CHAPTER 4
The Laplace Transform
Chapter Contents
4.1 Definition of the Laplace Transform
4.2 The Inverse Transform and Transforms of
Derivatives
4.3 Translation Theorems
4.4 Additional Operational Properties
4.5 The Dirac Delta Function
4.6 Systems of Linear Differential Equations
Copyright © Jones and Bartlett;滄海書局
Ch4_2
4.1 Definition of Laplace Transform
Basic Definition
If f(t) is defined for t 0, then
0
b
K ( s, t ) f (t )dt lim K ( s, t ) f (t )dt
b 0
(1)
Definition 4.1.1 Laplace Transform
If f(t) is defined for t 0, then
L { f (t )} e
0
st
f (t )dt
(2)
is said to be the Laplace Transform of f.
Copyright © Jones and Bartlett;滄海書局
Ch4_3
Example 1 Using Definition 4.1.1
Evaluate L {1}
Solution:
Here we keep that the bounds of integral are 0 and in
mind.
From the definition
b
L (1) e (1)dt lim e st dt
st
b 0
0
st b
e
lim
b
s
0
e sb 1 1
lim
b
s
s
Since e-st 0 as t , for s > 0.
Copyright © Jones and Bartlett;滄海書局
Ch4_4
Example 2 Using Definition 4.1.1
Evaluate L {t}
Solution:
te
L {t}
s
st
0
1 st
e dt
s 0
1
11 1
L {1} 2
s
ss s
Copyright © Jones and Bartlett;滄海書局
Ch4_5
Example 3 Using Definition 4.1.1
Evaluate L {e-3t}
Solution:
L {e } e e d t e ( s3) t dt
3t
st 3t
0
0
( s 3 ) t
e
s3
0
1
, s 3
s3
Copyright © Jones and Bartlett;滄海書局
Ch4_6
Example 4 Using Definition 4.1.1
Evaluate L {sin 2t}
Solution:
L {sin2 t} e st sin 2t dt
0
e
st
sin 2t
2 st
e cos 2t dt
s
s 0
0
2 st
e cos 2t dt , s 0
s 0
Copyright © Jones and Bartlett;滄海書局
Ch4_7
Example 4 (2)
lim e st cos 2t 0 , s 0
t
Laplace transform of sin 2t
↓
st
2 e cos 2t
2 st
e sin 2t dt
s
s
s 0
0
2 4
2 2 L {sin 2t}
s s
2
L {sin 2t} 2
,s0
s 4
Copyright © Jones and Bartlett;滄海書局
Ch4_8
L is a Linear Tramsform
We can easily verify that
L { f (t ) g (t )}
L { f (t )} L {g (t )}
(3)
F ( s) G ( s)
Copyright © Jones and Bartlett;滄海書局
Ch4_9
Theorem 4.1.1 Transform of Some Basic
Functions
(a) L {1}
(b) L {t n } nn!1 , n 1, 2, 3,
s
(d) L {sin kt}
k
s2 k 2
k
(f) L {sin kt ) 2 2
s k
Copyright © Jones and Bartlett;滄海書局
1
s
(c) L {e at } 1
sa
(e) L {cos kt}
s
s2 k 2
(g) L {cosh kt}
s
s2 k 2
Ch4_10
Fig 4.1.1 Piecewise-continuous function
Copyright © Jones and Bartlett;滄海書局
Ch4_11
Definition 4.1.2 Exponential Order
A function f(t) is said to be of exponential order,
if there exists constants c, M > 0, and T > 0, such that
|f(t)| Mect for all t > T. See Fig 4.1, 4.2.
Copyright © Jones and Bartlett;滄海書局
Ch4_12
Fig 4.1.2 Function f is of exponential order
Copyright © Jones and Bartlett;滄海書局
Ch4_13
Fig 4.1.3 Functions with blue graphs are of
exponential order
|t |e
t
t
|e |e
Copyright © Jones and Bartlett;滄海書局
t
2 cos t 2et
Ch4_14
Copyright © Jones and Bartlett;滄海書局
Ch4_15
Theorem 4.1.2 Sufficient Conditions for
Existence
If f(t) is piecewise continuous on [0, ) and of
exponential order c, then L {f(t)} exists for s > c.
Copyright © Jones and Bartlett;滄海書局
Ch4_16
Example 5
Find L {f(t)} for
0 , 0 t 3
f (t )
2 , t 3
Solution:
3
L { f (t )} e 0dt e st 2dt
st
0
2e st
s
Copyright © Jones and Bartlett;滄海書局
3
3
2e 3s
,s0
s
Ch4_17
Fig 4.1.5 Piecewise-continuous function in Ex
5
Copyright © Jones and Bartlett;滄海書局
Ch4_18
4.2 The Inverse Transform and Transform of
Derivatives
Theorem 4.2.1 Some Inverse Transform
(a) 1 L
(b)
tn L
n!
n1 , n 1, 2, 3,
s
1
(d) sin kt L
(f) sinh kt L
k
2
2
s k
1
k
2
2
s k
1
Copyright © Jones and Bartlett;滄海書局
1
s
1
(c) e L
at
1
(e) cos kt L
1
s a
s
2
2
s
k
1
(g) cosh kt L
s
2
2
s k
1
Ch4_19
Example 1 Applying Theorem 4.2.1
Find the inverse transform of
(a) L
1
1 (b)
L
5
s
1
2
s 7
1
Solution:
(a) L 1 15 1 L 1 45! 1 t 4
s 4!
