2.7 (Page 154) 1. We let x represent A’s wages, y represent B’s wages, and z represent C’s wages, which we are told equal $30,000. The amount paid out by each A, B, and C equals the amount each receives, so ⎡1 ⎢2 ⎡x ⎤ ⎢ ⎢y⎥ = ⎢ 1 ⎢ ⎥ ⎢4 ⎢⎣ z ⎥⎦ ⎢ ⎢1 ⎣⎢ 4 1 3 1 3 1 3 1⎤ 4⎥ ⎥ 1⎥ 4⎥ ⎥ 1⎥ 2 ⎥⎦ ⎧ ⎪x = ⎡x ⎤ ⎪ ⎢ y ⎥ giving the system ⎪ y = ⎨ ⎢ ⎥ ⎪ ⎢⎣ z ⎥⎦ ⎪ ⎪z = ⎩ Solving the equations for x, y, and z, we find ⎡ 1 ⎢ 2 ⎢ ⎢− 1 ⎢ 4 ⎢ ⎢− 1 ⎢⎣ 4 1 1 x+ y+ 2 3 1 1 x+ y+ 4 3 1 1 x+ y+ 4 3 1 1 1 ⎧ 1 z x− y− z =0 ⎪ 4 2 3 4 ⎪ 1 1 2 1 ⎪ z or ⎨− x + y − z = 0 4 3 4 ⎪ 4 1 1 1 ⎪ 1 z − x− y+ z =0 ⎪ 2 3 2 ⎩ 4 1 1 2 1 ⎤ ⎡ ⎤ 0⎥ 1 − 0⎥ − − ⎢ ⎡ 1 0 − 1 0⎤ 3 4 3 2 ⎥ ⎢ ⎥ ⎢ ⎥ 2 1 1 3 ⎢0 ⎥ ⎯⎯⎯⎯→ ⎢ 0 1 − 3 0⎥ 0⎥ ⎯⎯⎯⎯ 0 − → − ⎥ R1 = 21r1 ⎢ ⎥ R2 = 22r2 3 4 2 8 4 ⎢ ⎥ ⎥ R2 = 4 r1 + r2 ⎢ ⎥ R1 = 3 r2 + r1 ⎢ ⎥ 0 0 0 0 1 1 1 3 ⎦ 0⎥ R3 = 1 r1 + r3 ⎢ 0 − 0⎥ R3 = 1 r2 + r3 ⎣ − 4 2 ⎥⎦ ⎢⎣ ⎥⎦ 3 2 2 8 − 3 z where z is the parameter. Since we are told C’s wages are $30,000, we know 4 3 A’s wages are also $30,000, and B’s wages are (30,000) = $22,500. 4 We let x represent A’s wages, y represent B’s wages, and z represent C’s wages, which we are told equal $30,000. Since the amount paid out by each A, B, and C equals the amount each receives, we ⎡ x ⎤ ⎡ 0.2 0.3 0.1⎤ ⎡ x ⎤ get ⎢ y ⎥ = ⎢ 0.6 0.4 0.2⎥ ⎢ y ⎥ which gives the system ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢⎣ z ⎥⎦ ⎢⎣ 0.2 0.3 0.7⎥⎦ ⎢⎣ z ⎥⎦ or x = z and y = 3. ⎧ x = 0.2 x + 0.3 y + 0.1z ⎧ 0.8 x − 0.3 y − 0.1z = 0 ⎧ 8 x − 3y − 1z = 0 ⎪ ⎪ ⎪ ⎨ y = 0.6 x + 0.4 y + 0.2z or ⎨ −0.6 x + 0.6 y − 0.2z = 0 or ⎨ − 6x + 6 y − 2z = 0 ⎪ ⎪ − 2 x − 3 y + 3z = 0 ⎪ z = 0.2 x + 0.3 y + 0.7z ⎩ −0.2 x − 0.3 y + 0.3z = 0 ⎩ ⎩ Solving the equations for x, y, and z, we find 3 1 2 ⎡ ⎤ ⎡ ⎤ ⎢ 1 − 8 − 8 0⎥ ⎢ 1 0 − 5 0⎥ ⎡ 8 −3 − 1 0 ⎤ ⎢ ⎥ ⎢ ⎥ 15 11 ⎥ 11 ⎥ ⎢ −6 6 −2 0⎥ ⎯⎯⎯⎯→ ⎢ 0 ⎢ − ⎯ → 0 1 − 0 ⎯⎯⎯⎯ 0 ⎢ ⎥ R1 = 1 r1 ⎢ ⎥ R2 = 4 r2 ⎢ 4 4 15 ⎥ 8 15 ⎢⎣ −2 −3 3 0⎥⎦ R2 = 6 r1 + r2 ⎢ ⎥ ⎢ ⎥ 11 ⎥ R1 = 3 r2 + r1 ⎣⎢ 0 0 0 0⎦⎥ R 3 = 2 r1 + r3 ⎢ 0 − 15 8 0 ⎢⎣ ⎥⎦ R3 = 15 r2 + r3 4 4 4 2 11 z and y = z where z is the parameter. Since we are told C’s wages are $30,000, we find 5 15 2 11 (30,000) = $22,000. A’s wages are (30,000) = $12,000, and B’s wages are 5 15 or x = 5. The total output vector X for an open Leontief model is from the system X = [I3 − A]−1 · D where D ⎡ 80 ⎤ represents future demand for the goods produced in the system. If D2 = ⎢⎢90 ⎥⎥ , then using the ⎢⎣ 60 ⎥⎦ information from Table 5, we get ⎡1.6048 0.3568 0.7131⎤ ⎡80 ⎤ ⎡ 203.28 ⎤ X = ⎢⎢0.2946 1.3363 0.3857 ⎥⎥ ⎢⎢90 ⎥⎥ = ