Carrier Transport Modeling in QC Quantum Cascade Lasers

Carrier Transport Modeling in
Q
Quantum
Cascade
C
Lasers
C. Jirauschek
Institute for Nanoelectronics,
Nanoelectronics TU München
München,
Germany
Overview
•Methods overview
•Open
p two-level model
•Monte
Monte Carlo simulation
•Quantum transport
Technische Universität München
2
Institute for Nanoelectronics
Typical QCL Structure
V
G
GaAs/Al
/ 0.15Ga
G 0.85As
Technische Universität München
3
z
Institute for Nanoelectronics
Carrier Transport Simulation Methods
Quantum transport
(semiclassical)
(e.g., density matrix, NEGF)
Ekin
Monte Carlo method
Ekin
Rate equations
Complexity, accuracy
Technische Universität München
4
Institute for Nanoelectronics
Overview
•Methods overview
•Open
p two-level model
•Monte
Monte Carlo simulation
•Quantum transport
Technische Universität München
5
Institute for Nanoelectronics
Op
ptical Pow
wer
Quantum Cascade Ring Laser
Technische Universität München
Propagation coordinate
6
Institute for Nanoelectronics
Extended Maxwell-Bloch Equations
Gain
n
Los
ss
Gain recovery
Propagation coordinate
Propagation coordinate
Technische Universität München
7
Institute for Nanoelectronics
Rate Equations
Δp/T1
T1
T 0
T→0
Technische Universität München
8
Institute for Nanoelectronics
Coherent Effects
T2
Technische Universität München
9
E
Institute for Nanoelectronics
Coherent Effects
Standard amplification: Rate equations
Coherent effects (Maxwell-Bloch equations)
In
nversion
Pulse
u
on
Rabi frequency
Rabi
R
bi oscillations:
ill i
•Quantum beat between two states
•Oscillatory driving field
Time
Technische Universität München
10
Institute for Nanoelectronics
Coherent instability = Rabi splitting
Gain
Coherent instability
[Spatial hole burning]
+ΩRabi
37
2.0
2xRabi frequency, theory
Spectrum splitting, experiment
Frequ
uency (TH
Hz)
Optical
Opt
ca Frequency
eque cy (THz)
(
)
35
36
15
1.5
Opttical Powe
er
1110
Mode locking
Q switching
F
Frequency
-ΩRabi
34
Slow
gain
Fast
gain
1.5
0.5
1150
1190
Wavenumber (cm-1)
Technische Universität München
1230
00
0.0
11
0
2
Power1/2
4
6
1/2
(mW )
8
Institute for Nanoelectronics
Overview
•Methods overview
•Open
p two-level model
•Monte
Monte Carlo simulation
•Quantum transport
Technische Universität München
12
Institute for Nanoelectronics
Simulation
V
Schrödinger-Poisson solver
Monte Carlo simulation
z
Technische Universität München
13
Institute for Nanoelectronics
k⊥, Ekin
k⊥, Ekin
Monte Carlo Solver
5
4
3
2
1
Carrier distribution
function f(k)
Technische Universität München
14
Institute for Nanoelectronics
Boltzmann equation
carrier distribution function f(r,k,t)
∂ t f = − v∇r f − (E + v × B)∇k f + ∂ t f |scatt
qc
=
Acoustic phonons
Optical phonon absorption/emission Carrier-carrier scattering
(polar LO / non-polar TO phonons)
E
Optical phonon
E
E
E
k
k
k
O ti l phonon
Optical
h
Technische Universität München
k
15
Institute for Nanoelectronics
m
⁞ ⁞
⁞ ⁞
⁞
⁞
2ΔE
1 ΔE
0
⁞ ⁞
.
.
.
3ΔE
2ΔE
ΔE
5 ΔE
0
⁞ ⁞
2ΔE
1 ΔE
1
0
Technische Universität München
16
5
⁞
1
5
⁞
1
5
⁞
1
⁞
5
⁞
1
5
⁞
1
5
⁞
1
⁞
5
⁞
1
5
⁞
1
5
⁞
1
Institute for Nanoelectronics
Rando
om selecction
2
nE
2ΔE
LO
O phonon
n
sscattering
g
.
.
.
3ΔE
2ΔE
ΔE
Tabulate
e
sca
attering rates
.
.
.
.
3ΔE
.
2ΔE
ΔE
.
.
5 2ΔE
.
ΔE
.
4
ΔE
3
Acousstic phono
on…
sca
attering
k, Ekin
k
Evaluation of Scattering Rates
Ensemble Monte Carlo Method
Optical phonon Acoustic phonon
scattering
scattering
Carrier-carrier
scattering
Particle
N
.
.
.