s 24
1 1
7 1
1
1
(b) L 2 L 2 sin 7t
7
7
s 7
s 7
Copyright © Jones and Bartlett;滄海書局
Ch4_20
L -1 is also linear
We can easily verify that
L 1{F ( s ) G ( s )}
L
{F ( s )} L
1
Copyright © Jones and Bartlett;滄海書局
1
{G ( s )}
(1)
Ch4_21
Example 2 Termwise Division and Linearity
Find L
1
2s 6
2
s
4
Solution:
2s 6
L 2
L
s 4
1
6
2s
2
2
s
4
s
4
s 6
1
2L 2
L
s 4 2
2 cos 2t 3 sin 2t
1
Copyright © Jones and Bartlett;滄海書局
1
2
2
s
4
(2)
Ch4_22
Example 3 Partial Fractions and Linearity
Find L
1
s 2 6s 9
( s 1)(s 2)(s 4)
Solution:
Using partial fractions
s 2 6s 9
A
B
C
( s 1)(s 2)(s 4) s 1 s 2 s 4
Then
s 2 6s 9
A( s 2)(s 4) B ( s 1)(s 4) C ( s 1)(s 2)
(3)
If we set s = 1, 2, −4, then
Copyright © Jones and Bartlett;滄海書局
Ch4_23
Example 3 (2)
A 16/5, B 25/6, c 1/30
(4)
Thus
L
1
s 2 6s 9
( s 1)(s 2)(s 4)
16
L
5
1 25
L
s 1 6
1
16 t 25 2t 1 4t
e e e
5
6
30
Copyright © Jones and Bartlett;滄海書局
1 1
L
s 2 30
1
1
s 4
1
(5)
Ch4_24
Transform of Derivatives
L { f (t )}
e
st
0
f (t )dt e
st
f (t ) 0 s e st f (t )dt
0
f (0) sL { f (t )}
L { f (t )} sF ( s) f (0)
(6)
L { f (t )}
e
0
st
f (t )dt e
st
f (t ) 0 s e st f (t )dt
0
f (0) sL { f (t )}
s[ sF ( s ) f (0)] f (0)
L { f (t )} s 2 F ( s) sf (0) f (0)
L { f (t )} s 3 F ( s) s 2 f (0) sf (0) f (0)
Copyright © Jones and Bartlett;滄海書局
(7)
(8)
Ch4_25
Theorem 4.2.2 Transform of a Derivative
( n1)
f
,
f
,
,
f
If
are continuous on [0, ) and are of
exponential order and if f(n)(t) is piecewise-continuous
On [0, ), then
L { f ( n ) (t )}
s n F ( s ) s n1 f (0) s n2 f (0) f ( n1) (0)
where F (s) L { f (t )}.
Copyright © Jones and Bartlett;滄海書局
Ch4_26
Solving Linear ODEs
n
n1
d
y
d
an n an1 n1y a0 y g (t )
dt
dt
y (0) y0 , y(0) y1 , y ( n1) (0) yn1
Then
d n y
d n1 y
anL n an1L n1 a0L { y} L {g (t )}
dt
dt
(9)
an [ s nY ( s) s n1 y (0) y ( n1) (0)]
an1[ s n1Y ( s ) s n2 y (0) y ( n2 ) (0)]
a0Y ( s )
(10)
G( s)
Copyright © Jones and Bartlett;滄海書局
Ch4_27
We have
P( s)Y ( s) Q( s) G( s)
Q( s ) G ( s )
Y ( s)
P( s ) P( s )
(11)
where P( s) an s n an1s n1 a0
Copyright © Jones and Bartlett;滄海書局
Ch4_28
Find unknown
y (t ) that satisfies
a DE and Initial
Apply Laplace
transform L
Transformed DE
becomes an
algebraic equation
In Y (s )
Apply Inverse
transform L 1
Solve transformed
equation for Y (s )
condition
Solution y (t ) of
original IVP
Copyright © Jones and Bartlett;滄海書局
Ch4_29
Example 4 Solving a First-Order IVP
dy
Solve 3 y 13 sin 2t , y (0) 6
dt
Solution:
dy
L 3L { y} 13L {sin 2t}
dt
26
sY ( s) 6 3Y ( s ) 2
s 4
(12)
26
( s 3)Y ( s ) 6 2
s 4
6
26
6s 2 50
Y ( s)
2
s 3 ( s 3)(s 4) ( s 3)(s 2 4)
Copyright © Jones and Bartlett;滄海書局
(13)
Ch4_30
Example 4 (2)
6s 2 50
A
Bs C
2
2
( s 3)(s 4) s 3 s 4
6s 2 50 A(s 2 4) ( Bs C )(s 3)
We can find A = 8, B = −2, C = 6
Thus
6s 2 50
8
2s 6
Y ( s)
( s 3)(s 2 4) s 3 s 2 4
y (t ) 8L
1
1
2L
s 3
1
s
2
3L
s 4
1
2
2
s 4
y(t ) 8e 3t 2 cos 2t 3 sin 2t
Copyright © Jones and Bartlett;滄海書局
Ch4_31
Example 5 Solving a Second-Order IVP
4 t
y
"
3
y
'
2
y
e
, y(0) 1, y' (0) 5
Solve
Solution:
d 2 y
dy
L 2 3L 2L { y} L {e 4t }
dt
dt
1
s Y ( s) sy (0) y(0) 3[ sY ( s) y (0)] 2Y ( s)
s4
1
2
( s 3s 2)Y ( s) s 2
s4
s2
1
s 2 6s 9
(14)
Y ( s) 2
2
s 3s 2 ( s 3s 2)(s 4) ( s 1)(s 2)(s 4)
2
Thus
16 t 25 2t 1 4t
y (t ) L {Y ( s)} e e e
5
6
30
1
Copyright © Jones and Bartlett;滄海書局
Ch4_32
4.3 Translation Theorems
Theorem 4.3.1 First Translation Theorem
If L {f} = F(s) and a is any real number, then
L {eatf(t)} = F(s – a)
Proof:
L {eatf(t)} = e-steatf(t)dt
= e-(s-a)tf(t)dt = F(s – a)
L {e at f (t )} L { f (t )}ssa
Copyright © Jones and Bartlett;滄海書局
Ch4_33
Fig 4.3.1 Shift on s-axis
Copyright © Jones and Bartlett;滄海書局
Ch4_34
Example 1 Using the First Translation
Theorem
Evaluate (a) L {e5t t 3}
Solution:
(a) L {e t } L {t }ss5
5t 3
3
(b) L {e2t cos 4t}
3!
