CO2-LASER PRODUCED CHANNELS FOR GUIDING LONG SPARKS IN AIR D. Koopman, J. Greig, R. Pechacek, A. Ali, I. Vitkovitsky, R. Fernsler To cite this version: D. Koopman, J. Greig, R. Pechacek, A. Ali, I. Vitkovitsky, et al.. CO2-LASER PRODUCED CHANNELS FOR GUIDING LONG SPARKS IN AIR. Journal de Physique Colloques, 1979, 40 (C7), pp.C7-419-C7-420. <10.1051/jphyscol:19797204>. <jpa-00219184> HAL Id: jpa-00219184 https://hal.archives-ouvertes.fr/jpa-00219184 Submitted on 1 Jan 1979 HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés. CoZZoque C7, suppZ6ment au n07, Tome 40, JuiZZet 2979, page C7- 419 JOURNAL DE PHYSIQUE COZ-LASER PRODUCED CHANNELS FOR GUIDING LONG SPARKS IN AIR D. ~ o o ~ r n a n ' J. , Greig, R. Pechacek, A.Ali and I. Vitkovitsky, R. ~ernsler". %Naval Research Laboratory, Washington, D. C. 20375, U.S. A., *'JACOR, Alexandria, Va., U.S. A. I n s t i t u t e for Physical Science and TeehnoZogy, U n i v e r s i t y of Maryland, CoZZege Park, Mary Zand 20742 U. S. A. The a b i l i t y of l a s e r r a d i a t i o n t o i n f l u e n c e t o be formed by a complex s e r i e s of events, i n i - t h e paths of e l e c t r i c a l discharges i n gases h a s t i a t e d by l a s e r i o n i z a t i o n of a e r o s o l p a r t i c l e s . been previously Spherical b l a s t waves from t h e r e s u l t a n t plasma E x c i t a t i o n and ion- i z a t i o n were believed t o be a c t i v e when u l t r a violet3, v i s i b l e 4 , or near-infrared radiation "beads" combine t o form a n e a r l y c y l i n d r i c a l 1 shock surrounding a t u r b u l e n t , low d e n s i t y , and from Q-switched l a s e r s was focused t o d e f i n e a p a r t i a l l y ionized core, which expands t o p r e f e r r e d discharge path; long d u r a t i o n 10.6 m i - diameter a t focus. cron r a d i a t i o n i n an absorbing atmosphere was photographs of t h i s process. noted t o achieve guiding by r a r e f a c t i o n 5 . In our s t u d i e s 6 , pulsed 10.6 micron r a d i a t i o n from a TEA - 4 cm Figure 1 p r e s e n t s s c h l i e r e n Holography confirms t h a t t h e shock i s a compression f r o n t , and shows t h e core i s a region of below-atmospheric d e n s i t y . l a s e r has been used t o produce channels i n ambient a i r which a r e capable of guiding d i s c h a r g e s nearl y orthogonal t o t h e i n i t i a l E-field, over dis- tances of 1-2 meters, a t average f i e l d s t r e n g t h s t = 100 nsec (a a s low a s 1 KV/cm, and with average propagation - ( e ) 1=19psec - v e l o c i t i e s a s h i g h a s 10' cm/sec. The mechanism by which t h e s e channels a r e produced, and t h e p r o p e r t i e s of t h e channels which i n f l u e n c e elec- - ( b 1 t = 400 nsec - t r i c a l d i s c h a r e e Drocesses. have been t h e s u b i e c t - ~ - - A (f t = 44psec of continued i n v e s t i g a t i o n s . A 1 K J , 10.6 micron p u l s e , w i t h a 100 nsec i n i t i a l s p i k e containing about 30% of t h e energy, followed by a 1.5 usec t a i l , i s focused by a 3 meter f.E. l e n s from i t s o r i g i n a l 20 cm diameter t o a f o c a l diameter of 2 cm. About 80% of t h e i n c i d e n t energy i s absorbed. The channel appears a s a tapered c l u s t e r of o p t i c a l breakdown "beads", extending from - 1.2 meters from t h e l e n s t o meters beyond t h e f o c a l p o i n t . - (d) 0.1 Detailed time- resolved d i a g n o s t i c s t u d i e s have shown t h e channel F i g . 1. t=Zpsec - 1 cm S c h l i e r e n photographs of c h a n n e l forma- t i o n v s . t i m e a f t e r peak of l a s e r p u l s e . Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:19797204 Optimum guiding of discharges occurs between 5 and 300 usec after the pulse. Spectra initial1 show lines of 0 I1 and N 11, indicating T tion to exist as free electrons. few msec, continued mixing drops T below 500°K, and electrons will recombine. I : In the next It is the free 30,00OoK. Later a continu~mspectrum, believed electrons which allow electrical discharges to due to electron-neutral bremsstrahlung from the occur in the "return stroke" mode, explaining core, decays with a time constant of - Microwave absorption measurements at ;\ = indicate n usec. e - > 3xl0'~/cm~ 10 ysec. 4 mm in the core until t 3 5C Combining the energy absorption, shock dynamics, and core expansion, we compute an average temperature of - After 300 usec, ambient air turbulently mixes into the core, cooling it to - 500°K by 1 msec. Using the Saha equilibrium relationship for the reaction e 02, we An example of guiding is shown in Figure 2, where a near -90" turn is achieved by using intersecting laser beams to define the desired spark path. This ability to direct a discharge not only to, 1500°K and near-ambient pressure within the expanded core. guiding and the fast propagation velocity. + 02 + but also away from, a designated isolated object is essential for such applications as producing the conductivity and magnetic field configuration needed to propagate relativistic e-beams to pellets in inertial fusion experiments. find that these temperatures inhibit nega- tive ion formation, allowing the residual ioniza- 1. D. Koopman and K. Saum, J. Appl. Phys. 15 1149 (1973). 2. G. Aleksandrov, et al., Sov. Phys. Tech. Phys. 22, 1233 (1977). - 8, 3. A. Akmanov, et al., JETP Lett. 258 (1968). 4. W. Pendleton and A. Guenther, R. S. I. 36, 1546 (1965). 5. LASER BEAM 1 BEAM 2 K. Saum and 2077 (1972). 6. J. Greig, et al., Phys. Rev. Lett. (1978). Fig. 2. A guided discharge. Top: experimental set-up; middle: laser-channels; bottom: electrical spark. D. Koopman, Phys. Fluids 15, 1,174
© Copyright 2026 Paperzz