Au/N-TiO2 N-TiO2 TiO2 Intensity (a.u.) TNT P25 ☆ ☆ ☆ 20 30 40 50 60 70 80 2(°) Figure S1. XRD patterns of P25, TNT, TiO2, N-TiO2 and Au/N-TiO2. Asterisk, rhombus, and open star denote rutile, anatase, and Au, respectively. (a) (b) Au (111) d = 0.239 nm Au TiO2 (101) d = 0.360 nm (101) (004) (200) 5 0 2 nm n m N (c) Ti Au Au Au O Au Au 0 2 Ti 4 Au 6 8 Au 10 12 14 16 Energy (keV) Figure S2. (a) TEM image of as synthesized Au/N-TiO2, inset in the lower right corner is the SAED pattern of anatase TiO2 and (b) HRTEM image and (c) EDX spectrum of Au/N-TiO2. 250000 (a) O 1s 200000 Ti 2p Counts 150000 Ti 2s 100000 50000 C 1s Au 4f N 1s 0 1000 800 600 400 200 0 Binding energy/eV 60000 (b) O 1s 529.6 50000 Counts 40000 30000 20000 531.3 532.1 10000 0 534 532 530 Binding energy/eV 528 526 (c) N 1s 2200 399.7 Counts 2100 2000 1900 1800 1700 412 410 408 406 404 402 400 398 396 394 392 Binding Energy/ev 4000 (d) Au 4f 82.8 3500 3000 86.5 Counts 2500 2000 1500 1000 500 0 -500 90 88 86 84 82 Binding energy/eV Figure S3. XPS spectra of (a) Au/N-TiO2 and core level spectra of (b) O 1s, (c) N 1s, and (d) Au 4f. Absorbance (a.u.) Au/N-TiO2 Au/TiO2 N-TiO2 TiO2 300 350 400 450 500 550 600 650 700 Wavelength (nm) Figure S4. UV–vis diffuse reflectance spectra of TiO2, Au/TiO2, N-TiO2, and Au/N-TiO2. 10000 N-TiO2 TiO2 Intensity (a.u.) 8000 Au/N-TiO2 Au/TiO2 6000 4000 2000 0 300 350 400 450 500 550 600 Wavelength (nm) Figure S5. PL emission spectra of TiO2, Au/TiO2, N-TiO2, and Au/N-TiO2 under the irradiation of 254 nm. 250 Amount of hydrogen evolution (mol) (a) UV 200 150 -1 Rate (mol h ) Samples 100 50 TiO2 1.75 N-TiO2 0.69 Au/TiO2 29.00 Au/N-TiO2 26.17 0 0 1 2 3 4 5 6 7 8 9 Time (h) 3500 Amount of hydrogen evolution (mol) (b) UV-vis 3000 2500 2000 1500 -1 Rate (mol h ) 7.65 Samples TiO2 1000 N-TiO2 500 21.56 Au/TiO2 321.35 Au/N-TiO2 412.60 0 0 1 2 3 4 5 6 7 8 9 Time (h) Figure S6. Photocatalytic activity for water splitting under the irradiation of (a) UV and (b) UV–vis light. Amount of hydrogen evolution (mol) 60 Ar (a) Ar 50 40 Ar 30 20 10 0 Amount of hydrogen evolution (mol) 0 4 8 16 20 24 28 32 28 32 Ar (b) 3000 12 Ar 2500 Ar 2000 1500 1000 500 0 0 4 8 12 16 20 24 Time (h) Figure S7. The repeated hydrogen evolution tests over Au/N-TiO2 under UV-vis light in (a) pure water and (b) methanol/water solution with purging of Ar in every 8 h. 0.10 (a) UV TiO2 0.08 Au/TiO2 Current /A 0.06 Au/N-TiO2 N-TiO2 0.04 0.02 0.00 -0.02 ON OFF -0.04 0 5 10 15 20 25 30 35 40 45 50 55 60 Time /s 0.20 (b) Vis Au/N-TiO2 0.15 N-TiO2 Current /A Au/TiO2 TiO2 0.10 0.05 0.00 ON OFF -0.05 0 10 20 30 40 50 60 Time /s Figure S8. Photocurrents of TiO2, N-TiO2, Au/TiO2, and Au/N-TiO2 electrodes at zero bias voltage irradiated with (a) UV (λ = 254 nm) and (b) visible light (λ > 400 nm) for 20 s. 400 Au/N-TiO2 - dark 350 Au/N-TiO2 - vis CPE -Z"/ohm 300 Rs 250 w Rct Ws 200 1 150 Parameters Rct (Ω cm-2) Rs (Ω cm-2) 100 CPE×108 (F cm−2) Y0 ×104 (Ω-1 cm-2 S0.5) 50 Dark 185 24.5 Vis 146 19.5 1.61 1.95 5.64 6.76 2 0 0 100 200 300 400 500 600 Z'/ohm Figure S9. EIS Nyquist plots for Au/N-TiO2 in dark and under the irradiation of visible