6
4
s ss5 ( s 5) 4
(b) L {e 2t cos 4t} L {cos 4t}ss( 2)
s
s2
s 2 16 ss2 ( s 2) 2 16
Copyright © Jones and Bartlett;滄海書局
Ch4_35
Inverse Form of Theorem 4.3.1
L 1{F (s a)} L 1{F (s) ssa } eat f (t )
(1)
where f (t ) L 1{F (s)}.
Copyright © Jones and Bartlett;滄海書局
Ch4_36
Example 2 Partial Fractions and Completing
the square
Evaluate (a) L
1
2s 5
2
( s 3)
(b) L
1
s/2 5/3
2
s 4s 6
Solution:
(a)
2s 5
A
B
2
( s 3)
s 3 ( s 3) 2
2s 5 A( s 3) B
we have A = 2, B = 11
2s 5
2
11
2
( s 3)
s 3 ( s 3) 2
Copyright © Jones and Bartlett;滄海書局
(2)
Ch4_37
Example 2 (2)
And
L
1
2s 5
2L
2
( s 3)
1
1
11L
s 3
1
1
2
( s 3)
(3)
From (3), we have
L
1
1
L
2
( s 3)
L
1
1
1
2
s
3t
e t
ss 3
2s 5
3t
3t
2
e
11
e
t
2
( s 3)
Copyright © Jones and Bartlett;滄海書局
(4)
Ch4_38
Example 2 (3)
(b) s / 2 5 / 3
s / 2 5/3
2
s 4s 6 ( s 2) 2 2
s / 2 5/3
2
s
4
s
6
1
s2 2
L 1
L
2
2
( s 2) 2 3
L
(5)
1
1
L
2
1
1
1
2
( s 2) 2
2
s
L
2
s 2 ss 2 3 2
1
2 2 t
e 2t cos 2t
e sin 2t
2
3
Copyright © Jones and Bartlett;滄海書局
1
2
2
s
2
ss 2
(6)
(7)
Ch4_39
Example 3 IVP
2 3t
y
6
y
'
9
y
t
e ,
Solve
y(0) 2 ,
y' (0) 17
Solution:
2
s Y (s) sy (0) y(0) 6[sY (s) y(0)] 9Y (s)
( s 3)3
2
(s 2 6s 9)Y (s) 2s 5
2
( s 3)3
( s 3) 2 Y ( s) 2s 5
2
( s 3)3
Y (s)
Copyright © Jones and Bartlett;滄海書局
2s 5
2
2
( s 3) ( s 3)5
Ch4_40
Example 3 (2)
Y ( s) 2 11 2
s 3 ( s 3)
2
( s 3)5
y (t )
2L
L
1
1
1
11L
s 3
1
2
s
1
1 2
L
2
( s 3) 4!
3t
te
,
s s 3
L
1
1
4!
5
( s 3)
(8)
4!
4 3t
5
t e
s ss3
1 4 3t
y (t ) 2e 11te t e
12
3t
3t
Copyright © Jones and Bartlett;滄海書局
Ch4_41
Example 4 An IVP
t
y
4
y
6
y
1
e
,
Solve
y(0) 0 ,
y' (0) 0
Solution:
1 1
s Y (s) sy (0) y(0) 4[ sY ( s) y(0)] 6Y ( s)
s s 1
2s 1
2
( s 4s 6)Y ( s)
s( s 1)
2
2s 1
Y (s)
s( s 1)(s 2 4s 6)
Y ( s)
1/ 6 1/ 3 s / 2 5 / 3
2
s s 1 s 4s 6
Copyright © Jones and Bartlett;滄海書局
Ch4_42
Example 4 (2)
1 1 1 1
L
s 3
s 1
1 1 s 2 2
L
L
2
2
( s 2) 2 3 2
1
Y (s) L
6
1
1
2
2
( s 2) 2
1 1 t 1 2t
2 2 t
e e cos 2t e sin 2t
6 3
2
3
Copyright © Jones and Bartlett;滄海書局
Ch4_43
Definition 4.3.1 Unit Step Function
The Unit Step Function U (t – a) is
0 , 0 t a
U (t a)
ta
1 ,
See Fig 4.3.2.
