Basic Identities of Boolean Algebra Boolean Algebra Chapter 2-3 Z. Aliyazici 14. 15. 16. 17. Ex: X(Y+Z) = XY+XZ (Distributed) X+(YZ) = (X+Y)(X+Z) (X+Y)’ = X’.Y’ (DeMorgan’s) (X.Y)’ = X’+Y’ AB +C+1 = 1 X+(Y+Z) = (X+Y)+Z = X+Y+Z X(YZ) = (XY)Z = XYZ Examples: • • • • • • XY+XY’=X(Y+Y’)=X (X+Y)(X+Y’)=X+(YY’)=X X+XY’=X(1+Y’)=X X(X+Y)=X+XY=X(1+Y)=X (X+Y’)Y=XY+Y’Y=XY XY’+Y=(X+Y)(Y+Y’)=(X+Y)1=X+Y 1. X+0 = X 2. X.1 = X 3. X+1 = 1 4. X.0 = 0 5. X+X = X 6. X.X = X 7. X+X’ = 1 8. X.X’ = 0 9. (X’)’=X 10. X+Y = Y+X 11. XY = YX (Commutative) 12. X+(Y+Z) = (X+Y)+Z (Associative) 13. X(YZ) = (XY)Z Ex: Show that a. (A+B)(A+CD) = A + BCD = A+ACD+BA+BCD = A(1+CD+B)+BCD = A1+BCD = A+BCD b. (X+Y)(X+Z) = XX+XZ+XY+YZ = X+XZ+XY+YZ = X(1+Z+Y)+YZ = X+YZ Examples: Z=[A+B’C+D+EF][A+B’C+(D+EF)’] Z=[ X + Y ][ X + Y’ ] Z=X=A+B’C • Z=A’BC+A’=A’(BC+1)=A’.1=A’ 1 Standard Form Sum of product • A Boolean function can be expressed in a different algebraic ways. • The standard forms contain product terms and sum term Example: F=XYZ is in product form use AND operations F=(X+Y)(X+Z)Z is in product form F=X+Y+Z is in logical sum form use OR gate F=XY+XZ+ZY is in sum form Sum of product form: all product are the product of single variables only Example: AB’+CD’E+AC’E’ ABC’+DEFG+H A B C D E A C E Product of Sums • • • • • • Example All sums are the sums of single variable Example: (A+B’)(C+D’+E)(A+C’+E’) (A+B)(C+D+E)F AB’C(D’+E) Considered product of sums (A+BC)(A+D+E) =A+AD+AE+ABC+BCD+BCE =A(1+D+E+BC)+BCD+BCE Product of sum =A+BCD+BCE Sum of product Example: AB’+C’D = (AB’+C’)(AB’+D) = (A+C’)(B’+C’)(A+D)(B’+D) Sum of product Product of sum Algebraic Manipulation X’ X F = X’YZ+X’YZ’+XZ = X’Y(Z+Z’) +XZ (by identity 14) = X’Y.1+XZ = X’Y + XZ (by identity 7) (by identity 2) X’YZ X’YZ’ Y Z F Z’ XZ X 0 0 0 0 1 1 1 1 Y 0 0 1 1 0 0 1 1 Z 0 1 0 1 0 1 0 1 F 0 0 1 1 0 1 0 1 F = X’YZ+X’YZ’+XZ X X’ X’ Y Y F=X’Y+XZ Z XZ F=X’Y + XZ 2 E.g., prove the theorem: X • Y + X • Y' = X • X(X+Y)=X+XY=X X • Y + X •Y‘ = X • (Y + Y') = X • (1) =X E.g., prove the theorem: X + X•Y X + X•Y • (X+Y)(X+Y’)=X+YY’+XY’+XY =X+0+X(Y’+Y)=X+X(1)=X = X? = = = = • XY+X’Z+YZ=XY+X’Z ? XY+X’Z+YZ = XY+X’Z+YZ(X+X’) = XY+X’Z+XYZ+X’YZ = XY+XYZ+X’Z+X’YZ = XY(1+Z)+X’Z(1+Y) = XY+X’Z X•1 + X•Y X • (1 + Y) X • (1) X Inversion • (A+B)(A’+C) = AA’+AC+BA’+BC = AC+A’B+BC = AC+A’B Using DEMorgan’s Laws (X+Y)’ = X’.Y’ X Y 0 0 1 1 0 1 0 1 X+Y (X+Y)’ 0 1 1 1 1 0 0 0 X Y X’ Y’ X’.Y’ 0 0 1 1 0 1 0 1 1 1 0 0 1 0 1 0 1 0 0 0 Inversion Using DEMorgan’s Laws (XY)’ = X’+Y’ X Y XY (XY)’ X Y X’ Y’ X’+Y’ 0 0 1 1 0 1 0 1 0 0 0 1 1 1 1 0 0 0 1 1 0 1 0 1 1 1 0 0 1 0 1 0 1 1 1 0 • • • • In general case, DeMorgen’s laws: (X1X2…XN )’=X1’+X2 ’+…+Xn’ And (X1+X2+…+Xn )’=X1’X2’…Xn ’ Example:Find the inverse (complement) of (A’+B)C’ [(A’+B)C’]’=(A’+B)’+(C’)’ =(A’)’(B’)+C =AB’+C 3 Complement Function • Find the complement of the following function F1 = [X’YZ’+X’Y’Z]’ = (X’YZ’)’.(X’Y’Z)’ = (X+Y’+Z)(X+Y+Z’) F2 = [X(Y’Z’+YZ)]’ = X’+(Y’Z’+YZ)’ =X’+(Y’Z’)’(YZ)’ = X’+(Y+Z)(Y’+Z’) =X’+YY’+YZ’+Y’Z+ZZ’ =X’+YZ’+Y’Z Duality • Given a Boolean expression, replace AND with OR, OR with AND, 0 with 1, ad 1 with 0. • Example: – F=AB’+C+0D’(1+E) – FD=(A+B’)C(1+D’+0E) 4
© Copyright 2026 Paperzz