Technologies and Energy Carriers for an Integrated Energy System Conference Presentation Sektorkopplung: Welche Chancen und Herausforderungen für die Energiewende? French embassy in Berlin Ralph-Uwe Dietrich Antje Seitz Berlin, 28. Feb. 2017 DLR.de • Chart 2 • Technologies and Energy Carriers for the Integrated Energy System • R.-U. Dietrich • 13-Mar-17 The German energy transition – pathway to a secure, environmentally-friendly and economically successful future Four energy transition targets by 2020 Others Renewables Waste Hydro pow er Wind pow er Solar Mineral Oil Biom ass Natural Gas Hard Coal Lignite Nuclear Geotherm al DLR.de • Chart 3 • Technologies and Energy Carriers for the Integrated Energy System • R.-U. Dietrich • 13-Mar-17 Power-to-X The German energy transition – challenges for renewables integration Updated: July 2016 DLR.de • Chart 4 • Technologies and Energy Carriers for the Integrated Energy System • R.-U. Dietrich • 13-Mar-17 Technology options for Power-to-X Renewable Electricity Quelle: fhotovoltaikanlage.net Quelle: welt.de Power-to-X Power-to-Heat Power-to-Gas Quelle: helmholtz.de Power-to-Liquid Quelle: keck-energie.de DLR.de • Chart 5 • Technologies and Energy Carriers for the Integrated Energy System • R.-U. Dietrich • 13-Mar-17 Power-to-Heat Power-to-Heat Applications: Power-operated Heat Pumps • Fossil fuel substitution by renewable power: 1 kWhel up to 3-4 kWhth • Established, user accepted Technologies, small investment required • District heating • Large power range (0.1 – 10 MW) • 330 MW installed • Huge storage capacity • Domestic water heating • Integrated with heating installation, PV, solar heat • Model region with 200 homes in SH: excess wind power • Process steam generation • High pressure and capacity Pictures: Klöpper-Therm GmbH & Co. KG DLR.de • Chart 6 • Technologies and Energy Carriers for the Integrated Energy System • R.-U. Dietrich • 13-Mar-17 Power-to-Heat Power-to-Heat Technologies: Heat Storage • Uncoupling of heat supply and demand HOTREG test facility: Storing high-temperature heat in small ceramic particles (175 kW, 830 °C) CeraStorE: Chemical heat storage by reversible gas- and solid-state reactions (High storage capacity using Lime) DLR.de • Chart 7 • Technologies and Energy Carriers for the Integrated Energy System • R.-U. Dietrich • 13-Mar-17 Power-to-Heat Large scale electricity storage: Power-X-Power • Seasonal storage • 33 pumped-storage hydropower plants (Σ: 6,6 GW) • Limited potential • Compressed Air Energy Storage (CAES) • 320 MW Demonstration plant (2 h), Efficiency ≈ 42 % • Adiabatic compressed air energy storage concept • Re-use of compression heat, Efficiency ≈ 70 % DLR.de • Chart 8 • Technologies and Energy Carriers for the Integrated Energy System • R.-U. Dietrich • 13-Mar-17 Power-to-Heat Combining electricity storage and District Heating: Smart District Heating Concept • Seasonal electricity storage using hot water reservoir Wind / PV Power Usage Charge Mode Heat Storage 150…200°C Discharge Mode 1 MWel 1 MWel G M 90°C 6 MWth Solar Heat 40°C 6 MWth District Heating DLR.de • Chart 9 • Technologies and Energy Carriers for the Integrated Energy System • R.-U. Dietrich • 13-Mar-17 Power-to-Gas Power-to-Gas: H2O electrolysis • Global electrolysis demand by 2030: 330 GW (Boston Consulting Group) • Established, user accepted technologies – but continuous R&D efforts • Energiepark Mainz: 3*1,3 MW demonstration • Goal: 200 t/a H2 @ 35 bar • Established industrial applications: Thyssenkrupp, ELB (former Lurgi), … • R&D: sunfire, DLR, … • Highest overall efficiency • Allows reverse operation (SOFC) DLR.de • Chart 10 • Technologies and Energy Carriers for the Integrated Energy System • R.