Patterns in phytoplankton size structure: abundance, biomass and production in coastal and open-ocean waters Emilio Marañón Universidad de Vigo Vigo (Spain) Thanks to: Pedro Cermeño, María Huete-Ortega, Daffne C. López-Sandoval, Tamara Rodríguez-Ramos, Cristina Sobrino, José M. Blanco, Jaime Rodríguez Primary production in the ocean. The 45th Liège Colloquium, Liège (Belgium), 13-17 May 2013. Session on Field estimates of primary production. Keynote talk The importance of phytoplankton cell size Figure from Finkel et al. 2010 JPR Many key phytoplankton processes are affected by cell size: • Growth and metabolic rate • Resource acquisition and use • Susceptibility to predation and sinking The importance of phytoplankton cell size Phytoplankton dominated by: Property Small cells Large cells Dominant trophic pathway Photosynthesis-to-respiration ratio f-ratio and e-ratio Main fate of primary production Microbial food web ~1 5–15% Recycling in the upper layer Herbivorous food chain >1 >40% Export toward deep waters % picophytoplankton chl a % microphytoplankton chl a Hirata et al 2011 Biogeosci. Outline • Phytoplankton size structure: importance of resources vs. temperature • Variability in total and size-fractionated production to biomass ratio • Size-scaling of phytoplankton abundance and metabolic rate • Mechanisms underlying the size-dependence of phytoplankton growth Outline • Phytoplankton size structure: importance of resources vs. temperature • Variability in total and size-fractionated production to biomass ratio • Size-scaling of phytoplankton abundance and metabolic rate • Mechanisms underlying the size-dependence of phytoplankton growth Data compilation: size-fractionated chl a and primary production in cold (<10°C), temperate (10-20°C) and warm (>20°C) waters Chl a map: SeaWiFS Project/NASA General relationship between total and size-fractionated chl a -1 Size-fractionated Chl a (µg L ) 100 picophytoplankton 0.2-2µm nanophytoplankton 2-20µm microphytoplankton >20µm 10 1 0.1 0.01 0.001 All data (n = 500) 0.0001 0.01 0.1 1 10 100 Total Chl a concentration (µg L-1) Marañón et al. 2012 L&O Does temperature have a direct effect on size structure? Data conform to a single overall relationship – irrespective of temperature % Microphytoplankton Chl a 100 80 100 60 cold temperate warm 80 60 40 40 20 20 0 0 1 2 0 0 5 10 15 20 Total Chl a concentration (µg L-1) 25 Locations Temperature vs. % microphytoplankton Chl a % Microphytoplankton Chl a 100 12 2 10 80 14 3 27 8 4 60 25 29 28 32 6 13 40 26 15 11 20 7 17 1 19 20 9 21 16 22 23 5 0 -5 0 5 10 31 24 18 33 30 15 20 Temperature (°C) Marañón et al. 2012 L&O 25 30 35 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30. 31. 32. 33. Marguerite Bay, Antarctic Peninsula, winter Marguerite Bay, Antarctic Peninsula, summer Southern Ocean, Atl. sector, spring ice edge zone Southern Ocean, Atl. sector, marginal ice zone Southern Ocean, Atl. sector, polar front SOIREE Fe addition exp. (Southern Ocean), inside SOIREE Fe addition exp., outside SOFeX iron addition exp. (Southern Ocean), inside SOFeX iron addition exp., outside Kerguelen Plateau, Fe-fertilised waters Kerguelen Plateau, HNLC water SEEDS Fe addition exp. (subarctic W Pacific), inside SEEDS Fe addition exp., outside SERIES iron addition exp. (Gulf of Alaska), inside SERIES iron addition exp., outside Okhotsk Sea (western Pacific Ocean), Oct 1993 Okhotsk Sea, Nov 1993 NE subarctic Pacific, late summer NE subarctic Pacific, late winter NE subarctic Pacific, late spring NW subarctic