light. Inset is the suggested equivalent circuit and the fitting results for Au/N-TiO2. Rs and Rct are the electrolyte and electron-transfer resistance, respectively. CPE is the constant phase element, which also represents the double layer capacitance. Ws is the Warburg impedance. Y0 is the value of admittance and expresses a reciprocal relationship to the Warburg coefficient, which is able to predict the Warburg impedance and diffusion coefficient. Figure S10. Schematic illustration of Au/N-TiO2 for water splitting under the irradiation of (a) UV and (b) visible light. Pathway I denotes the generation of charge carriers in TiO2. Pathway II represents the reversible electron transfer between charged diamagnetic Nb- and neutral paramagnetic Nb•, and the excitation of electrons into the conduction band. Pathway III shows the acceleration of photo-induced electrons transfer by Au loading. Pathway IV denotes the SPR effect of loaded Au nanoparticles. Supporting Information Legends Figure S1. XRD patterns of P25, TNT, TiO2, N-TiO2 and Au/N-TiO2. Asterisk, rhombus, and open star denote rutile, anatase, and Au, respectively. Figure S2. (a) TEM image of as synthesized Au/N-TiO2, inset in the lower right corner is the SAED pattern of anatase TiO2 and (b) HRTEM image and (c) EDX spectrum of Au/N-TiO2. Figure S3. XPS spectra of (a) Au/N-TiO2 and core level spectra of (b) O 1s, (c) N 1s, and (d) Au 4f. Figure S4. UV–vis diffuse reflectance spectra of TiO2, Au/TiO2, N-TiO2, and Au/N-TiO2. Figure S5. PL emission spectra of TiO2, Au/TiO2, N-TiO2, and Au/N-TiO2 under the irradiation of 254 nm. Figure S6. Photocatalytic activity for water splitting under the irradiation of (a) UV and (b) UV–vis light. Figure S7. The repeated hydrogen evolution tests over Au/N-TiO2 under UV-vis light in (a) pure water and (b) methanol/water solution with purging of Ar in every 8 h. Figure S8. Photocurrents of TiO2, N-TiO2, Au/TiO2, and Au/N-TiO2 electrodes at zero bias voltage irradiated with (a) UV (λ = 254 nm) and (b) visible light (λ > 400 nm) for 20 s. Figure S9. EIS Nyquist plots for Au/N-TiO2 in dark and under the irradiation of visible light. Inset is the suggested equivalent circuit and the fitting results for Au/N-TiO2. Rs and Rct are the electrolyte and electron-transfer resistance, respectively. CPE is the constant phase element, which also represents the double layer capacitance. Ws is the Warburg impedance. Y0 is the value of admittance and expresses a reciprocal relationship to the Warburg coefficient, which is able to predict the Warburg impedance and diffusion coefficient. Figure S10. Schematic illustration of Au/N-TiO2 for water splitting under the irradiation of (a) UV and (b) visible light. Pathway I denotes the generation of charge carriers in TiO2. Pathway II represents the reversible electron transfer between charged diamagnetic Nb- and neutral paramagnetic Nb•, and the excitation of electrons into the conduction band. Pathway III shows the acceleration of photo-induced electrons transfer by Au loading. Pathway IV denotes the SPR effect of loaded Au nanoparticles.
© Copyright 2026 Paperzz