3
2
1
Subinterval Δt
Time t
Technische Universität München
17
Institute for Nanoelectronics
Ensemble Monte Carlo Method
State
m Carrier N
.
.
.
.
.
.
C i 3
Carrier
Carrier 2
3
2
C i 1
1 Carrier
Subinterval Δt
Time t
Technische Universität München
18
Institute for Nanoelectronics
Ensemble Monte Carlo Method
State
m Carrier N
.
.
.
.
.
.
C i 3
Carrier
Carrier 2
3
2
C i 1
1 Carrier
Subinterval Δt
Time t
Technische Universität München
19
Institute for Nanoelectronics
Monte Carlo Solver
Start
Import parameters
and wavefunctions
Wavefunctions,
eigenenergies
Calculate
scattering rate
Schrödinger-Poisson
solver
(effective mass)
Initialize carrier
distribution
Next subinterval
Next particle
No
New free flight
Stationary
state?
Scattering process
Update state of
next particle
No
End of
subinterval?
Technische Universität München
Yes
End
No
Yes
Last
particle?
O t t off scattering
Output
tt i
rates, carrier
distribution, etc.
Yes
20
Evaluation of
subinterval update
subinterval,
of carrier
distribution
Institute for Nanoelectronics
Monte Carlo Simulation - Example THz QCLs
0.2
0.06
0.04
Kinetiic carrier dis
stribution fu
ucntion
T=200 K
L
0.1
T=300 K
L
0
0.020
20
40
60
Position (nm)
0.02
Upper laser level
4
T =200 K
3
L
80
2
1
100
x 10-3
6
Lower laser level
5
T =100 K
L
0.01
T=100 K
L
T =300 K
L
2
1
0
0
0
0.05 0.1 0.15 0
0.05 0.1 0.15
Kinetic energy (eV) Kinetic energy (eV)
Technische Universität München
Current d
C
dens. (kA/cm2)
Ene
ergy (eV)
0.08
In
nversion
2'
5
1'
4
3
2
1
0
9
10
11
12
13
14
Applied bias (kV/cm)
21
Institute for Nanoelectronics
Overview
•Methods overview
•Open
p two-level model
•Monte
Monte Carlo simulation
•Quantum transport
Technische Universität München
22
Institute for Nanoelectronics
Carrier Transport Simulation Methods
E
kin
n
Non-equilibrium Green's
function method (NEGF)
kin
n
E
Monte Carlo method
semiclassical; no q
quantum
correlations (e.g., dephasing)
most g
general scheme for
incoherent quantum transport
modest computational effort
huge computational effort
⇒ neglect e-e scattering,…
Technische Universität München
23
Institute for Nanoelectronics
Eigene
energies (eV)
2
Current density (kA
C
A/cm )
Current Density for 3.4 THz Structure (100 K)
2.5
NEGF
Monte Carlo
2
1.5
1
0.5
0
9
0.14
10
11
12
10
11
12
13
14
15
16
17
18
19
13
14
15
16
Applied field (kV/cm)
17
18
19
0 12
0.12
0.1
0.08
0.06
9
Technische Universität München
24
Institute for Nanoelectronics
Electron Resolved Density of States
Energy resolved electron density [1018 cm-3eV-1]
2
0.2
0 02
0.02
T. Kubis et al., phys. stat. sol. (c) 5, 232 (2008)
Technische Universität München
25
Institute for Nanoelectronics
Optical Gain at Current Peak
Absorption coefficient α [1/cm]
300
175
50
-75
75
-200
Technische Universität München
26
Institute for Nanoelectronics
Results (Summary)
Open two-level model
• Includes rate equation elements and quantum effects
• Description of optical instabilities/mode-locking in QCLs
C Y
C.
Y. Wang et al.,
al Phys.
Phys Rev
Rev. A 75,
75 031802(R) (2007)
(2007).
Monte Carlo simulation of QCLs
• Takes into account kinetic electron distribution
• Analysis of experimental results
C. Jirauschek et al
C
al., JJ. Appl
Appl. Phys
Phys. 101,
101 086109 (2007);
C. Jirauschek and P. Lugli, phys. stat. sol. (c) 5, 221 (2008);
C. Jirauschek and P. Lugli, J. Comput. Electron. 7, 436 (2008).
Quantum transport
• Includes quantum correlations/dephasing
• Allows for simulation of spectral gain
Technische Universität München
27
Institute for Nanoelectronics
Acknowledgment
Collaborations
• Monte Carlo simulations:
¾ Prof. P. Lugli, TUM
¾ Scamarcio group,
group Bari (experimental)
• Maxwell-Bloch model:
¾ Kärtner group, MIT
¾ Capasso g
group, Harvard
• Further collaborations:
¾ Vogl group/Tillmann Kubis
Kubis, TUM
Financial support
pp