Pacific, summer NW subarctic Pacific, autumn NW subarctic Pacific, winter Ría de Vigo (NW Iberian peninsula), winter Ría de Vigo, upwelling season Gulf of Tehuantepec (SW Mexico), Jan-Feb 1999 Gulf of Tehuantepec, Jan-Feb 1989 Johor Strait (Singapore), May-Jul 1998 Iskenderun Bay (NE Mediterranean Sea, Jul 2003 North & South Atl. subtropical gyres Arabian Sea during the 1995 monsoon (Aug-Sep) IronEx II Fe addition exp., inside IronEx II Fe addition exp., outside Locations Temperature vs. % microphytoplankton Chl a % Microphytoplankton Chl a 100 12 2 10 80 14 3 27 8 4 60 25 29 28 32 6 13 40 26 15 11 20 7 17 1 19 20 9 21 16 22 23 5 0 -5 0 5 10 31 24 18 33 30 15 20 Temperature (°C) Marañón et al. 2012 L&O 25 30 35 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30. 31. 32. 33. Marguerite Bay, Antarctic Peninsula, winter Marguerite Bay, Antarctic Peninsula, summer Southern Ocean, Atl. sector, spring ice edge zone Southern Ocean, Atl. sector, marginal ice zone Southern Ocean, Atl. sector, polar front SOIREE Fe addition exp. (Southern Ocean), inside SOIREE Fe addition exp., outside SOFeX iron addition exp. (Southern Ocean), inside SOFeX iron addition exp., outside Kerguelen Plateau, Fe-fertilised waters Kerguelen Plateau, HNLC water SEEDS Fe addition exp. (subarctic W Pacific), inside SEEDS Fe addition exp., outside SERIES iron addition exp. (Gulf of Alaska), inside SERIES iron addition exp., outside Okhotsk Sea (western Pacific Ocean), Oct 1993 Okhotsk Sea, Nov 1993 NE subarctic Pacific, late summer NE subarctic Pacific, late winter NE subarctic Pacific, late spring NW subarctic Pacific, summer NW subarctic Pacific, autumn NW subarctic Pacific, winter Ría de Vigo (NW Iberian peninsula), winter Ría de Vigo, upwelling season Gulf of Tehuantepec (SW Mexico), Jan-Feb 1999 Gulf of Tehuantepec, Jan-Feb 1989 Johor Strait (Singapore), May-Jul 1998 Iskenderun Bay (NE Mediterranean Sea, Jul 2003 North & South Atl. subtropical gyres Arabian Sea during the 1995 monsoon (Aug-Sep) IronEx II Fe addition exp., inside IronEx II Fe addition exp., outside Locations Temperature vs. % microphytoplankton Chl a % Microphytoplankton Chl a 100 12 2 10 80 14 3 27 8 4 60 25 29 28 32 6 13 40 26 15 11 20 7 17 1 19 20 9 21 16 22 23 5 0 -5 0 5 10 31 24 18 33 30 15 20 Temperature (°C) Marañón et al. 2012 L&O 25 30 35 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30. 31. 32. 33. Marguerite Bay, Antarctic Peninsula, winter Marguerite Bay, Antarctic Peninsula, summer Southern Ocean, Atl. sector, spring ice edge zone Southern Ocean, Atl. sector, marginal ice zone Southern Ocean, Atl. sector, polar front SOIREE Fe addition exp. (Southern Ocean), inside SOIREE Fe addition exp., outside SOFeX iron addition exp. (Southern Ocean), inside SOFeX iron addition exp., outside Kerguelen Plateau, Fe-fertilised waters Kerguelen Plateau, HNLC water SEEDS Fe addition exp. (subarctic W Pacific), inside SEEDS Fe addition exp., outside SERIES iron addition exp. (Gulf of Alaska), inside SERIES iron addition exp., outside Okhotsk Sea (western Pacific Ocean), Oct 1993 Okhotsk Sea, Nov 1993 NE subarctic Pacific, late summer NE subarctic Pacific, late winter NE subarctic Pacific, late spring NW subarctic Pacific, summer NW subarctic Pacific, autumn NW subarctic Pacific, winter Ría de Vigo (NW Iberian peninsula), winter Ría de Vigo, upwelling season Gulf of Tehuantepec (SW Mexico), Jan-Feb 1999 Gulf of Tehuantepec, Jan-Feb 1989 Johor Strait (Singapore), May-Jul 1998 Iskenderun Bay (NE Mediterranean Sea, Jul 2003 North & South Atl. subtropical gyres Arabian Sea during the 1995 monsoon (Aug-Sep) IronEx II Fe addition exp., inside IronEx II Fe addition exp., outside Locations Temperature vs. % microphytoplankton Chl a % Microphytoplankton Chl a 100 12 2 10 80 14 3 27 8 4 60 25 29 28 32 6 13 40 26 15 11 20 7 17 1 19 20 9 21 16 22 23 5 0 -5 0 5 10 31 24 18 33 30 15 20 Temperature (°C) Marañón et al. 2012 L&O 25 30 35 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30. 