Copyright © Jones and Bartlett;滄海書局
Ch4_44
Copyright © Jones and Bartlett;滄海書局
Ch4_45
Copyright © Jones and Bartlett;滄海書局
Ch4_46
Also a function of the type
g (t ), 0 t a
f (t )
ta
h(t ),
(9)
is the same as
f (t ) g (t ) g (t )U (t a) h(t )U (t a)
(10)
Similarly, a function of the type
0t a
0,
f (t ) g (t ), a t b
0,
t b
(11)
can be written as
f (t ) g (t )[U (t a) U (t b)]
Copyright © Jones and Bartlett;滄海書局
(12)
Ch4_47
Example 5 A Piecewise-Defined Function
20t , 0 t 5
Express f (t )
0 , t 5
in terms of U (t).
Solution:
From (9) and (10), with a = 5, g(t) = 20t, h(t) = 0
f(t) = 20t – 20tU (t – 5)
Consider the function
0t a
0,
f (t a)U (t a)
ta
f (t a),
(13)
See Fig 4.3.5.
Copyright © Jones and Bartlett;滄海書局
Ch4_48
Copyright © Jones and Bartlett;滄海書局
Ch4_49
Fig 4.3.6 Shift on t-axis
Copyright © Jones and Bartlett;滄海書局
Ch4_50
Theorem 4.3.2 Second Translation Theorem
If F(s) = L {f}, and a > 0, then
L {f(t – a)U (t – a)} = e-asF(s)
Proof:
L { f (t a)U (t a)}
a
e
0
st
f (t a)U (t a)dt e st f (t a)U (t a)dt
a
e st f (t a)dt
0
Copyright © Jones and Bartlett;滄海書局
Ch4_51
Theorem 4.3.2 proof
Let v = t – a, dv = dt, then
L { f (t a)U (t a)}
e
0
s ( va )
f (v)dv e
as
0
e sv f (v)dv e asL { f (t )}
If f(t) = 1, then f(t – a) = 1, F(s) = L {1} = 1/s,
e as
L {U (t a)}
s
(14)
eg: The L.T. of Fig 4.3.4 is
L { f (t )} 2L {1} 3L {U (t 2)} L {U (t 3)}
1 e 2 s e 3 s
2 3
s
s
s
Copyright © Jones and Bartlett;滄海書局
Ch4_52
Inverse Form of Theorem 4.7
L 1{e as F ( s)} f (t a)U (t a)
Copyright © Jones and Bartlett;滄海書局
(15)
Ch4_53
Example 6 Using Formula (15)
1
Evaluate (a) L
1 2 s
e
s 4
(b) L
s
s / 2
e
2
s
9
1
Solution:
(a) a 2, F (s) 1/(s 4), L 1{F (s)} e4t
then
L
1 2 s 4 ( t 2 )
e e U (t 2)
s 4
1
2
1
a
/
2
,
F
(
s
)
s
/(
s
9
),
L
{F ( s)} cos 3t
(b)
then
L
s
s / 2
e
2
cos 3 t U
s 9
2
1
Copyright © Jones and Bartlett;滄海書局
t
2
Ch4_54
Alternative Form of Theorem 4.3.2
Since t 2 (t 2)2 4(t 2) 4 , then
L {t 2U (t 2)}
L {(t 2) 2U (t 2) 4(t 2)U (t 2) 4U(t 2)}
The above can be solved. However, we try another
approach.
Let u = t – a,
L {g (t )U (t a)} e g (t )dt e s (ua ) g (u a)du
a
That is,
st
0
L {g (t )U (t a)} e asL {g (t a)}
Copyright © Jones and Bartlett;滄海書局
(16)
Ch4_55
Example 7 Second Translation Theorem –
Alternative Form
Find L {cos tU (t )}
Solution:
With g(t) = cos t, a = , then
g(t + ) = cos(t + )= −cos t
By (16),
s s
L {cos tU (t )} e L {cos t} 2 e
s 1
s
Copyright © Jones and Bartlett;滄海書局
Ch4_56
Example 8 An IVP
Solve y' y f (t ) , y(0) 5
0t
0 ,
f (t )
3 sin t , t
Solution:
We find f(t) = 3 cos tU (t −), then
s s
sY ( s) y (0) Y ( s) 3 2 e
s 1
3s s
( s 1)Y ( s) 5 2 e
s 1
5
3 1 s
1 s
s s
Y ( s)
e 2 e 2 e
s 1 2 s 1
s 1
s 1
Copyright © Jones and Bartlett;滄海書局
(17)
Ch4_57
Example 8 (2)
It follows from (15) with a = , then
L
1 s (t )
e e
U (t ) , L
s
1
1
L
1 s
2 e sin( t )U (t )
s 1
1
s s
2 e cos( t )U (t )
s 1
1
Thus
3
3
3
)
y (t ) 5e t e (t U
(t ) sin( t )U (t ) cos( t )U (t )
2
2
2
3
5e t [e (t ) sin t cos t ]U (t )
2
5e t ,
0t
(18)
t
( t )
3 / 2 sin t 3 / 2 cos t ,
t
5e 3 / 2e
See Fig 4.3.7.
