Carrier Transport Modeling in Q Quantum Cascade C Lasers C. Jirauschek Institute for Nanoelectronics, Nanoelectronics TU München München, Germany Overview •Methods overview •Open p two-level model •Monte Monte Carlo simulation •Quantum transport Technische Universität München 2 Institute for Nanoelectronics Typical QCL Structure V G GaAs/Al / 0.15Ga G 0.85As Technische Universität München 3 z Institute for Nanoelectronics Carrier Transport Simulation Methods Quantum transport (semiclassical) (e.g., density matrix, NEGF) Ekin Monte Carlo method Ekin Rate equations Complexity, accuracy Technische Universität München 4 Institute for Nanoelectronics Overview •Methods overview •Open p two-level model •Monte Monte Carlo simulation •Quantum transport Technische Universität München 5 Institute for Nanoelectronics Op ptical Pow wer Quantum Cascade Ring Laser Technische Universität München Propagation coordinate 6 Institute for Nanoelectronics Extended Maxwell-Bloch Equations Gain n Los ss Gain recovery Propagation coordinate Propagation coordinate Technische Universität München 7 Institute for Nanoelectronics Rate Equations Δp/T1 T1 T 0 T→0 Technische Universität München 8 Institute for Nanoelectronics Coherent Effects T2 Technische Universität München 9 E Institute for Nanoelectronics Coherent Effects Standard amplification: Rate equations Coherent effects (Maxwell-Bloch equations) In nversion Pulse u on Rabi frequency Rabi R bi oscillations: ill i •Quantum beat between two states •Oscillatory driving field Time Technische Universität München 10 Institute for Nanoelectronics Coherent instability = Rabi splitting Gain Coherent instability [Spatial hole burning] +ΩRabi 37 2.0 2xRabi frequency, theory Spectrum splitting, experiment Frequ uency (TH Hz) Optical Opt ca Frequency eque cy (THz) ( ) 35 36 15 1.5 Opttical Powe er 1110 Mode locking Q switching F Frequency -ΩRabi 34 Slow gain Fast gain 1.5 0.5 1150 1190 Wavenumber (cm-1) Technische Universität München 1230 00 0.0 11 0 2 Power1/2 4 6 1/2 (mW ) 8 Institute for Nanoelectronics Overview •Methods overview •Open p two-level model •Monte Monte Carlo simulation •Quantum transport Technische Universität München 12 Institute for Nanoelectronics Simulation V Schrödinger-Poisson solver Monte Carlo simulation z Technische Universität München 13 Institute for Nanoelectronics k⊥, Ekin k⊥, Ekin Monte Carlo Solver 5 4 3 2 1 Carrier distribution function f(k) Technische Universität München 14 Institute for Nanoelectronics Boltzmann equation carrier distribution function f(r,k,t) ∂ t f = − v∇r f − (E + v × B)∇k f + ∂ t f |scatt qc = Acoustic phonons Optical phonon absorption/emission Carrier-carrier scattering (polar LO / non-polar TO phonons) E Optical phonon E E E k k k O ti l phonon Optical h Technische Universität München k 15 Institute for Nanoelectronics m ⁞ ⁞ ⁞ ⁞ ⁞ ⁞ 2ΔE 1 ΔE 0 ⁞ ⁞ . . . 3ΔE 2ΔE ΔE 5 ΔE 0 ⁞ ⁞ 2ΔE 1 ΔE 1 0 Technische Universität München 16 5 ⁞ 1 5 ⁞ 1 5 ⁞ 1 ⁞ 5 ⁞ 1 5 ⁞ 1 5 ⁞ 1 ⁞ 5 ⁞ 1 5 ⁞ 1 5 ⁞ 1 Institute for Nanoelectronics Rando om selecction 2 nE 2ΔE LO O phonon n sscattering g . . . 3ΔE 2ΔE ΔE Tabulate e sca attering rates . . . . 3ΔE . 2ΔE ΔE . . 5 2ΔE . ΔE . 4 ΔE 3 Acousstic phono on… sca attering k, Ekin k Evaluation of Scattering Rates Ensemble Monte Carlo Method Optical phonon Acoustic phonon scattering scattering Carrier-carrier scattering Particle N . . . 