-U. Dietrich • 13-Mar-17 Power-to-Gas Power-to-Gas: Methane • Synthetic Natural Gas (SNG) uses current gas infrastructure • Mobile applications available today • To compete with import natural gas • Audi e-gas plant since 2013 • 1,000 Nm3/a SNG fueling 1,500 Audi A3 Sportback g-tron vehicles Quelle: helmholtz.de • Project pipeline @ www.dvgw-innovation.de DLR.de • Chart 11 • Technologies and Energy Carriers for the Integrated Energy System • R.-U. Dietrich • 13-Mar-17 Power-to-Liquid Power-to-Liquid: More than a Concept? • Advantage: Renewable Transport with current infrastructure • Challenge: Currently not competitive to fossil fuels Electrolyzer Quelle: helmholtz.de Synthesis Synthesis Gas • Dresden, 14.11.2014: Federal Minister of Education and Research Johanna Wanka fills the first 5 l of synthetic fuel from sunfire demo plant into her ministry car DLR.de • Chart 12 • Technologies and Energy Carriers for the Integrated Energy System • R.-U. Dietrich • 13-Mar-17 Power-to-Liquid Power-to-Liquid combined with biomass processing: Multiple Options for Renewable Transport Quelle: helmholtz.de Quelle: keck-energ Syngas supply Syngas upgrade Fuel production External Recycle CO2 Off gas Steam PtL CO2 purification Electrolysis H2 O2 Oxy-fuel burner + steam cycle Reverse watergas-shift (900°C) Water Power CO2-recycle Tail gas Internal Recycle PBtL Fischer-Tropsch synthesis Separation & upgrading O2 Steam Biomass Pyrolysis & gasification CO,H2,CO2 BtL Water-gas-shift (230°C) + CO2 removal FT-Product CO2 DLR.de • Chart 13 • Technologies and Energy Carriers for the Integrated Energy System • R.-U. Dietrich • 13-Mar-17 Power-to-Liquid Power-to-Liquid combined with biomass processing: Multiple Options for Renewable Transport Quelle: helmholtz.de Quelle: keck-energ Syngas supply Syngas upgrade Fuel production External Recycle CCU technologiesSteam Off gas CO2-recycle O2 CO2 purification PtL • Adsorption Oxy-fuel burner Tail gas + steam cycle FT technologies • Absorption Reverse waterElectrolysis • Membrane Sep. gas-shift Fischer-Tropsch product mass distribution technologies Water (900°C) Internal Recycle • =Alkaline 0.75 0,12 Power • =Proton 0.85 exchange Electrolysis H2 PBtL 0,08 Fischer-Tropsch Separation & membrane (PEM) synthesis upgrading • Solid oxide (SOEC) 0,04 O2 Gasifier Steam technologies 0 FT-Product Water-gas-shift 0 10 20 30 • Entrained flow (230°C) + CO 2 C num ber / CO2 Biomass Pyrolysis & removal CO,H2,CO2 BtL • Fluidized bed gasification • Fixed bed Share / - CO2 DLR.de • Chart 14 • Technologies and Energy Carriers for the Integrated Energy System • R.-U. Dietrich • 13-Mar-17 Power-to-Liquid Power-to-Liquid: Process Performance Case study equipment selection and assumptions: • PEM electrolyzer, ƞ = 4.3 kWh/Nm³ [6] • Entrained flow gasifier, T = 1200 ℃, p = 30 bar, pure O2 [7] • Fischer-Tropsch synthesis, T = 225 ℃, p = 25 bar, a = 0.85, XCO = 40 % [8] Process parameter Energy efficiency XTL Power consumption Biomass/CO2 demand Carbon efficiency C BTL PBTL PTL 36,3 % 51,4 % 50,6 % - 4.2 kWh/kgfuel* 15.8 kWh/kgfuel 24.4 kWh/kgfuel 7.6 kgBM/kgfuel 2.0 kgBM/kgfuel 3.1 kgCO2/kgfuel 24.9 % 97.7 % 98.9 % * BTL can generate electricity from exhaust heat • BTL fuel yield can be increased by the factor 3 – 4 by the PBTL concept • Approximately full carbon conversion for PBTL and PTL applying oxy-fuel combustion and recycle concept • High XTL-efficiency for PTL and PBTL [6] T. Smolinka, M. Günther and J. Garche, „Stand und Entwicklungspotenzial der Wasserelektrolyse zur Herstellung von Wasserstoff aus regenerativen Energien,“ NOW GmbH, 2011. [7] K. Qin, „Entrianed Flow Gasification of Biomass, Ph. D. thesis,“ Technical University of Denmark (DTU), Kgs. Lyngby, 2012. [8] P. Kaiser, F. Pöhlmann and A. Jess, "Intrinsic and effective kinetics of cobalt-catalyzed Fischer-Tropsch synthesis in view of a Power-to-Liquid process based on renewable energy,“ Chemical Engineering Technology, vol. 37, pp. 964-972, 2014. DLR.de • Chart 15 • Technologies and Energy Carriers for the Integrated Energy System • R.