Lecture #12 Topics Develop Reference Set and Perturbation Set β’ Define new vehicle fixed frame (Stability Axes Frame) β’ Develop derivatives of forces and moments needed in the perturbation set β’ Trim Fuselage Reference Frame Relation between forces expressed in vehicle-axes and aerodynamic forces in the wind axes: πΉπ΄π = πΆπ πβ π = βπ·πππ πΌπππ π½ β ππππ πΌπ πππ½ + πΏπ πππΌ πΉπ΄π = πΆπ πβ π = βπ·π πππ½ + ππππ π½ πΉπ΄π = πΆπ πβ π = βπ·π πππΌπππ π½ β ππ πππΌπ πππ½ β πΏπππ πΌ Here the angles are the total (reference plus the perturbation angle) With the above definition, determination of the perturbation force ππ΄π will require derivatives of the following form: ππΉπ΄π ππ = ππΉπ΄π ππβ ππβ ππ + ππΉπ΄π ππΌ ππΌ ππ + ππΉπ΄π ππ½ ππ½ ππ Messy derivative! So for perturbation analysis a different vehicle fixed frame is used Stability Axes Frame No more W component of velocity F β fuselage reference frame (vehicle fixed frame β original V frame) S β stability axes frame (new vehicle fixed frame) β fixed to the specific reference condition Subscript 0 β used to denote the forces and moments at the reference condition Benefit: Equations of motion do not change and simplifies perturbation force expressions! Thus relation between reference forces expressed in new vehicle-axes frame and aerodynamic forces in the wind axes frame: πΉπ΄π0 = πΆπ0 πβ π = βπ·0 πππ π½0 β π0 π πππ½0 πΉπ΄π0 = πΆπ0 πβ π = βπ·0 π πππ½0 β π0 πππ π½0 πΉπ΄π0 = πΆπ0 πβ π = βπΏ0 Reference velocity πβ0 = π0 ππ + π0 ππ Now, if there are perturbations Total Velocity πβ = (π0 +π’)ππ + (π0 +π£)ππ +( π€)ππ π€ π€ ~ π0 0 +π’ Perturbation πππππ ππ ππ‘π‘πππ π‘πππΌ = π πππ‘ππ π πππ π πππ tan(π½0 + π½) = π0 + π£ π0 + π£ ~ π0 + π’ π0 Now, relation between forces expressed in new vehicle-axes frame and aerodynamic forces in the wind axes frame becomes: ππ,π cos(π½0 + π½) = βπ ππ(π½0 + π½) 0 π ππ(π½0 + π½) 0 πππ πΌ 0 cos(π½0 + π½) 0 0 1 βπ πππΌ πΉπ΄ = πΉπ΄π ππ + πΉπ΄π ππ + πΉπ΄π ππ πΉπ΄π = πΆπ πβ π = βπ·πππ πΌπππ (π½0 + π½) β ππππ πΌπ ππ(π½0 + π½) + πΏπ πππΌ πΉπ΄π = πΆπ πβ π = βπ·π ππ(π½0 + π½) + +ππππ (π½0 + π½) 0 1 0 π πππΌ 0 πππ πΌ Benefit: Forces now in terms of perturbation quantities! πΉπ΄π = πΆπ πβ π = βπ·π πππΌπππ (π½0 + π½) β ππ πππΌπ ππ(π½0 + π½) β πΏπππ πΌ Look at the derivative with respect to perturbation velocity again πΉπ΄π = πΆπ πβ π = βπ·πππ πΌπππ (π½0 + π½) β ππππ πΌπ ππ(π½0 + π½) + πΏπ πππΌ πΆπ = βπΆπ· πππ πΌπππ (π½0 + π½) β πΆπ πππ πΌπ ππ(π½0 + π½) + πΆπΏ π πππΌ ππΉπ΄π | ππ 0 ππΆ = [ πππ πβ π + ππβ ππ πΆπ π]|0 ππβ = πβ (π0 + π’) ππ ππΆπ = βπΆπ·π πππ πΌπππ (π½0 + π½) β πΆππ πππ πΌπ ππ(π½0 + π½) + πΆπΏπ π πππΌ ππ Done! No messy