SUPPLEMENTAL MATERIAL Experimental Demonstration of the Optical Lattice Resonance in Arrays of Si Nanoresonators Stanislav Tsoi,1 Francisco J. Bezares,2 Alexander Giles,1 James P. Long,1 Orest J. Glembocki,1 Joshua D. Caldwell,1 and Jeffrey Owrutsky1 1 US Naval Research Laboratory, Washington, DC 20375, USA 2 ICFO, Barcelona, 08860, Spain S1. Additional experimental results Figure S1 shows reflectivity spectra of the arrays of nanopillars with a 150 nm diameter recorded with a 40X objective. Figure S2 shows reflectivity spectra of the arrays of nanopillars with 200 nm and 250 nm diameters recorded with a 10X objective. D=150 nm 40X, NA=0.6 Reflectance (arb. u.) P=700nm P=650nm P=600nm P=550nm P=500nm P=450nm P=400nm (nm) 400 600 800 1000 Figure S1 (color online). Reflectivity spectra of arrays of nanopillars with a 150 nm diameter and various periods (shifted vertically for clarity) recorded with a 40X objective. (A) D=200nm Reflectance (arb. u.) 1 10X, NA=0.2 (B) D=250nm P=800nm P=750nm P=700nm P=650nm P=750nm P=700nm P=650nm P=600nm P=550nm P=600nm P=550nm P=500nm P=500nm P=450nm random random 4 3 2 400 800 1200 (nm) 4 400 3 2 800 1200 (nm) Figure S2 (color online). (A) Reflectivity spectra of arrays of nanopillars with a 200 nm diameter and various periods (shifted vertically for clarity) recorded with a 10X objective. Vertical dashed lines and corresponding numbers designate localized Mie resonances seen in the random array. The gray arrow emphasizes the lattice resonance dispersing with the period. (B) Same for arrays with a nanopillar diameter of 250 nm. S2. Reflectivity fits To determine spectral positions and widths of the dielectric resonances, the reflectivity spectra of the nanopillar arrays are fitted with Gaussian dips according to −(𝜆−𝜆𝑖 ) 2𝜎2 𝑖 2 𝑅(𝜆) = 𝑅0 − ∑𝑁 , (S1) 𝑖=1 𝐴𝑖 ∙ 𝑒 where R is the reflectance, the wavelength, R0 the reflectance offset, N the total number of the resonances; and Ai, i, and 2i the amplitude, wavelength, and width of the ith resonance, respectively. Because of the large number of the parameters and potential unaccounted contributions to the reflectivity, the fits are not based on minimization of the deviation from the experimental data. Instead, the parameters R0, Ai, i, and i are adjusted manually until the fits yield a close approximation to the experimental curves. Figures S3-S5 exhibit the fits to the individual spectra and Tables S1-S3 list the parameters determined. Table S1. Parameters of the reflectivity fits for the arrays with the nanopillar diameter of 150 nm. Random R0=35 % A1=14.0 % 1=689 nm 1=77 nm A2=2.0 % 2=538 nm 2=33 nm P=400 nm R0=39 % A1=21.5 % 1=675 nm 1=65 nm A2=2.2 % 2=505 nm 2=20 nm P=450 nm R0=37 % A1=20.0 % 1=685 nm 1=62 nm A2=5.0 % 2=511 nm 2=15 nm P=500 nm R0=36 % A1=17.5 % 1=700 nm 1=65 nm A2=9.5 % 2=532 nm 2=19 nm P=550 nm R0=38 % A1=20.0 % 1=712 nm 1=71 nm A2=10.0 % 2=568 nm 2=30 nm P=600 nm R0=39 % A1=19.0 % 1=730 nm 1=73 nm A2=9.0 % 2=610 nm 2=37 nm A3=2.0 % 3=550 nm 3=40 nm P=650 nm R0=39.5 % A1=17.0 % 1=755 nm 1=70 nm A2=11.5 % 2=644 nm 2=42 nm A3=3.0 % 3=550 nm 3=35 nm P=700 nm R0=40 % A1=13.5 % 1=820 nm 1=67 nm A2=16.0 % 2=680 nm 2=60 nm A3=2.5 % 3=545 nm 3=35 nm Random D=150nm P=400nm 40 30 Exp Fit 20 400 (nm) 600 800 Reflectance (%) Reflectance (%) 40 30 Exp Fit 20 1000 400 600 P=450nm 1000 Reflectance (%) Reflectance (%) 40 30 30 Exp Fit 20 400 Exp Fit 20 (nm) 600 800 1000 400 (nm) 600 800 1000 P=600nm P=550nm 40 40 30 Exp Fit 20 400 (nm) 600 800 Reflectance (%) Reflectance (%) 800 P=500nm 40 30 Exp Fit 20 1000 400 P=650nm (nm) 600 800 1000 P=700nm 40 30 Reflectance (%) 40 Reflectance (%) (nm) 30 Exp Fit 20 400 600 Exp Fit 20 (nm) 800 1000 400 600 (nm) 800 1000 Figure S3 (color online). Reflectivity spectra from arrays of nanopillars with a diameter of 150 nm fitted with Gaussian dips. The individual dips are offset vertically from the net fit and experimental data for clarity. D=200nm Random P=450nm 