Copyright © Jones and Bartlett;滄海書局
Ch4_58
Fig 4.3.7 Graph of function (18) in Ex 8
Copyright © Jones and Bartlett;滄海書局
Ch4_59
Beams
Remember that the DE of a beam is
d4y
EI 4 w( x)
dx
Copyright © Jones and Bartlett;滄海書局
(19)
Ch4_60
Example 9
A beam of length L is embedded at both ends as Fig
4.3.8. Find the deflection of the beam when the load is
given by
2
w0 1 x , 0 x L / 2
w( x) L
0,
L/2 x L
Solution:
We have the boundary conditions: y(0) = y(L) = 0, y’(0)
= y’(L) = 0. By (10),
L
2
2
w( x) w0 1 x w0 1 x U x
2
L
L
2 w0 L
L
L
x x U x
L 2
2
2
Copyright © Jones and Bartlett;滄海書局
Ch4_61
Fig 4.3.8 Embedded beam with a variable
load in Ex 9
Copyright © Jones and Bartlett;滄海書局
Ch4_62
Example 9 (2)
Transforming (19) into
EI s 4Y (s) s 3 y(0) s 2 y(0) sy(0) y(0)
2w0 L 2 1 1 Ls 2
2 2e
L s
s s
2 w0 L 2 1 1 Ls 2
2 2e
EIL s
s s
c1 c3 2 w0 L 2 1 1 Ls 2
Y (s) 3 4
6 6e
5
s s EIL s
s s
s 4Y ( s ) sy" (0) y ( 3) (0)
where c1 = y”(0), c3 = y(3)(0)
Copyright © Jones and Bartlett;滄海書局
Ch4_63
Example 9 (3)
Thus
y ( x)
c1
L
2!
1
2! c2
3 L
s 3!
2w0 L / 2
L
EIL 4!
1
1
3!
4
s
4! 1
5 L
s 5!
1
5! 1
6 L
s 5!
1
5! Ls / 2
6e
s
5
w0 5L 4
c1 2 c2 3
L
5
x x
x
x
x
U
2
6
60 EIL 2
2
Copyright © Jones and Bartlett;滄海書局
L
x
2
Ch4_64
Example 9 (4)
Applying y(L) = y’(L) = 0, then
L2
L3 49w0 L4
c1 c2
0
2
6 1920 EI
L2 85w0 L3
c1 L c2
0
2 960 EI
Thus c1 23w0 L2 / 960 EI , c2 9w0 L / 40 EI
23w0 L2 2 3w0 L 3
y ( x)
x
x
1920 EI
80 EI
5
w0 5 L 4
L
5
x
x
x
U
60 EIL 2
2
Copyright © Jones and Bartlett;滄海書局
L
x
2
Ch4_65
4.4 Additional Operational Properties
Multiplying a Function by tn
dF d st
e f (t )dt
ds ds 0
st
[e f (t )]dt e st tf (t )dt L {tf (t )}
0 s
0
that is, L {tf (t )}
Similarly,
d
L { f (t )}
ds
d
L {tf (t )}
ds
2
d d
d
L { f (t )} 2 L { f (t )}
ds ds
ds
L {t 2 f (t )} L {t tf (t )}
Copyright © Jones and Bartlett;滄海書局
Ch4_66
Theorem 4.4.1 Derivatives of Transform
If F(s) =L {f(t)} and n = 1, 2, 3, …, then
n
d
L {t n f (t )} (1) n n F ( s)
ds
Copyright © Jones and Bartlett;滄海書局
Ch4_67
Example 1 Using Theorem 4.4.1
Find L {t sin kt}
Solution:
With f(t) = sin kt, F(s) = k/(s2 + k2), then
d
L {t sin kt} L {sin kt}
ds
d k
2ks
2
2
2
ds s k ( s k 2 ) 2
Copyright © Jones and Bartlett;滄海書局
Ch4_68
Different approaches
Theorem 4.3.1:
L {te } L {t}ss3
3t
1
2
s
s s 3
1
( s 3) 2
Theorem 4.4.1:
d
d 1
1
3t
2
L {te } L {e }
( s 3)
ds
ds s 3
( s 3) 2
3t
Copyright © Jones and Bartlett;滄海書局
Ch4_69
Example 2 An IVP
Solve x 16 x cos 4t , x(0) 0 , x(0) 1
Solution:
s
( s 2 16) X ( s ) 1
or
s 2 16
1
s
X (s) 2
2
s 16 ( s 16) 2
From example 1,
Thus
L
1
2ks
t sin kt
2
2 2
( s k )
4 1
2
L
s 16 8
1
1
sin st t sin 4t
4
8
1
x(t ) L
4
1
Copyright © Jones and Bartlett;滄海書局
1
8s
2
2
( s 16)
Ch4_70
Convolution
A special product of f * g is defined by
t
f * g f ( ) g (t )d
0
(2)
and is called the convolution of f and g.
The convolution is a function of t, eg:
1
e sin t e sin( t )d (sin t cost et )
0
2
t
t
(3)
Note: f * g = g * f
Copyright © Jones and Bartlett;滄海書局
Ch4_71
Theorem 4.4.2 Convolution Theorem
If f(t) and g(t) are piecewise continuous on [0, ) and
of exponential order, then
L { f g} L { f (t )}L {g (t )} F ( s)G( s)
Proof:
F ( s )G ( s )
0
0
e
s
0
f ( )d
e
0
s
g ( )d
e s ( ) f ( )g ( )dd }
0
0
f ( )d e ( ) g ( )d
Copyright © Jones and Bartlett;滄海書局
Ch4_72
Theorem 4.4.2 proof
Holding fixed, let t = + , dt = d
F ( s)G( s) f ( )d e st g (t )dt
0
The integrating area is the shaded region in Fig 4.4.1.
