Topics of Lecture #2

Lecture #12 Topics
Develop Reference Set and Perturbation Set
β€’ Define new vehicle fixed frame (Stability Axes
Frame)
β€’ Develop derivatives of forces and moments needed
in the perturbation set
β€’ Trim
Fuselage Reference Frame
Relation between forces expressed in
vehicle-axes and aerodynamic forces in
the wind axes:
𝐹𝐴𝑋 = 𝐢𝑋 π‘žβˆž 𝑆 = βˆ’π·π‘π‘œπ‘ π›Όπ‘π‘œπ‘ π›½ βˆ’ π‘Œπ‘π‘œπ‘ π›Όπ‘ π‘–π‘›π›½ + 𝐿𝑠𝑖𝑛𝛼
πΉπ΄π‘Œ = πΆπ‘Œ π‘žβˆž 𝑆 = βˆ’π·π‘ π‘–π‘›π›½ + π‘Œπ‘π‘œπ‘ π›½
𝐹𝐴𝑍 = 𝐢𝑍 π‘žβˆž 𝑆 = βˆ’π·π‘ π‘–π‘›π›Όπ‘π‘œπ‘ π›½ βˆ’ π‘Œπ‘ π‘–π‘›π›Όπ‘ π‘–π‘›π›½ βˆ’ πΏπ‘π‘œπ‘ π›Ό
Here the angles are the
total (reference plus the
perturbation angle)
With the above definition, determination of the perturbation force 𝑓𝐴𝑋 will require
derivatives of the following form:
πœ•πΉπ΄π‘‹
πœ•π‘ˆ
=
πœ•πΉπ΄π‘‹ πœ•π‘‰βˆž
πœ•π‘‰βˆž πœ•π‘ˆ
+
πœ•πΉπ΄π‘‹ πœ•π›Ό
πœ•π›Ό πœ•π‘ˆ
+
πœ•πΉπ΄π‘‹ πœ•π›½
πœ•π›½ πœ•π‘ˆ
Messy derivative! So for perturbation analysis a different vehicle fixed frame is used
Stability Axes Frame
No more W
component of
velocity
F – fuselage reference frame (vehicle fixed frame – original V frame)
S – stability axes frame (new vehicle fixed frame) – fixed to the specific reference condition
Subscript 0 – used to denote the forces and moments at the reference condition
Benefit: Equations of motion do not change and simplifies perturbation force expressions!
Thus relation between reference forces
expressed in new vehicle-axes frame and
aerodynamic forces in the wind axes
frame:
𝐹𝐴𝑋0 = 𝐢𝑋0 π‘žβˆž 𝑆 = βˆ’π·0 π‘π‘œπ‘ π›½0 βˆ’ π‘Œ0 𝑠𝑖𝑛𝛽0
πΉπ΄π‘Œ0 = πΆπ‘Œ0 π‘žβˆž 𝑆 = βˆ’π·0 𝑠𝑖𝑛𝛽0 βˆ’ π‘Œ0 π‘π‘œπ‘ π›½0
𝐹𝐴𝑍0 = 𝐢𝑍0 π‘žβˆž 𝑆 = βˆ’πΏ0
