Reconstitution and physical studies of a bacteria nano-pump Bacteria control their intracellular concentration of various substrates (antibiotics, heavy metals) by organizing their expulsion through efflux pumps the mechanism of which is unknown. These pumps, inserted into the bacterial membrane, can induce bacterial resistance to antibiotics. Understanding how they work would determine the way to block them and thus reduce the bacterial resistance. For gram-negative bacteria, these pumps are usually made of three parts: one in the outer membrane, another one in the inner membrane, and a third one located between the two membranes of the bacteria. The project aims to reconstitute a specific pump as a whole, within an artificial double bilayer system in order to study its function. We have previously shown that the model system is biologically relevant by measuring the activities of several trans-membrane proteins in an identical system. The production of all the three components of the pump is now under control. We first want to perform measurements on individual links between the different pump components to understand the stability of the whole pump. Afterwards the pump will be reconstituted in vitro by inserting the different pump components into the lipid membranes of vesicles. The study of its function will be performed by observing the crossing of fluorescent molecules from one vesicle to another. Relevant Publications:--------------------------------------------Gambin, Y; Reffay, M; Sierecki, E; Homblé, F; Hodges, R.; Gov N; Taulier, N; Urbach, W "Variation of the Lateral Mobility of Transmembrane Peptides with Hydrophobic Mismatch" J.Phys. Chem.B. 114, 3559–3566 (2010) QuickTime™ et un décompresseur TIFF (non compressé) sont requis pour visionner cette image. Schéma des trois éléments de la nanopompe biologique (pompe à efflux). - Le "tuyau" traversant la membrane externe (OM) en orange. - Le transporteur (bleu) inséré dans la membrane interne et l'adaptateur periplasmique (vert) accroché à la membrane interne par des acides gras (zigzag). - L'adaptateur relie le tuyau externe et la partie active de la pompe Son rôle reste mal défini. - Les points rouges indiquent les principes actifs antibactériens expulsés par la pompe (flèche). D'après Symmons et al PNAS 2009 M. Reffay, Y. Gambin, H. Benabdelhak, G. Phan, N. Taulier, A. Ducruix, R.S. Hodges, W. Urbach "Tracking membrane protein association in model membranes." PLoS ONE Avril 2009 Maldonado A, Ober R, Gulik-Krzywicki T, Urbach W. and .Langevin D. The sponge phase of a mixed surfactant system Journal of Colloid and Interface Science, 308 (2): 485-490 2007 Kurtisovski E, Taulier N, Ober R, M. Waks and W Urbach Molecular origin of model membrane bending rigidity Physical Review Letters, 98 (25): 2007 Y. Gambin, R. Lopez-Esparza, M. Reffay, E. Sierecki, N. S. Gov, R. S.Hodges, and W. Urbach. Lateral mobility of proteins in liquid membranes revisited. PNAS, 103(7):2098-2102, 2006 S. Abel, M. Waks, W. Urbach, and M. Marchi. Structure, stability, and hydration of a polypeptide in AOT reverse micelles. Journal of the American Chemical Society, 128(2):382-383, 2006 Y. Gambin, G. Massiera, L. Ramos, C. Ligoure, and W. Urbach. Bounded step superdiffusion in an oriented hexagonal phase. Physical Review Letters, 94(11), 2005.
© Copyright 2026 Paperzz