Changing the order of integration:
t
F ( s )G ( s ) e dt f ( ) g (t )d
st
0
e
f ( ) g (t )d dt
0
st
0
t
0
L { f g}
Copyright © Jones and Bartlett;滄海書局
Ch4_73
Fig 4.4.1 Changing order of integration from
t first to first
Copyright © Jones and Bartlett;滄海書局
Ch4_74
Example 3 Transform of a Convolution
Find L
e sin( t ) d
t
0
Solution:
Original statement
= L {et * sin t}
1
1
1
2
s 1 s 1 ( s 1)(s 2 1)
Copyright © Jones and Bartlett;滄海書局
Ch4_75
Inverse Transform of Theorem 4.9
L -1{F(s)G(s)} = f * g
(4)
Look at the table in Appendix III,
2k 3
L {sin kt kt cos kt} 2
(s k 2 )2
Copyright © Jones and Bartlett;滄海書局
(5)
Ch4_76
Example 4 Inverse Transform as a
Convolution
1
1
2
2
(s k2 )
Find L
Solution:
Let F ( s) G ( s)
1
s2 k 2
1 1 k 1
f (t ) g (t ) L 2
sin kt
2
k
s k k
then
L
1
1
1 t
2 sin k sin k (t )d
2
2 2
( s k ) k 0
Copyright © Jones and Bartlett;滄海書局
(6)
Ch4_77
Example 4 (2)
Now recall that
sin A sin B = (1/2) [cos (A – B) – cos (A+B)]
If we set A = k, B = k(t − ), then
L
1
1
1 t
2 [cos k (2 t ) cos kt ]d
2
2 2
( s k ) 2k 0
t
1 1
2 sin k (2 t ) cos kt
2k 2k
0
sin kt kt cos kt
2k 3
Copyright © Jones and Bartlett;滄海書局
Ch4_78
Transform of an Integral
When g(t) = 1, G(s) = 1/s, then
L
t
0
t
0
F ( s)
f ( )d
s
F ( s)
f ( )d L
s
Copyright © Jones and Bartlett;滄海書局
1
(7)
(8)
Ch4_79
Examples:
1 t
L 2
0 sin d 1 cos t
s ( s 1)
1
t
1
L 2 2
0 (1 cos )d t sin t
s ( s 1)
1
L
1
1
1 2
t
3 2
0 ( sin )d t 1 cos t
2
s ( s 1)
Copyright © Jones and Bartlett;滄海書局
Ch4_80
Volterra Integral Equation
t
f (t ) g (t ) f ( )h(t )d
0
Copyright © Jones and Bartlett;滄海書局
(9)
Ch4_81
Example 5 An Integral Equation
t
Solve f (t ) 3t e 0 f ( )et d
Solution:
First, h(t-) = e(t-), h(t) = et.
From (9)
2
1
t
2
for f (t )
1
F ( s) 3 3
F ( s)
s s 1
s 1
Solving for F(s) and using partial fractions
F ( s)
6 6 1
2
s3 s 4 s s 1
2!
1 3!
f (t ) 3L 3 L 4 L
s
s
3t 2 t 3 1 2e t
1
Copyright © Jones and Bartlett;滄海書局
1
1
2L
s
1
1
s 1
Ch4_82
Series Circuits
From Fig 4.4.2, we have
di
1 t
L Ri(t ) i ( )d E (t )
dt
C 0
(10)
which is called the integrodifferential equation.
Copyright © Jones and Bartlett;滄海書局
Ch4_83
Example 6 An Integrodifferential Equation
Determine i(t) in Fig 4.4.2, when L = 0.1 h, R = 2 , C
= 0.1 f, i(0) = 0, and
E(t) = 120t – 120tU (t – 1)
Solution:
Using the data, (10) becomes
t
di
0.1 2i (t ) 10 i ( )d 120t 120U (t 1)
0
dt
And then
I (s)
1 1 s 1 s
0.1sI ( s ) 2 I ( s ) 10
120 2 2 e e
s
s
s s
Copyright © Jones and Bartlett;滄海書局
Ch4_84
Example 6 (2)
1
1
1
s
s
I ( s ) 1200
e
e
2
2
2
( s 10)
s ( s 10) s ( s 10)
1 / 10
1 / 100 s
1/100 1 / 100
1200
e
2
s 10 ( s 10)
s
s
1 / 100 s
1 / 10 s
1
s
e
e
e
2
2
s 10
( s 10)
( s 10)
)
i (t ) 12[1 U (t 1)] 12[e 10 t e 10 ( t 1U
(t 1)]
)
120te 10 t 1080(t 1)e 10 ( t 1U
(t 1)
Copyright © Jones and Bartlett;滄海書局
Ch4_85
Example 6 (3)
Written as a piecewise- defined function
12 12e 10 t 120te 10 t ,
i (t )
10 t
10 ( t 1)
10 t
10 ( t 1)
12
e
12
e
120
te
1080
(
t
1
)
e
,
Copyright © Jones and Bartlett;滄海書局
0 t 1
t 1
(11)
Ch4_86
Fig 4.4.3
Copyright © Jones and Bartlett;滄海書局
Ch4_87
Post Script – Green’s Function Redux
By applying the Laplace transform to the initial-value
problem
y ay by f (t ), y (0) 0, y(0) 0,
where a and b are constants, we find that the
transform of y(t) is
F ( s)
Y ( s) 2
s as b
where F(s) = L {f(t)}. By rewriting the foregoing
transform as the product
Y ( s)
1
F ( s)
2
s as b
Copyright © Jones and Bartlett;滄海書局
Ch4_88
We can use the inverse form of the convolution
theorem (4) to write the solution of the IVP as
t
y (t ) g (t ) f ( )d
0
(12)
1
where L 2
g (t ) and L 1{F ( s)} f (t ).
s as b
1
On the other hand, we know from (9) of Section 3.10
that the solution of the IVP is also given by
t
y (t ) G(t , ) f ( )d
0
where G(t, ) is the Green’s function for the
differential equation.
