co2-laser produced channels for guiding long sparks in air - HAL

CO2-LASER PRODUCED CHANNELS FOR
GUIDING LONG SPARKS IN AIR
D. Koopman, J. Greig, R. Pechacek, A. Ali, I. Vitkovitsky, R. Fernsler
To cite this version:
D. Koopman, J. Greig, R. Pechacek, A. Ali, I. Vitkovitsky, et al.. CO2-LASER PRODUCED
CHANNELS FOR GUIDING LONG SPARKS IN AIR. Journal de Physique Colloques, 1979,
40 (C7), pp.C7-419-C7-420. <10.1051/jphyscol:19797204>. <jpa-00219184>
HAL Id: jpa-00219184
https://hal.archives-ouvertes.fr/jpa-00219184
Submitted on 1 Jan 1979
HAL is a multi-disciplinary open access
archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.
L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.
CoZZoque C7, suppZ6ment au n07, Tome 40, JuiZZet 2979, page C7- 419
JOURNAL DE PHYSIQUE
COZ-LASER PRODUCED CHANNELS FOR GUIDING LONG SPARKS IN AIR
D. ~ o o ~ r n a n ' J.
, Greig, R. Pechacek, A.Ali and I. Vitkovitsky, R. ~ernsler".
%Naval Research Laboratory, Washington, D. C. 20375, U.S. A., *'JACOR, Alexandria, Va., U.S. A.
I n s t i t u t e for Physical Science and TeehnoZogy, U n i v e r s i t y of Maryland, CoZZege Park, Mary Zand 20742
U. S. A.
The a b i l i t y of l a s e r r a d i a t i o n t o i n f l u e n c e
t o be formed by a complex s e r i e s of events, i n i -
t h e paths of e l e c t r i c a l discharges i n gases h a s
t i a t e d by l a s e r i o n i z a t i o n of a e r o s o l p a r t i c l e s .
been previously
Spherical b l a s t waves from t h e r e s u l t a n t plasma
E x c i t a t i o n and ion-
i z a t i o n were believed t o be a c t i v e when u l t r a violet3, v i s i b l e
4
, or
near-infrared
radiation
"beads" combine t o form a n e a r l y c y l i n d r i c a l
1
shock surrounding a t u r b u l e n t , low d e n s i t y , and
from Q-switched l a s e r s was focused t o d e f i n e a
p a r t i a l l y ionized core, which expands t o
p r e f e r r e d discharge path; long d u r a t i o n 10.6 m i -
diameter a t focus.
cron r a d i a t i o n i n an absorbing atmosphere was
photographs of t h i s process.
noted t o achieve guiding by r a r e f a c t i o n
5
.
In our
s t u d i e s 6 , pulsed 10.6 micron r a d i a t i o n from a TEA
-
4 cm
Figure 1 p r e s e n t s s c h l i e r e n
Holography confirms
t h a t t h e shock i s a compression f r o n t , and shows
t h e core i s a region of below-atmospheric d e n s i t y .
l a s e r has been used t o produce channels i n ambient
a i r which a r e capable of guiding d i s c h a r g e s nearl y orthogonal t o t h e i n i t i a l E-field,
over dis-
tances of 1-2 meters, a t average f i e l d s t r e n g t h s
t = 100 nsec
(a
a s low a s 1 KV/cm, and with average propagation
-
( e ) 1=19psec
-
v e l o c i t i e s a s h i g h a s 10' cm/sec.
The mechanism
by which t h e s e channels a r e produced, and t h e
p r o p e r t i e s of t h e channels which i n f l u e n c e elec-
-
( b 1 t = 400 nsec
-
t r i c a l d i s c h a r e e Drocesses. have been t h e s u b i e c t
-
~
- -
A
(f
t = 44psec
of continued i n v e s t i g a t i o n s .
A 1 K J , 10.6 micron p u l s e , w i t h a 100 nsec
i n i t i a l s p i k e containing about 30% of t h e energy,
followed by a 1.5 usec t a i l , i s focused by a 3
meter f.E.
l e n s from i t s o r i g i n a l 20 cm diameter
t o a f o c a l diameter of 2 cm.
About 80% of t h e
i n c i d e n t energy i s absorbed.
The channel appears
a s a tapered c l u s t e r of o p t i c a l breakdown "beads",
extending from
-
1.2 meters from t h e l e n s t o
meters beyond t h e f o c a l p o i n t .
-
(d)
0.1
Detailed time-
resolved d i a g n o s t i c s t u d i e s have shown t h e channel
F i g . 1.
t=Zpsec
-
1 cm
S c h l i e r e n photographs of c h a n n e l forma-
t i o n v s . t i m e a f t e r peak of l a s e r p u l s e .
Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:19797204
Optimum guiding of discharges occurs between 5
and
300 usec after the pulse.
Spectra initial1
show lines of 0 I1 and N 11, indicating T
tion to exist as free electrons.
few msec, continued mixing drops T below 500°K,
and electrons will recombine.
I
:
In the next
It is the free
30,00OoK. Later a continu~mspectrum, believed
electrons which allow electrical discharges to
due to electron-neutral bremsstrahlung from the
occur in the "return stroke" mode, explaining
core, decays with a time constant of
-
Microwave absorption measurements at
;\ =
indicate n
usec.
e
-
> 3xl0'~/cm~
10 ysec.
4 mm
in the core until t 3 5C
Combining the energy absorption, shock
dynamics, and core expansion, we compute an
average temperature of
-
After 300
usec, ambient air turbulently mixes into the core,
cooling it to
-
500°K by 1 msec.
Using the Saha
equilibrium relationship for the reaction e
02, we
An
example of guiding is shown in Figure 2, where a
near -90" turn is achieved by using intersecting
laser beams to define the desired spark path.
This ability to direct a discharge not only to,
1500°K and near-ambient
pressure within the expanded core.
guiding and the fast propagation velocity.
+ 02 +
but also away from, a designated isolated object
is essential for such applications as producing
the conductivity and magnetic field configuration
needed to propagate relativistic e-beams to pellets
in inertial fusion experiments.
find that these temperatures inhibit nega-
tive ion formation, allowing the residual ioniza-
1.
D. Koopman and K. Saum, J. Appl. Phys.
15
1149 (1973).
2.
G. Aleksandrov, et al., Sov. Phys. Tech. Phys.
22, 1233 (1977).
-
8,
3.
A. Akmanov, et al., JETP Lett.
258 (1968).
4.
W. Pendleton and A. Guenther, R. S. I. 36,
1546 (1965).
5.
LASER
BEAM
1
BEAM 2
K.
Saum and
2077 (1972).
6.
J. Greig, et al., Phys. Rev. Lett.
(1978).
Fig. 2.
A guided discharge.
Top: experimental
set-up; middle: laser-channels; bottom: electrical
spark.
D. Koopman, Phys. Fluids 15,
1,174