40 30 Reflectance (%) Reflectance (%) 40 30 Exp Fit 20 400 (nm) 600 800 Exp Fit 20 1000 1200 400 600 800 1000 1200 P=550nm P=500nm Reflectance (%) Reflectance (%) 40 40 30 30 Exp Fit 20 400 600 800 Exp Fit 20 400 1000 1200 600 800 1000 1200 P=650nm P=600nm Reflectance (%) Reflectance (%) 40 40 30 30 Exp Fit 20 400 (nm) 600 800 Exp Fit 20 400 1000 1200 (nm) 600 P=700nm 800 1000 1200 P=750nm Reflectance (%) Reflectance (%) 40 40 30 30 Exp Fit 20 400 600 Exp Fit 20 (nm) 800 1000 1200 400 600 (nm) 800 1000 1200 Figure S4 (color online). Reflectivity spectra from arrays of nanopillars with a diameter of 200 nm fitted with Gaussian dips. The individual dips are offset vertically from the net fit and experimental data for clarity. D=250nm Random P=500nm Reflectance (%) 30 30 20 10 Reflectance (%) 40 40 Exp Fit 400 600 800 20 (nm) 1000 1200 10 Exp Fit 400 P=550nm Reflectance (%) Reflectance (%) 30 20 Exp Fit 400 600 800 20 10 1000 1200 Exp Fit 400 1000 1200 30 Reflectance (%) Reflectance (%) 800 40 30 20 20 Exp Fit 400 600 800 1000 1200 10 Exp Fit 400 P=750nm 600 800 1000 1200 P=800nm 40 40 30 Reflectance (%) Reflectance (%) 600 P=700nm P=650nm 40 30 20 10 1000 1200 P=600nm 30 10 800 40 40 10 600 20 Exp Fit 400 600 (nm) 800 1000 1200 10 Exp Fit 400 600 (nm) 800 1000 1200 Figure S5 (color online). Reflectivity spectra from arrays of nanopillars with a diameter of 250 nm fitted with Gaussian dips. The individual dips are offset vertically from the net fit and experimental data for clarity. Table S2. Parameters of the reflectivity fits for the arrays with the nanopillar diameter of 200 nm. Random R0=31.5 % A1=10 % 1=910 nm 1=130 nm A2=5.5 % 2=655 nm 2=50 nm A3=2.0 % 3=535 nm 3=20 nm A4=2.0 % 4=495 nm 4=15 nm P=450 nm R0=32 % A1=11 % 1=880 nm 1=160 nm A2=3.5 % 2=640 nm 2=40 nm A3=4.0 % 3=505 nm 3=35 nm A4=9.0 % 4=475 nm 4=15 nm P=500 nm R0=32 % A1=12.0 % 1=900 nm 1=150 nm A2=5.5 % 2=633 nm 2=40 nm A3=10.0 % 3=522 nm 3=26 nm A4=8.5 % 4=486 nm 4=22 nm P=550 nm R0=34 % A1=16.0 % 1=920 nm 1=140 nm A2=11.5 % 2=630 nm 2=35 nm A3=11.5 % 3=550 nm 3=25 nm A4=10.5 % 4=495 nm 4=25 nm P=600 nm R0=31 % A1=16.0 % 1=940 nm 1=120 nm A2=14.0 % 2=647 nm 2=30 nm A3=6.0 % 3=565 nm 3=22 nm A4=4.0 % 4=503 nm 4=23 nm P=650 nm R0=32 % A1=16.0 % 1=950 nm 1=110 nm A2=14.0 % 2=680 nm 2=40 nm A3=2.0 % 3=565 nm 3=25 nm A4=2.0 % 4=503 nm 4=23 nm P=700 nm R0=34% A1=18.0 % 1=970 nm 1=110 nm A2=14.0 % 2=710 nm 2=55 nm A3=2.0 % 3=557 nm 3=24 nm A4=3.0 % 4=497 nm 4=20 nm P=750 nm R0=35 % A1=18.0 % 1=980 nm 1=105 nm A2=13.0 % 2=740 nm 2=65 nm A3=2.0 % 3=557 nm 3=24 nm A4=2.5 % 4=500 nm 4=20 nm Table S3. Parameters of the reflectivity fits for the arrays with the nanopillar diameter of 250 nm. Random R0=31 % A1=7.0 % 1=995 nm 1=120 nm A2=8.0 % 2=750 nm 2=85 nm A3=6.5 % 3=630 nm 3=35 nm A4=9.5 % 4=562 nm 4=35 nm P=500 nm R0=30 % A1=8.5 % 1=962 nm 1=120 nm A2=4.5 % 2=750 nm 2=69 nm A3=8.0 % 3=560 nm 3=35 nm A4=12.0 % 4=517 nm 4=22 nm P=550 nm R0=30 % A1=9.0 % 1=980 nm 1=130 nm A2=6.0 % 2=740 nm 2=70 nm A3=15.0 % 3=578 nm 3=22 nm A4=14.0 % 4=537 nm 4=22 nm P=600 nm R0=29 % A1=9.0 % 1=1000 nm 1=150 nm A2=6.0 % 2=740 nm 2=70 nm A3=15.0 % 3=617 nm 3=27 nm A4=11 % 4=565 nm 4=25 nm P=650 nm R0=31 % A1=11.0 % 1=1010 nm 1=150 nm A2=11.0 % 2=730 nm 2=65 nm A3=12.0 % 3=641 nm 3=30 nm A4=9.0 % 4=580 nm 4=30 nm P=700 nm R0=32 % A1=12.0 % 1=1030 nm 1=180 nm A2=13.0 % 2=750 nm 2=50 nm A3=10.5 % 3=660 nm 3=30 nm A4=8.0 % 4=590 nm 4=33 nm P=750 nm R0=34% A1=17.0 % 1=1080 nm 1=200 nm A2=13.0 % 2=778 nm 2=50 nm A3=8.0 % 3=673 nm 3=40 nm A4=7.0 % 4=590 nm 4=45 nm P=800 nm R0=37 % A1=17.0 % 1=1080 nm 1=220 nm A2=12.0 % 2=815 nm 2=45 nm A3=8.0 % 3=690 nm 3=65 nm A4=7.0 % 4=590 nm 4=50 nm S3. Numerical simulations Simulations are performed with CST Studio1 using the frequency solver and Lumerical2 using finite difference time domain which employs a time domain solver. We calculate the reflectivity spectra using both programs and generate electric field