Future CO2 changes the nitrogen metabolism cost to maintain Diatom Photosynthesis Gang Li1, Christopher M. Brown, Amanda M. Cockshutt, Avery McCarthy, & Douglas A. Campbell Environmental Science, Biology & Biochemistry Mount Allison University, Sackville, NB, Canada, [email protected]! 1Key Laboratory of Tropical Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, 510301, China, [email protected] Abstract: Oxygenic photoautotrophs must accumulate abundant protein complexes to mediate light capture, photosynthetic electron transport and carbon fixation. In addition to this net synthesis, lightdependent photoinactivation of Photosystem II must be countered using metabolically expensive proteolysis of protein subunits. In Thalassiosira pseudonana, growing across a range of light levels and two pCO2 levels the standing nitrogen cost of the photosynthetic system varies between ~12 to 20% of total cellular nitrogen.! Under low growth light PSII enjoys a long functional life, comparable to the generation time of the diatom, and nitrogen (re)cycling through PSII repair is ~ only 1% of the cellular nitrogen assimilation rate. ! As light increases enough to photoinhibit growth, nitrogen cycling through Photosystem II repair increases to ~14% of the nitrogen assimilation rate.! We hypothesize this increasing burden upon nitrogen metabolism limits diatom exploitation of higher growth light. Measure photoinactivation of Photosystem II, and the counteracting Photosystem II Repair PSII Repair No PSII repair 0.00020 60 + FV/FM PSII Repair 0.02 2 3 5 6 Time (d) We measured molar amounts of photosynthetic subunits, multiplied by the nitrogen content of the complex, and normalized to total cellular nitrogen. ○: 380 pCO2! !:750 pCO2 0.000 0.025 0.050 0.025 0.000 RUBISCO N/Total N FCP N/Total N 0 100 200 300 400 0 100 200 300 400 0 100 200 300 400 μmol photons m-2 s-1 0 0 100 200 300 400 0.00005 0.00000 Growth light (μmol photons m-2 s-1) 2.4x106 We summed the photosynthetic complexes, to estimate the standing pool of cellular nitrogen allocated to photosynthesis. 0.35 0.30 0.25 + 0.20 0.15 0.10 We used the PSII repair rate, the content of PSIIactive and the N content of PSII to estimate the nitrogen recycling cost to maintain PSII function. 0.20 0.15 0.10 0.05 0.00 0 100 200 300 μmol photons m-2 s-1 400 0.05 0.00 0 100 200 300 -2 -1 μmol photons m s 0.15 400 380 ppmv CO2 0.5 0.10 0.00 ▬ PSII! photoinactivation, kpi (s-1) Under future 750 ppmv pCO2 Thalassiosira shows higher growth rates under optimal light, coinciding with a lower nitrogen metabolism cost to maintain photosynthesis. 0.05 0.05 0.00 0 100 200 300 400 0.050 0.000 20 120 150 0.025 0.20 0.10 60 90 Time (min) 0.8x106 0.00010 Cumulative photons•A-2 0.20 0.15 30 0.00015 40 Growth Light 0 100 200 300 400 μmol photons m-2 s-1 0.4 2.0 Growth Rate 0.3 1.5 0.2 1.0 Nitrogen metabolism cost to maintain photosynthesis. 0.1 0.0 Li et al. (2014) submitted! Li & Campbell (2013) PLoSOne! Campbell et al. (2013) Photosynth. Res.! Wu et al.,(2012) Plant Physiology! http://phytoplankton.mta.ca/ 2.5 -1 µ (d ) 0 100 200 300 400 0.050 (PSII N cycling + Photosynthetic N) /Cell N Assimilation 0.000 0 0 Photosynthetic N/Total N 0.025 PSI N/Total N Cytb6f N/Total N PSII N/Total N 0.050 0.0 Growth 450 Light μmol photons•m-2•s-1 $PSII content 0 100 200 300 μmol photons m-2 s-1 Growth Light 0.5 0.0 400 750 ppmv CO2 0.5 2.5 Growth Rate 0.4 2.0 0.3 1.5 0.2 1.0 0.1 0.5 -1 µ (d ) 1 0.2 PSII N cycling/Cell N Assimilation 0 dPSIIactive/dt = -kpi[PSIIactive]t (PSII N cycling + Photosynthetic N) /Cell N Assimilation 0.00 + Lincomycin: inhibits chloroplast protein synthesis and PSII repair fmol PSIIactive μg protein-1 0.6 0.4 dN/dt = μ[N]t Chl N/Total N Thalassiosira maintains a steady pool of active PSII, in the face of an 11X range of photoinactivation rates. kpi (s-1) OD680 Thalassiosira pseudonana grown exponentially for many generations, across ranges of light and pCO2 0.06 start light shift Higher experiment light 0.04 Control Nitrogen metabolism cost to maintain photosynthesis. 0.0 0 100 200 300 μmol photons m-2 s-1 Growth Light 0.0 400 But under excess light Thalassiosira then suffers sharper photoinhibition of growth, coincident with a sharply rising nitrogen metabolic cost to maintain photosynthesis, in the face of accelerated photoinactivation.
© Copyright 2026 Paperzz