Copyright © Jones and Bartlett;滄海書局
(13)
Ch4_89
By comparing (12) and (13) we see that the Green’s
function for the differential equation is related to
1
L 1
g (t ) by
2
s as b
G(t , ) g (t )
(14)
For example, for the initial-value problem y 4 y f (t ),
y(0) = 0, y’(0) = 0 we find
1 1
L 1 2
sin 2t g (t )
s 4 2
Thus from (14) we see that the Green’s function for
the DE y 4 y f (t ) is G(t, ) = g(t - ) = 1/2 sin 2(t ). See Example 4 in Section 3.10.
Copyright © Jones and Bartlett;滄海書局
Ch4_90
Periodic Function
f(t + T) = f(t)
Theorem 4.4.3 Transform of a Periodic
Function
If f(t) is piecewise continuous on [0, ), of exponential
order, and periodic with period T, then
1
L { f (t )}
1 e sT
Copyright © Jones and Bartlett;滄海書局
T
0
e st f (t )dt
Ch4_91
Theorem 4.4.3 proof
T
L { f (t )} e
st
0
f (t )dt e st f (t )dt
T
Use the same transform method
T
e st f (t )dt e sT L { f (t )}
T
L { f (t )} e st f (t )dt e sT L { f (t )}
0
1
L { f (t )}
1 e sT
Copyright © Jones and Bartlett;滄海書局
T
0
e st f (t )dt
Ch4_92
Example 7
Find the L. T. of the function in Fig 4.4.4.
Solution:
We find T = 2 and
1, 0 t 1
E (T )
0, 1 t 2
From Theorem 4.4.3,
1
L {E (t )}
1 e 2 s
s
1
1
e
1
st
0 e 1dt 0 1 e2 s s s(1 es )
1
Copyright © Jones and Bartlett;滄海書局
(15)
Ch4_93
Fig 4.4.4
Copyright © Jones and Bartlett;滄海書局
Ch4_94
Example 8 A Periodic Impressed Voltage
The DE
di
L Ri E (t )
dt
(16)
Find i(t) where i(0) = 0, E(t) is as shown in Fig 4.4.4.
Solution:
1
s (1 e s )
1/ L
1
I (s)
s ( s R / L) 1 e s
LsI ( s ) RI ( s )
or
(17)
1
s
2 s
3 s
1
e
e
e
Because 1 e-s
1
L/ R
L/ R
and
s ( s R / L)
s
s R/L
Copyright © Jones and Bartlett;滄海書局
Ch4_95
Example 8 (2)
I (s)
1 1
1
1 e s e 2 s ...
Rs s R L
Then i(t) is described as follows and see Fig 4.4.5:
1 e t ,
t
( t 1)
,
e e
i (t )
t
( t 1)
( t 2 )
1
e
e
e
,
e t e ( t 1) e ( t 2 ) e ( t 3) ,
Copyright © Jones and Bartlett;滄海書局
0 t 1
1 t 2
2t 3
(15)
3t 4
Ch4_96
Fig 4.4.5
Copyright © Jones and Bartlett;滄海書局
Ch4_97
4.5 The Dirac Delta Function
Unit Impulse
See Fig 4.5.1(a). Its function is defined by
0 t t0 a
0,
1
a (t t0 ) , t0 a t t0 a
2a
t t0 a
0,
(1)
where a > 0, t0 > 0.
For a small value of a, a(t – t0) is a constant function
of large magnitude. The behavior of a(t – t0) as a
0, is called unit impulse, since it has the
property 0 (t t0 )dt 1 . See Fig 4.5.1(b).
Copyright © Jones and Bartlett;滄海書局
Ch4_98
Fig 4.5.1 Unit impulse
Copyright © Jones and Bartlett;滄海書局
Ch4_99
The Dirac Delta Function
This function is defined by
(t – t0) = lima0 a(t – t0)
The two important properties:
(2)
, t t0
(i) (t t0 )
0, t t0
(ii)
x
(t t )dt 1 , x > t0
0
0
The unit impulse (t – t0) is called the Dirac delta
function.
Copyright © Jones and Bartlett;滄海書局
Ch4_100
Theorem 4.5.1 Transform of the Dirac Delta
Function
For t0 > 0,
L { (t t0 )} e st0
(3)
Proof:
1
a (t t0 ) [U (t (t0 a) U (t (t0 a))]
2a
The Laplace Transform is
1 e s ( t0 a ) e s ( t 0 a )
L { a (t t0 )}
2a s
s
e
st0
(4)
e sa e sa
2 sa
Copyright © Jones and Bartlett;滄海書局
Ch4_101
When a 0, (4) is 0/0. Use the L’Hopital’s rule, then
(4) becomes 1 as a 0.