maps using CST Studio. In our studies, both CST Studio and Lumerical generate identical reflectivity spectra. The optical constants for Si used in the simulations are obtained from Palik’s Handbook of Optical Constants of Solids.3 The incident plane wave is normal to the array surface (z-axis in Fig. S6), while periodic boundary conditions are applied in the plane of the array (xy-plane), corresponding to an infinitely large two-dimensional array. The electric field amplitude of the incident radiation is 5.6107 V/m. Figure S6(A) shows a simulated reflectivity map for Si nanopillar arrays on a Si substrate with the nanopillar diameter of 150 nm as a function of the array period and incident wavelength. The map clearly exhibits the avoided crossing between the diffracted wave and the second localized Mie resonance, in close agreement with the experimental results (Fig. 1C). The range of the array periods over which the avoided crossing takes place appears narrower in the simulations than the experiment, possibly due to the significantly spectrally narrower diffracted wave realized in the idealized simulations. Figure S6(B) demonstrates reflectivity spectra for the periods of 480 and 530 nm, the former featuring well separated diffracted wave and second localized Mie resonance, while the latter the collective lattice mode. (A) 36% 36 600 P=480nm P=530nm Reflectance (%) (nm) 580 30 560 24 540 18 520 500 480 (B) 1 12 450 12% 2 3 500 550 600 (nm) 480 500 520 540 560 580 P (nm) (C) 1 (=480nm) 2 (=520nm) 9.75107 V/m 3 (=537nm) 0 9.75107 V/m z x y Figure S6 (color online). (A) Simulated reflectivity map for Si nanopillar arrays on a Si substrate with the nanopillar diameter of 150 nm, as a function of the array period and incident wavelength. The dashed line emphasizes the avoided crossing trajectory of the lattice mode. (B) Simulated reflectivity spectra for arrays with the period of 480 nm and 530 nm. The vertical dashed lines indicate the diffraction condition =P. Features marked ‘1’, ‘2’ and ‘3’ correspond to the diffracted wave, second localized Mie resonance, and the lattice resonance, respectively. (C) Near field distribution of the x-component of the electric field in the yz-plane for the modes identified in B. The simulations are used to yield near field distributions of the electric field, shown for the three above modes in Fig. S6(C). A regular interference pattern commensurate with the period is seen for the diffracted wave in panel ‘1’ suggesting that scattered waves arrive at each pillar in phase, consistent with the diffraction. In contrast, the distribution for the second localized Mie mode in panel ‘2’ exhibits almost unperturbed incident plane wave. Because the wavelength of the Mie mode is noticeably longer than the array period (Fig. S6B), the scattered waves arrive at most positions in the near field with unmatched phases effectively cancelling each other. This leaves each pillar to respond mostly to the incident wave, in accordance with the localized nature of the Mie resonance. Finally, the hybrid lattice mode seen in panel ‘3’ bears close resemblance to both the diffracted wave and localized Mie resonance. The field of the lattice mode inside the pillars is very similar to that of the localized Mie resonance, however because its wavelength is close to the period, a definitive interference pattern also develops around the pillars similar to the diffracted wave, but with the highest field concentrated between the pillars. This interference pattern suggests that each pillar responds not only to the incident wave, but also to the scattered waves, underscoring interaction among the pillars and thus the collective character of the lattice resonance. 1 2 3 Computer Simulation Technology AG, (www.cst.com). Lumerical Solutions Inc., (www.lumerical.com). Edward D. Palik, Handbook of optical constants of solids. (Academic Press, Orlando, 1985), pp.xviii.
© Copyright 2026 Paperzz