3 2 1 Subinterval Δt Time t Technische Universität München 17 Institute for Nanoelectronics Ensemble Monte Carlo Method State m Carrier N . . . . . . C i 3 Carrier Carrier 2 3 2 C i 1 1 Carrier Subinterval Δt Time t Technische Universität München 18 Institute for Nanoelectronics Ensemble Monte Carlo Method State m Carrier N . . . . . . C i 3 Carrier Carrier 2 3 2 C i 1 1 Carrier Subinterval Δt Time t Technische Universität München 19 Institute for Nanoelectronics Monte Carlo Solver Start Import parameters and wavefunctions Wavefunctions, eigenenergies Calculate scattering rate Schrödinger-Poisson solver (effective mass) Initialize carrier distribution Next subinterval Next particle No New free flight Stationary state? Scattering process Update state of next particle No End of subinterval? Technische Universität München Yes End No Yes Last particle? O t t off scattering Output tt i rates, carrier distribution, etc. Yes 20 Evaluation of subinterval update subinterval, of carrier distribution Institute for Nanoelectronics Monte Carlo Simulation - Example THz QCLs 0.2 0.06 0.04 Kinetiic carrier dis stribution fu ucntion T=200 K L 0.1 T=300 K L 0 0.020 20 40 60 Position (nm) 0.02 Upper laser level 4 T =200 K 3 L 80 2 1 100 x 10-3 6 Lower laser level 5 T =100 K L 0.01 T=100 K L T =300 K L 2 1 0 0 0 0.05 0.1 0.15 0 0.05 0.1 0.15 Kinetic energy (eV) Kinetic energy (eV) Technische Universität München Current d C dens. (kA/cm2) Ene ergy (eV) 0.08 In nversion 2' 5 1' 4 3 2 1 0 9 10 11 12 13 14 Applied bias (kV/cm) 21 Institute for Nanoelectronics Overview •Methods overview •Open p two-level model •Monte Monte Carlo simulation •Quantum transport Technische Universität München 22 Institute for Nanoelectronics Carrier Transport Simulation Methods E kin n Non-equilibrium Green's function method (NEGF) kin n E Monte Carlo method semiclassical; no q quantum correlations (e.g., dephasing) most g general scheme for incoherent quantum transport modest computational effort huge computational effort ⇒ neglect e-e scattering,… Technische Universität München 23 Institute for Nanoelectronics Eigene energies (eV) 2 Current density (kA C A/cm ) Current Density for 3.4 THz Structure (100 K) 2.5 NEGF Monte Carlo 2 1.5 1 0.5 0 9 0.14 10 11 12 10 11 12 13 14 15 16 17 18 19 13 14 15 16 Applied field (kV/cm) 17 18 19 0 12 0.12 0.1 0.08 0.06 9 Technische Universität München 24 Institute for Nanoelectronics Electron Resolved Density of States Energy resolved electron density [1018 cm-3eV-1] 2 0.2 0 02 0.02 T. Kubis et al., phys. stat. sol. (c) 5, 232 (2008) Technische Universität München 25 Institute for Nanoelectronics Optical Gain at Current Peak Absorption coefficient α [1/cm] 300 175 50 -75 75 -200 Technische Universität München 26 Institute for Nanoelectronics Results (Summary) Open two-level model • Includes rate equation elements and quantum effects • Description of optical instabilities/mode-locking in QCLs C Y C. Y. Wang et al., al Phys. Phys Rev Rev. A 75, 75 031802(R) (2007) (2007). Monte Carlo simulation of QCLs • Takes into account kinetic electron distribution • Analysis of experimental results C. Jirauschek et al C al., JJ. Appl Appl. Phys Phys. 101, 101 086109 (2007); C. Jirauschek and P. Lugli, phys. stat. sol. (c) 5, 221 (2008); C. Jirauschek and P. Lugli, J. Comput. Electron. 7, 436 (2008). Quantum transport • Includes quantum correlations/dephasing • Allows for simulation of spectral gain Technische Universität München 27 Institute for Nanoelectronics Acknowledgment Collaborations • Monte Carlo simulations: ¾ Prof. P. Lugli, TUM ¾ Scamarcio group, group Bari (experimental) • Maxwell-Bloch model: ¾ Kärtner group, MIT ¾ Capasso g group, Harvard • Further collaborations: ¾ Vogl group/Tillmann Kubis Kubis, TUM Financial support pp
© Copyright 2026 Paperzz