31. 32. 33. Marguerite Bay, Antarctic Peninsula, winter Marguerite Bay, Antarctic Peninsula, summer Southern Ocean, Atl. sector, spring ice edge zone Southern Ocean, Atl. sector, marginal ice zone Southern Ocean, Atl. sector, polar front SOIREE Fe addition exp. (Southern Ocean), inside SOIREE Fe addition exp., outside SOFeX iron addition exp. (Southern Ocean), inside SOFeX iron addition exp., outside Kerguelen Plateau, Fe-fertilised waters Kerguelen Plateau, HNLC water SEEDS Fe addition exp. (subarctic W Pacific), inside SEEDS Fe addition exp., outside SERIES iron addition exp. (Gulf of Alaska), inside SERIES iron addition exp., outside Okhotsk Sea (western Pacific Ocean), Oct 1993 Okhotsk Sea, Nov 1993 NE subarctic Pacific, late summer NE subarctic Pacific, late winter NE subarctic Pacific, late spring NW subarctic Pacific, summer NW subarctic Pacific, autumn NW subarctic Pacific, winter Ría de Vigo (NW Iberian peninsula), winter Ría de Vigo, upwelling season Gulf of Tehuantepec (SW Mexico), Jan-Feb 1999 Gulf of Tehuantepec, Jan-Feb 1989 Johor Strait (Singapore), May-Jul 1998 Iskenderun Bay (NE Mediterranean Sea, Jul 2003 North & South Atl. subtropical gyres Arabian Sea during the 1995 monsoon (Aug-Sep) IronEx II Fe addition exp., inside IronEx II Fe addition exp., outside % Chl a in each size class depends on primary productivity, e.g. resource utilization rate 80 60 100 Pico % Nanophytoplankton Chl a cold temperate warm 40 20 0 Nano 80 60 40 20 0 0 500 % Microphytoplankton Chl a % Picophytoplankton Chl a 100 1000 0 1500 100 500 Micro 80 60 100 80 40 60 40 20 20 0 0 0 0 500 100 1000 200 1500 Total primary production (µg C L-1 d-1) 1000 1500 A summary of phytoplankton size structure in the ocean Temperature HIGH LOW Resource utilization rate COLD TEMPERATE WARM • Summer bloom in Antarctic Peninsula • NW Iberian coast, upwelling season • Coastal, nutrient-rich waters in warm seas • Fertilised patch, Fe addition expts in Southern Ocean • Fertilised patch, SERIES experiment (Gulf of Alaska) • Fertilised patch, IronEx II (Eq. Pacific) • Antarctic peninsula in winter (light limitation) • NW Iberian coast, winter (light limitation) • Subtropical gyres (macronutrient limitation) • Southern Ocean HNLC waters in summer (Fe limitation) • Eastern subarctic N Pacific (Fe limitation) • Eq. Pac., HNLC waters (Fe limitation) Small cells dominate Large cells dominate Outline • Phytoplankton size structure: importance of resources vs. temperature • Variability in total and size-fractionated production to biomass ratio • Size-scaling of phytoplankton abundance and metabolic rate • Mechanisms underlying the size-dependence of phytoplankton growth Phytoplankton production (P) and biomass (B) in openocean and coastal waters: what is the variability of P/B? Mean coastal µ = 1.30 d-1 Mean open-ocean µ = 0.34 d-1 y = 1.58 x - 1.21 r2 = 0.65, n = 70 3.0 2.5 -3 -1 PP (mgC m d Log Log surface PP (mgC m-3) d-1) 3.5 Ría de Vigo (2001-2002) AMT (1995-1996) 2.0 1.5 slope = 1.58 1.0 0.5 Open ocean Coastal 0.0 -0.5 0.5 1.0 1.5 2.0 2.5 3.0 Log Log surface phyto