-U. Dietrich • 13-Mar-17 Power-to-Liquid Power-to-Liquid: Production costs for 11 tfuel/h capacity (2014) Case study operating funds assumptions: • Electricity: 105 €/MWh [12] • Biomass (wood chips): 100 €/twet [13] BTL – NPC: 1.77 €/l PBTL – NPC: 2.24 €/l [12] Eurostat, „Electricity prices for industrial consumers - bi-annual data (from 2007 onwards), 2016. [13] C.A.R.M.E.N e.V., „Price development of wood chips“, 2015. PTL – NPC = 2.74 €/l DLR.de • Chart 16 • Technologies and Energy Carriers for the Integrated Energy System • R.-U. Dietrich • 13-Mar-17 Power-to-Liquid Power-to-Liquid: Techno-economic assessment 2.3 NPC / €/l 2.2-2.3 2.1-2.2 2-2.1 1.9-2 1.8-1.9 1.7-1.8 1.6-1.7 1.5-1.6 1.4-1.5 1.3-1.4 1.2-1.3 1.1-1.2 1-1.1 2.2 2.1 2 NPC (€/l) 1.9 1.8 BtL 1.7 1.6 1.5 1.4 PBtL * 1.3 1.2 PtL 1.1 1 Plant capacity (kt/year) 20 29 38 47 56 65 74 83 92 * Red line indicates stock exchange power price 101 Electricity price (€/MWh) Fuel production costs (NPC) over plant size and electricity price • PtL preference: small plant size, cheap electricity • PBTL preference: larger plant size (biomass availability?), current electricity prices DLR.de • Chart 17 • Technologies and Energy Carriers for the Integrated Energy System • R.-U. Dietrich • 13-Mar-17 Technology options for Power-to-X Renewable Electricity Quelle: fhotovoltaikanlage.net Quelle: welt.de Power-to-X Power-to-Heat Power-to-Gas Quelle: helmholtz.de Power-to-Liquid Quelle: keck-energie.de DLR.de • Chart 18 • Technologies and Energy Carriers for the Integrated Energy System • R.-U. Dietrich • 13-Mar-17 Technology options for Power-to-X Renewable Electricity Quelle: fhotovoltaikanlage.net Quelle: welt.de Power-to-X Power-to-Heat • Cheap, state-of-the-art electroboiler for low temperature applications (exergy loss included) • Currently not for saisonal storage • High temperature applications required for sustainable industry DLR.de • Chart 19 • Technologies and Energy Carriers for the Integrated Energy System • R.-U. Dietrich • 13-Mar-17 Technology options for Power-to-X Renewable Electricity Quelle: fhotovoltaikanlage.net Quelle: welt.de Power-to-X Power-to-Gas Quelle: helmholtz.de • • • • • Industrial hydrogen demand can be supplied sustainable Growing demand of hydrogen applications not clear Hydrogen economy will require Power-to-Gas Gas production includes exergy losses Methane can be used for power production (grid stabilization) DLR.de • Chart 20 • Technologies and Energy Carriers for the Integrated Energy System • R.-U. Dietrich • 13-Mar-17 Technology options for Power-to-X Renewable Electricity Quelle: fhotovoltaikanlage.net Quelle: welt.de Power-to-X Power-to-Liquid Quelle: keck-energie.de • Sustainable transport with current infrastructure requires sustainable fuels • Sustainable chemistry from renewable power • Exergy losses unavoidable for current transport system • Huge long term storage potential DLR.de • Chart 21 • Technologies and Energy Carriers for the Integrated Energy System • R.-U. Dietrich • 13-Mar-17 Technology Demand for Power-to-X Renewable Electricity Quelle: fhotovoltaikanlage.net Quelle: welt.de Power-to-X • Large scale energy storage technologies (efficiency, maturity, costs) • Electrolyzer mass production • Efficient synthesis technologies for renewable transport The future integrated energy system will look different! THANK YOU FOR YOUR ATTENTION! German Aerospace Center (DLR) Institute of Engineering Thermodynamics, Stuttgart Research Area Alternative Fuels [email protected] http://www.dlr.de/tt/en
© Copyright 2026 Paperzz