Reference velocity π‘‰βˆž0 = π‘ˆ0 𝑖𝑆 + 𝑉0 𝑗𝑆
Now, if there are perturbations
Total Velocity π‘‰βˆž = (π‘ˆ0 +𝑒)𝑖𝑆 + (𝑉0 +𝑣)𝑗𝑆 +( 𝑀)π‘˜π‘†
𝑀
𝑀
~
π‘ˆ0
0 +𝑒
Perturbation π‘Žπ‘›π‘”π‘™π‘’ π‘œπ‘“ π‘Žπ‘‘π‘‘π‘Žπ‘π‘˜ π‘‘π‘Žπ‘›π›Ό = π‘ˆ
π‘‡π‘œπ‘‘π‘Žπ‘™ 𝑠𝑖𝑑𝑒 𝑠𝑙𝑖𝑝 tan(𝛽0 + 𝛽) =
𝑉0 + 𝑣 𝑉0 + 𝑣
~
π‘ˆ0 + 𝑒
π‘ˆ0
Now, relation between forces expressed
in new vehicle-axes frame and
aerodynamic forces in the wind axes
frame becomes:
π‘‡π‘Š,𝑆
cos(𝛽0 + 𝛽)
= βˆ’π‘ π‘–π‘›(𝛽0 + 𝛽)
0
𝑠𝑖𝑛(𝛽0 + 𝛽) 0 π‘π‘œπ‘ π›Ό
0
cos(𝛽0 + 𝛽) 0
0
1 βˆ’π‘ π‘–π‘›π›Ό
𝐹𝐴 = 𝐹𝐴𝑋 𝑖𝑆 + πΉπ΄π‘Œ 𝑗𝑆 + 𝐹𝐴𝑍 π‘˜π‘†
𝐹𝐴𝑋 = 𝐢𝑋 π‘žβˆž 𝑆
= βˆ’π·π‘π‘œπ‘ π›Όπ‘π‘œπ‘ (𝛽0 + 𝛽) βˆ’ π‘Œπ‘π‘œπ‘ π›Όπ‘ π‘–π‘›(𝛽0 + 𝛽) + 𝐿𝑠𝑖𝑛𝛼
πΉπ΄π‘Œ = πΆπ‘Œ π‘žβˆž 𝑆 = βˆ’π·π‘ π‘–π‘›(𝛽0 + 𝛽) + +π‘Œπ‘π‘œπ‘ (𝛽0 + 𝛽)
0
1
0
𝑠𝑖𝑛𝛼
0
π‘π‘œπ‘ π›Ό
Benefit:
Forces now in
terms of
perturbation
quantities!
πΉπ΄π‘Œ = 𝐢𝑍 π‘žβˆž 𝑆 = βˆ’π·π‘ π‘–π‘›π›Όπ‘π‘œπ‘ (𝛽0 + 𝛽) βˆ’ π‘Œπ‘ π‘–π‘›π›Όπ‘ π‘–π‘›(𝛽0 + 𝛽) βˆ’ πΏπ‘π‘œπ‘ π›Ό
Look at the derivative with respect to
perturbation velocity again
𝐹𝐴𝑋 = 𝐢𝑋 π‘žβˆž 𝑆
= βˆ’π·π‘π‘œπ‘ π›Όπ‘π‘œπ‘ (𝛽0 + 𝛽) βˆ’ π‘Œπ‘π‘œπ‘ π›Όπ‘ π‘–π‘›(𝛽0 + 𝛽) + 𝐿𝑠𝑖𝑛𝛼
𝐢𝑋 = βˆ’πΆπ· π‘π‘œπ‘ π›Όπ‘π‘œπ‘ (𝛽0 + 𝛽) βˆ’ πΆπ‘Œ π‘π‘œπ‘ π›Όπ‘ π‘–π‘›(𝛽0 + 𝛽) + 𝐢𝐿 𝑠𝑖𝑛𝛼
πœ•πΉπ΄π‘‹
|
πœ•π‘ˆ 0
πœ•πΆ
= [ πœ•π‘ˆπ‘‹ π‘žβˆž 𝑆 +
πœ•π‘žβˆž
πœ•π‘ˆ
𝐢𝑋 𝑆]|0
πœ•π‘žβˆž
= 𝜌∞ (π‘ˆ0 + 𝑒)
πœ•π‘ˆ
πœ•πΆπ‘‹
= βˆ’πΆπ·π‘ˆ π‘π‘œπ‘ π›Όπ‘π‘œπ‘ (𝛽0 + 𝛽) βˆ’ πΆπ‘Œπ‘ˆ π‘π‘œπ‘ π›Όπ‘ π‘–π‘›(𝛽0 + 𝛽) + πΆπΏπ‘ˆ 𝑠𝑖𝑛𝛼
πœ•π‘ˆ
Done! No messy derivatives
Reference Set
How many equations do we need to
characterize the reference set?
m (U 0  Q 0W 0 ο€­ V 0 R0 ) ο€½ ο€­mg sin  0  FAX 0  FPX 0
m (V0  R0U 0 ο€­ P0W 0 ) ο€½ ο€­mg cos 0 sin  0  FAY 0  FPY 0
m (W0  P0V 0 ο€­ Q 0U 0 ) ο€½ mg cos 0 cos  0  FAZ 0  FPZ 0