biomass (mgC Phyto biomass (mgC m-3)m-3) Marañón et al. in prep. Low nutrient supply in open-ocean waters limits the growth and physiological state of phytoplankton, not only their standing stock Chl a map from MODIS Aqua (NASA) Huete-Ortega et al. 2012 J Mar Sys Chl a mg m-3 Trynitrop 2007 Nitrate µM Temp °C The equatorial upwelling causes an increase in phytoplankton biomass turnover rate Trynitrop 2007 6 25 5 20 4 15 3 2 10 5 -10 1 0 -5 0 5 10 15 20 25 Latitude Latitud Biomasa total Biomass Primary production Producción total Production/Biomass Tasa de crecimiento total Chl a map from MODIS Aqua (NASA) Huete-Ortega et al. 2012 J Mar Sys 30 0.24 0.22 0.20 0.18 0.16 0.14 0.12 0.10 0.08 0.06 0.04 -1 7 Turnover rate (d ) Tasa total recambio 30 -1 -1 Biomasa total (g C L ) Phytocarbono biomass -1 Tasa fijaciónproduction carbono total (g C L d ) Primary The equatorial upwelling causes an increase in phytoplankton biomass turnover rate Large phytoplankton sustain high Cspecific production in nutrient-rich waters J A S O N Temperature D J F (°C) Depth (m) 12 13 14 15 16 17 M A M J J A M J J A A M M JJ JJ 18 -10 -20 -30 -40 J A S O N D J F M Nitrate (µmol kg-1) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 Depth (m) 0 -10 -20 -30 JJ AA SS O O N DD JJ FF M M Cermeño et al. 2005 MEPS Outline • Phytoplankton size structure: importance of resources vs. temperature • Variability in total and size-fractionated production to biomass ratio • Size-scaling of phytoplankton abundance and metabolic rate • Mechanisms underlying the size-dependence of phytoplankton growth Regularity in normalized biomass size-spectra (NBSS) and size-abundance spectra (SAS) in open-ocean waters Bacteria, phyto- and zooplankton NBSS slope -1 35°N 56°W Bact Phytoplankton SAS slopes between -1.3 and -1.1 Phyto Zoo 32°N 55°W Huete-Ortega et al. 2012 Proc Roy Soc B Quiñones et al. 2003 Prog Oceanogr The metabolic theory of ecology predicts that biomassspecific metabolic rates decrease with body size slope 3/4 Brown et al. 2004 Ecology Log mass-specific metabolic rate (or µ) Ln(Biomass production rate per individual) The ¾-power rule: individual metabolic rate M3/4 (Kleiber, 1932) Mass-specific metabolic rate (or growth rate) M-1/4 slope = -1/4 Log body size A quantitative illustration of the ¾-power rule If the average Lilliputian was as tall as Gulliver’s middle finger (ca. 7 cm) and assuming Gulliver was 1,80 m tall: 1 Gulliver = (180/7)3 = 17600 Lilliputians So, how much food should the Lilliputians give him? The Emperor of Lilliput decreed: “…the said Man Mountain shall have a daily allowance of meat and drink sufficient for the support of 1724 of our subjects." 1724=17600b b=log(1724)/log(17600)=0.76!! Kleiber (1967) Gulliver’s Travels (Swift, 1726) Early estimates suggested a slope value higher than ¾… -1 Log10 pg C cell d -1 6 4 2 Size-fractionated production and biomass data from different locations 0 b = 1.03 -2 -4 -1 0 1 2 3 4 5 Log10 µm3 cell-1 Marañón et al. 2006 L&O Data obtained from the literature Marañón 2008 J Plankton Res …and more accurate measurements confirm that the slope is approximately 1 (isometric size-scaling) Trynitrop 2007 Chl a map from MODIS Aqua (NASA) Huete-Ortega et al. 2012 Proc Roy Soc B phytoplankton metabolism does not follow the ¾-power rule Linking the size-scaling of abundance and metabolic rate Assuming populations grow until resources are limiting, in steady-state we will have (Enquist et al 1998) that Nmax = R/Q, where N is abundance, R is resource supply rate and Q