Semi-Lagrangian Approximation in the TimeDependent Navier-Stokes Equations Vladimir V. Shaydurov Institute of Computational Modeling of Siberian Branch of Russian Academy of Sciences, Krasnoyarsk Beihang University, Beijing [email protected] in cooperation with G. Shchepanovskaya and M. Yakubovich Contents • Convection-diffusion equations: Modified method of characteristics. • Conservation law of mass: Approximation in l1 norm. • Finite element method: Approximation in l2 norm. • Pironneau O. (1982): Method of characteristics The main feature of several semi-Lagrangian approaches consists in approximation of advection members d u v dt t x y as one “slant” (substantial or Lagrangian) derivative d dl in the direction of vector l Pointwise approach in convection-diffusion equation u v f t x y d f dl d f1 f in , 0 on dl The equation with this right-hand side is self-adjoint. Approximation of slant derivative Apply finite element method at the time level t k and use appropriate quadrature formulas for the lumping effect ( Ah h )( xi , y j ) f1 ( xi , y j ) in h , h 0 on h Two ways for approximation of slant derivative d d l 1. Approximation along vector l d 1 (tk , xi , y j ) (tk , xi , y j ) (tk 1, xˆi , yˆ j ) dl 2. Approximation along characteristics (trajectory) dxˆ dt u (t , xˆ, yˆ ), dyˆ v(t , xˆ, yˆ ), dt tk t tk 1. Approximation of substantial derivative along trajectory Solution smoothness usually is better along trajectory Asymptotically both way have the same first order of approximation Finite element formulation at time level t k Intermediate finite element formulation ( Ah h )(tk , xi , y j ) f1 (tk , xi , y j ) in h , h (tk , xi , y j ) 0 on h d f1 f dl Final formulation 1 1 h (tk , xi , y j ) ( Ah h )(tk , xi , y j ) f (tk , xi , y j ) h (tk 1, xˆi , yˆ j ) in h , h (tk , xi , y j ) 0 on h Interpolation-1 ( xˆ , yˆ ) yj 1 ( xˆ xi ) h , 2 ( yˆ y j ) h xi u ( xˆ, yˆ ) 1 2u ( xi 1 , y j 1 ) (1 1 ) 2u ( xi , y j 1 ) 1 (1 2 )u ( xi 1 , y j ) (1 1 )(1 2 )u ( xi , y j ) Stability in l norm: u ( xˆ, yˆ ) max u ( x, y) ( x , y )h Chen H., Lin Q., Shaidurov V.V., Zhou J. (2011), … Interpolation-1 1 ( xˆ xi ) h , 2 ( yˆ y j ) h ( xˆ , yˆ ) yj xi Stability in l1 norm and conservation law: impact of four neighboring points into the weight of u ( xi , y j ) 1 2u ( xi , y j ) (1 1 ) 2u ( xi , y j ) 1 (1 2 )u ( xi , y j ) (1 1 )(1 2 )u ( xi , y j ) (1 c )u ( xi , y j ) Interpolation-2 ( xˆ , yˆ ) yj 1 ( xˆ xi ) h , 2 ( yˆ y j ) h xi u 2 ( xˆ, yˆ ) 1 2u 2 ( xi 1, y j 1 ) (1 1 ) 2u 2 ( xi , y j 1 ) 1 (1 2 )u 2 ( xi 1 , y j ) (1 1 )(1 2 )u 2 ( xi , y j ) Connection between interpolations 1 ( xˆ xi ), 2 ( yˆ y j ) u 2 ( xˆ, yˆ ) u 2 ( xˆ, yˆ ) u ( x 1 2 i 1 , y j 1 ) (1 1 ) 2u ( xi , y j 1 ) 1 (1 2 )u ( xi 1 , y j ) (1 1 )(1 2 )u ( xi , y j ) 2 1 2u 2 ( xi 1 , y j 1 ) (1 1 ) 2u 2 ( xi , y j 1 ) 1 (1 2 )u 2 ( xi 1 , y j ) (1 1 )(1 2 )u 2 ( xi , y j ) 1 2 (1 1 ) 2 ) 1 (1 2 ) (1 1 )(1 2 ) Improving by higher order differences d 1 (tk , xi , y j ) (tk , xi , y j ) (tk 1, xˆi , yˆ j ) dl d 1 (tk , xi , y j ) (tk 1 , xi , y j ) (tk 1, xˆi , yˆ j ) 2 dl (t , x , y ) (t 1 (tk 1 , xi , y j ) 2 (tk , xi , y j ) (tk 1, xˆi , yˆ j ) 2 1 k i j k 1 , xˆi , yˆ j ) Solving two problems with the first and second order of accuracy k 1,..., m 1 1 h (tk , xi , y j ) ( Ah h )(tk , xi , y j ) f (tk , xi , y j ) h (tk 1 , xˆi , yˆ j ) in h , h (tk , xi , y j ) 0 on h k 1,..., m 1 1 2h (tk , xi , y j ) ( Ah 2h )(tk , xi , y j ) f (tk , xi , y j ) 2h (tk 1 , xˆi , yˆ j ) 1 h (tk 1 , xi , y j ) 2 h (tk , xi , y j ) h (tk 1 , xˆi , yˆ j ) in h , 2 2h (tk , xi , y j ) 0 on h Navier-Stokes equations. Computational geometric domain out in rigid out out Navier-Stokes equations In the cylinder (0, t fin ) we write 4 equations in unknowns d u v 0 dt x y du P xx xy 0, dt x x y dv P xy yy 0, dt y x y u v de qx q y P . dt x y x y , u, v, e Notation (t , x, y) is density; u(t , x, y), v(t , x, y) are components of the vector velocity u; e(t , x, y) is internal energy of mass unit; P(t , x, y) is pressure; (t , x, y) 1 (t , x, y) Re is the dynamic coefficient of viscosity: 1 M 2 e , 0.76 0.9 Notation xx , xy , yy are the components of the stress tensor (matrix) xx xy : yy xy 2 u v 2 v u xx 2 , yy 2 , 3 x y 3 y x u v xy y x Notation q , q are components of the vector density of a heat flow: x y qx (t , x, y) Pr e e , q y (t , x, y) x Pr y Re is the Reynolds number; Pr is the Prandtl number; M is the Mach number; is a gas constant The equation of state has the following form (perfect gas): P ( 1) e. The dissipative function is taken in the form: 2 u 2 2 v 2 v u 2 u v 2 . 3 x 3 y x y x y Initial and boundary conditions t 0, x : (0, x) 0 (x) 0 u(0, x) u0 (x) e(0, x) e0 (x) 0 t, x (0, T ) in : (t, x) in (t, x) 0 u(t, x) uin (t, x) e(t, x) ein (t, x) 0 2 2 e ( u v ) 2 d t e ( u 2 v 2 ) 2 ( u n) d Pu u q n d u v de qx q y P dt x y x y e : 12 u v d 2 qx q y P dt x y x y d 2 d 2 dt dt u v d 1 qx q y P 0 dt 2 x y x y Boundary conditions at outlet supersonic and rigid boundary t, x [0, T ] super : du dt 0 dv 0 dt d dt 0 t, x [0, T ] rigid : u0 0 n Boundary conditions at subsonic part of computational boundary t, x [0, T ] sub : Pn n Pout n 0 n a wake Direct approximation of D ( u ) ( v) 0 Dt t x y Curvilinear hexahedron V: Trajectories: dxˆ dt u (t , xˆ, yˆ ), dyˆ v(t , xˆ, yˆ ), dt tk t tk 1. Due to Gauss-Ostrogradskii Theorem: V D dV 0 Dt d dQ Q Approximation of curvilinear quadrangle Q: d Qik, j 1 dQ O( h3 ) kh,i , j 1 dQ 2 Q k 1 h i, j Gauss-Ostrogradskii Theorem in the case of boundary conditions: V D dV 0 Dt d Qik, j 1 h k ,i , j d dQ u dR Q dQ Rik, j 1 R u dR O( h3 ) 1 1 2 k 1 dQ 2 k 1 u dR h Qi , j h Ri , j Discrete approach ( x, y ) : du P xx xy 0 dt x x y Matrix of finite element formulation at time layer t tk D1 A11 A12 A13 A21 D2 A22 A23 A31 A32 D3 A33 O O O O O D4 A44 O Supersonic flow around wedge M=4, Re=2000 angle of the wedge β ≈ 53.1º, angle of attack = 0º hx 0.01, hy 0.005, (300 400), 0.0005 Density and longitudinal velocity at t = 8 Density and longitudinal velocity at t = 20 Density and longitudinal velocity at t = 50 Supersonic flow around wedge for nonzero angle of attack M=4, Re=2000 angle of the wedge β = 53.1º, angle of attack = 5º Density and longitudinal velocity at t = 6 Density and longitudinal velocity at t = 8 Density and longitudinal velocity at t = 10 Density and longitudinal velocity at t = 20 Density M=4, Re=2000 Angle of the wedge β ≈ 53.1° Longitudinal velocity Conclusion • Conservation of full energy (kinetic + inner) • Approximation of advection derivatives in the frame of finite element method without artificial tricks • The absence of Courant-Friedrichs-Lewy restriction on the relation between temporal and spatial meshsizes • Discretization matrices at each time level have better properties • The better smooth properties and the better approximation along trajectories • Thanks for your attention!
© Copyright 2026 Paperzz