I xx P0 ο€­ I xz  R0  P0Q 0   I zz ο€­ I yy Q 0R0 ο€½ LA 0  LP 0
I yy Q 0   I xx ο€­ I zz  P0 R0  I xz  P02 ο€­ R02  ο€½ M A 0  M P 0

Assuming 𝐼π‘₯𝑦 = 𝐼𝑦𝑧 = 0

I zz R0 ο€­ I xz  P0 ο€­ Q 0 R0   I yy ο€­ I xx P0Q 0 ο€½ N A 0  N P 0
 0 ο€½ P0  Q 0 sin  0 tan  0  R0 cos  0 tan  0
 0 ο€½ Q 0 cos  0 ο€­ R0 sin  0
 0 ο€½ Q 0 sin  0  R0 cos  0  sec 0
X 0 ο€½ U 0 cos 0 cos 0  V 0  sin  0 sin  0 cos  0 ο€­ cos  0 sin  0 
 W 0  cos  0 sin  0 cos  0  sin  0 sin  0 
Y0 ο€½ U 0 cos 0 sin 0  V 0  sin  0 sin  0 sin  0  cos  0 cos  0 
 W 0  cos  0 sin  0 sin  0 ο€­ sin  0 cos  0 
h0 ο€½ U 0 sin  0 ο€­ V 0  sin  0 cos 0 
ο€­ W 0  cos  0 cos 0 
How many equations do we need to
characterize the reference set? – 8
m (U 0  Q 0W 0 ο€­ V 0 R0 ) ο€½ ο€­mg sin  0  FAX 0  FPX 0
m (V0  R0U 0 ο€­ P0W 0 ) ο€½ ο€­mg cos 0 sin  0  FAY 0  FPY 0
m (W0  P0V 0 ο€­ Q 0U 0 ) ο€½ mg cos 0 cos  0  FAZ 0  FPZ 0


I xx P0 ο€­ I xz  R0  P0Q 0   I zz ο€­ I yy Q 0R0 ο€½ LA 0  LP 0
I yy Q 0   I xx ο€­ I zz  P0 R0  I xz  P02 ο€­ R02  ο€½ M A 0  M P 0

Assuming 𝐼π‘₯𝑦 = 𝐼𝑦𝑧 = 0

I zz R0 ο€­ I xz  P0 ο€­ Q 0 R0   I yy ο€­ I xx P0Q 0 ο€½ N A 0  N P 0
 0 ο€½ P0  Q 0 sin  0 tan  0  R0 cos  0 tan  0
 0 ο€½ Q 0 cos  0 ο€­ R0 sin  0
 0 ο€½ Q 0 sin  0  R0 cos  0  sec 0
X 0 ο€½ U 0 cos 0 cos 0  V 0  sin  0 sin  0 cos  0 ο€­ cos  0 sin  0 
 W 0  cos  0 sin  0 cos  0  sin  0 sin  0 
Y0 ο€½ U 0 cos 0 sin 0  V 0  sin  0 sin  0 sin  0  cos  0 cos  0 
 W 0  cos  0 sin  0 sin  0 ο€­ sin  0 cos  0 
h0 ο€½ U 0 sin  0 ο€­ V 0  sin  0 cos 0 
ο€­ W 0  cos  0 cos 0 
Total number of unknowns: 8 states 4 controls
x 0 ο€½ [U 0 V 0 W 0 P0 Q 0 R0  0  0 ]
u 0 ο€½ T0  E 0  A 0  R 0 
Special case: Straight equilibrium
condition
Equilibrium Condition
All state derivatives =0
U 0 ο€½ V0 ο€½ W0 ο€½ 0
P0 ο€½ Q 0 ο€½ R0 ο€½ 0
 0 ο€½ 0 ο€½ 0
Straight line flight ->
0 ο€½ 0
Reference Set
mg sin  0 ο€½ FAX 0  FPX 0
(written in
stability axes frame)
ο€­mg cos 0 cos  0 ο€½ FAZ 0  FPZ 0
ο€­mg cos 0 sin  0 ο€½ FAY 0  FPY 0
Unknowns – 6 [ 0  0 T0  E 0  A 0  R 0 ]
0 ο€½ LA 0  LP 0
0 ο€½ M A0  MP0
0 ο€½ N A0  NP0