is the individual rate of resource use (e.g. metabolic rate). Let S be body size. If R S0 and Q Sb then Nmax S-b reciprocal size-scaling of abundance and metabolic rate. slope : 1.16±0.09 slope : -1.15±0.09 Huete-Ortega et al. 2012 Proc Roy Soc B Summary so far: • Phytoplankton size-structure depends on the rate of resource use • Phytoplankton biomass turnover rates respond to nutrient supply • Microphytoplankton can sustain high growth rates • In near steady-state ecosystems, the size-scaling of abundance reflects the size-scaling of metabolic rate • Phytoplankton metabolism does not follow the ¾-power rule Outline • Phytoplankton size structure: importance of resources vs. temperature • Variability in total and size-fractionated production to biomass ratio • Size-scaling of phytoplankton abundance and metabolic rate • Mechanisms underlying the size-dependence of phytoplankton growth Phytoplankton cultures grown under identical conditions show near-isometric size-scaling of metabolic rates 104 102 -1 Diatoms Dinoflagellates Coccolithophores Cyanobacteria Chlorophytes Others -1 103 101 100 10-1 10-2 10-3 Respiration (pmolO2 cell d ) -1 104 -1 Photosynthesis (pgC cell h ) 105 slope = 0.90 10-4 10-2 10-1 100 101 102 103 104 105 106 107 Cell size (µm3) 103 102 101 100 10-1 10-2 10-3 slope = 0.91 10-4 10-2 10-1 100 101 102 103 104 105 106 107 Cell size (µm3) López-Sandoval et al. in prep. A closer look reveals that in fact the size-scaling of phytoplankton growth and production is unimodal Mass-specific production rate (h-1) Maximum growth rate (d-1) 1.2 0.25 1.0 0.20 Diatoms Dinoflagellates Coccolithophores Cyanobacteria Chlorophytes Others P (h ) -1 -1 µmax (d ) 0.8 C 0.6 0.15 0.10 0.4 0.2 0.05 0.0 0.00 10-2 10-1 100 101 102 103 104 105 106 107 10-2 10-1 100 101 102 103 104 105 106 107 Cell size (µm3) Cell size (µm ) 3 Marañón et al. 2013 Ecol Lett Unexpected size-scaling of nutrient maximum uptake rate (VmaxN) 104 104 Diatoms Dinoflagellates Coccolithophores Cyanobacteria Chlorophytes Others 100 10-1 10-2 10-3 10-4 -1 102 -1 103 101 VmaxN (pgN cell h ) -1 101 VmaxN (pgN cell h ) 102 -1 103 slope = 0.97 10-5 10-2 10-1 100 101 102 103 104 105 106 107 3 Cell size (µm ) Theoretically, it was expected that Vmax (cell size)2/3, which would mean that volume-specific Vmax (cell size)-1/3. In contrast, our data suggest that volumespecific Vmax is size-independent 100 10-1 10-2 10-3 10-4 slope = 1.15 10-5 10-3 10-2 10-1 100 101 102 103 104 105 QminN (pgN cell-1) As cell size increases, the ability to take up nutrients increases faster than requirements Marañón et al. 2013 Ecol Lett An illustration of the importance of using different sizescaling exponents for nutrient uptake Uptake rate (fgN cell-1 h-1) Cell volume (µm3) VmaxV1 1 0.1 Difference VmaxV0.66 1 10-fold 10 1 5 5-fold 100 10 22 2-fold 1000 100 100 - 10000 1000 457 2-fold 100000 10000 2089 5-fold 1000000 100000 9549 10-fold e Ov res n tio a tim ere d Un n tio a m s ti Potential mechanisms underlying the size-scaling of phytoplankton metabolism and growth Size range Trend in µ with cell size <10-50 µm3 -- Relevant properties and processes N-rich cells Non-scalable components Low VmaxN:QminN Up to 50-200 µm3 Increasing Increasing space for catalysts Increasing VmaxN:QminN From 50-200 µm3 upwards Decreasing Increasing intracellular distances Reduced light absorption >103-104 µm3 -- High VmaxN:QminN High QmaxN:QminN Limited by assimilation Thank you. Emilio Marañón – Universidad de Vigo – [email protected]
© Copyright 2026 Paperzz