and W. Hoffmann, Sol. Energy Mater. Sol. Cells 90 (11), 1680-1691 (2006). 8. A. Hinsch, H. Brandt, W. Veurman, S. Hemming, M. Nittel, U. Würfel, P. Putyra, C. LangKoetz, M. Stabe, S. Beucker and K. Fichter, Sol. Energy Mater. Sol. Cells 93 (6–7), 820-824 (2009). 9. Y. Takeda, N. Kato, K. Higuchi, A. Takeichi, T. Motohiro, S. Fukumoto, T. Sano and T. Toyoda, Sol. Energy Mater. Sol. Cells 93 (6-7), 808-811 (2009). 10. L. Han, A. Islam, H. Chen, C. Malapaka, B. Chiranjeevi, S. Zhang, X. Yang and M. Yanagida, Energy Environ.Sci. 5 (3), 6057-6060 (2012). 11. S. Ito, T. N. Murakami, P. Comte, P. Liska, C. Grätzel, M. K. Nazeeruddin and M. Grätzel, Thin Solid Films 516 (14), 4613-4619 (2008). 12. A. Yella, H.-W. Lee, H. N. Tsao, C. Yi, A. K. Chandiran, M. K. Nazeeruddin, E. W.-G. Diau, C.Y. Yeh, S. M. Zakeeruddin and M. Grätzel, Science 334 (6056), 629-634 (2011). 7 Supplementary information 13. J. Bisquert, J. Phys. Chem. B 106 (2), 325-333 (2002). 14. J. Halme, G. Boschloo, A. Hagfeldt and P. Lund, J. Phys. Chem. C 112 (14), 5623-5637 (2008). 15. P. Y. Chen, X. Dang, M. T. Klug, J. Qi, N. M. Dorval Courchesne, F. J. Burpo, N. Fang, P. T. Hammond and A. M. Belcher, ACS Nano 7 (8), 6563-6574 (2013). 8
© Copyright 2026 Paperzz