Thus ,
L (t t0 ) lim L a (t t0 ) e
a 0
st0
e sa e sa st0
lim
e
a 0
2 sa
Now when t0 = 0, we have
L (t ) 1
Copyright © Jones and Bartlett;滄海書局
Ch4_102
Example 1 Two Initial-Value Problems
Solve y" y 4 (t 2 ), subject to
(a) y(0) = 1, y’(0) = 0
(b) y(0) = 0, y’(0) = 0
Solution:
(a)
s2Y – s + Y = 4e-2s
s
4e 2s
Y (s) 2
2
s 1 s 1
Thus
y(t) = cos t + 4 sin(t – 2)U (t – 2)
Since sin(t – 2) = sin t, then
0 t 2
cos t ,
y (t )
t 2
cos t 4 sin t ,
(5)
See Fig 4.5.2.
Copyright © Jones and Bartlett;滄海書局
Ch4_103
Fig 4.5.2
Copyright © Jones and Bartlett;滄海書局
Ch4_104
Example 1 (2)
(b)
4e 2s
Y ( s) 2
s 1
Thus y(t) = 4 sin(t – 2)U (t – 2)
and
y (t ) 4 sin( t 2 )U (t 2 )
0 t 2
0,
t 2
4 sin t ,
Copyright © Jones and Bartlett;滄海書局
(6)
Ch4_105
Fig 4.5.3
Copyright © Jones and Bartlett;滄海書局
Ch4_106
4.6 Systems of Linear DEs
Coupled Strings
In example 1, we will deal with
m1 x1 k1 x1 k 2 ( x2 x1 )
m2 x2 k 2 ( x2 x1 )
Copyright © Jones and Bartlett;滄海書局
(1)
Ch4_107
Example 1 Example 4 of Section 3.12
Revised
Use L.T. to solve
x1 10 x1
4 x2 0
4 x1 x2 4 x2 0
(2)
where x1(0) = 0, x1’(0) = 1, x2(0) = 0, x2’(0) = −1.
Solution:
s2X1(s)– sx1(0) – x1’(0) + 10X1(s) – 4X2(s) = 0
−4X1(s) + s2X2(s) – sx2(0) – x2’(0) + 4X2(s) = 0
Rearrange:
(s2 + 10)X1(s)
– 4 X2(s) = 1
−4X1(s) + (s2 + 4)X2(s) = −1
(3)
Copyright © Jones and Bartlett;滄海書局
Ch4_108
Example 1 (2)
Solving (3) for X1:
s2
1/ 5
6/5
X 1 ( s) 2
2
2
2
( s 2)(s 12)
s 2 s 12
x1 (t )
2
3
sin 2t
sin 2 3t
10
5
Use X1(s) to get X2(s)
s2 6
2/5
3/ 5
X 2 (s) 2
2
2
2
( s 2)(s 12)
s 2 s 12
x2 (t )
2
3
sin 2t sin 2 3t
5
10
Copyright © Jones and Bartlett;滄海書局
Ch4_109
Example 1 (3)
Then
2
3
x1 (t )
sin 2t
sin 2 3t
10
5
2
3
x2 (t )
sin 2t sin 2 3t
5
10
Copyright © Jones and Bartlett;滄海書局
(4)
Ch4_110
Networks
From Fig 4.6.1, we have
di
Ri2 E (t )
dt
di
RC 2 i2 u1 0
dt
L
Copyright © Jones and Bartlett;滄海書局
(5)
Ch4_111
Example 2 An Electric Network
Solve (5) where E(t) = 60 V, L = 1 h, R = 50 ohm, C =
10-4 f, i1(0) = i2(0) = 0.
Solution:
We have
di
1
50i2 60
dt
4 di2
50(10 )
i2 i1 0
dt
Then
sI1(s) +
50I2(s) = 60/s
−200I1(s) + (s + 200)I2(s) = 0
Copyright © Jones and Bartlett;滄海書局
Ch4_112
Example 2 (2)
Solving the above
60 s 12000 6 / 5
6/5
60
I1 ( s )
2
s ( s 100)
s
s 100 ( s 100) 2
12000
6/5
6/5
120
I 2 (s)
2
s ( s 100)
s
s 100 ( s 100) 2
Thus
6 6
i1 (t ) e 100 t 60te 100 t
5 5
6 6
i2 (t ) e 100 t 120te 100 t
5 5
Copyright © Jones and Bartlett;滄海書局
Ch4_113
Double Pendulum
From Fig 4.6.2, we have
(m1 m2 )l121 m2l1l2 2 (m1 m2 )l1 g1 0
m l m2l1l21 m2l2 g 2 0
2
2 2 2
Copyright © Jones and Bartlett;滄海書局
(6)
Ch4_114
Example 3 Double Pendulum
Please verify that when
m1 3, m2 1, l1 l2 16, 1 (0) 1, 2 (0) 1,
1 ' (0) 0, 2 ' (0) 0
the solution of (6) is
1
4
1
2 (t ) cos
2
1 (t ) cos
2
3
t cos 2t
3 4
2
3
t cos 2t
3 2
(7)
See Fig 4.6.3.
Copyright © Jones and Bartlett;滄海書局
Ch4_115
Fig 4.6.3
Copyright © Jones and Bartlett;滄海書局
Ch4_116
© Copyright 2026 Paperzz