derivatives Reference Set How many equations do we need to characterize the reference set? m (U 0 ο« Q 0W 0 ο V 0 R0 ) ο½ οmg sin ο± 0 ο« FAX 0 ο« FPX 0 m (V0 ο« R0U 0 ο P0W 0 ) ο½ οmg cosο± 0 sin ο 0 ο« FAY 0 ο« FPY 0 m (W0 ο« P0V 0 ο Q 0U 0 ) ο½ mg cosο± 0 cos ο 0 ο« FAZ 0 ο« FPZ 0 ο¨ ο© I xx P0 ο I xz ο¨ R0 ο« P0Q 0 ο© ο« I zz ο I yy Q 0R0 ο½ LA 0 ο« LP 0 I yy Q 0 ο« ο¨ I xx ο I zz ο© P0 R0 ο« I xz ο¨ P02 ο R02 ο© ο½ M A 0 ο« M P 0 ο¨ Assuming πΌπ₯π¦ = πΌπ¦π§ = 0 ο© I zz R0 ο I xz ο¨ P0 ο Q 0 R0 ο© ο« I yy ο I xx P0Q 0 ο½ N A 0 ο« N P 0 ο 0 ο½ P0 ο« Q 0 sin ο 0 tan ο± 0 ο« R0 cos ο 0 tan ο± 0 ο± 0 ο½ Q 0 cos ο 0 ο R0 sin ο 0 οΉ 0 ο½ ο¨Q 0 sin ο 0 ο« R0 cos ο 0 ο© secο± 0 X 0 ο½ U 0 cosο± 0 cosοΉ 0 ο« V 0 ο¨ sin ο 0 sin ο± 0 cos ο 0 ο cos ο 0 sin ο 0 ο© ο« W 0 ο¨ cos ο 0 sin ο± 0 cos ο 0 ο« sin ο 0 sin ο 0 ο© Y0 ο½ U 0 cosο± 0 sinοΉ 0 ο« V 0 ο¨ sin ο 0 sin ο± 0 sin ο 0 ο« cos ο 0 cos ο 0 ο© ο« W 0 ο¨ cos ο 0 sin ο± 0 sin ο 0 ο sin ο 0 cos ο 0 ο© h0 ο½ U 0 sin ο± 0 ο V 0 ο¨ sin ο 0 cosο± 0 ο© ο W 0 ο¨ cos ο 0 cosο± 0 ο© How many equations do we need to characterize the reference set? β 8 m (U 0 ο« Q 0W 0 ο V 0 R0 ) ο½ οmg sin ο± 0 ο« FAX 0 ο« FPX 0 m (V0 ο« R0U 0 ο P0W 0 ) ο½ οmg cosο± 0 sin ο 0 ο« FAY 0 ο« FPY 0 m (W0 ο« P0V 0 ο Q 0U 0 ) ο½ mg cosο± 0 cos ο 0 ο« FAZ 0 ο« FPZ 0 ο¨ ο© I xx P0 ο I xz ο¨ R0 ο« P0Q 0 ο© ο« I zz ο I yy Q 0R0 ο½ LA 0 ο« LP 0 I yy Q 0 ο« ο¨ I xx ο I zz ο© P0 R0 ο« I xz ο¨ P02 ο R02 ο© ο½ M A 0 ο« M P 0 ο¨ Assuming πΌπ₯π¦ = πΌπ¦π§ = 0 ο© I zz R0 ο I xz ο¨ P0 ο Q 0 R0 ο© ο« I yy ο I xx P0Q 0 ο½ N A 0 ο« N P 0 ο 0 ο½ P0 ο« Q 0 sin ο 0 tan ο± 0 ο« R0 cos ο 0 tan ο± 0 ο± 0 ο½ Q 0 cos ο 0 ο R0 sin ο 0 οΉ 0 ο½ ο¨Q 0 sin ο 0 ο« R0 cos ο 0 ο© secο± 0 X 0 ο½ U 0 cosο± 0 cosοΉ 0 ο« V 0 ο¨ sin ο 0 sin ο± 0 cos ο 0 ο cos ο 0 sin ο 0 ο© ο« W 0 ο¨ cos ο 0 sin ο± 0 cos ο 0 ο« sin ο 0 sin ο 0 ο© Y0 ο½ U 0 cosο± 0 sinοΉ 0 ο« V 0 ο¨ sin ο 0 sin ο± 0 sin ο 0 ο« cos ο 0 cos ο 0 ο© ο« W 0 ο¨ cos ο 0 sin ο± 0 sin ο 0 ο sin ο 0 cos ο 0 ο© h0 ο½ U 0 sin ο± 0 ο V 0 ο¨ sin ο 0 cosο± 0 ο© ο W 0 ο¨ cos ο 0 cosο± 0 ο© Total number of unknowns: 8 states 4 controls x 0 ο½ [U 0 V 0 W 0 P0 Q 0 R0 ο 0 ο± 0 ] u 0 ο½ ο©ο«T0 ο€ E 0 ο€ A 0 ο€ R 0 οΉο» Special case: Straight equilibrium condition Equilibrium Conditionο All state derivatives =0 U 0 ο½ V0 ο½ W0 ο½ 0 P0 ο½ Q 0 ο½ R0 ο½ 0 ο 0 ο½ ο±0 ο½ 0 Straight line flight -> ο0 ο½ 0 Reference Set mg sin ο± 0 ο½ FAX 0 ο« FPX 0 (written in stability axes frame) οmg cosο± 0 cos ο 0 ο½ FAZ 0 ο« FPZ 0 οmg cosο± 0 sin ο 0 ο½ FAY 0 ο« FPY 0 Unknowns β 6 [ο‘ 0 ο’ 0 T0 ο€ E 0 ο€ A 0 ο€ R 0 ] 0 ο½ LA 0 ο« LP 0 0 ο½ M A0 ο« MP0 0 ο½ N A0 ο« NP0
© Copyright 2026 Paperzz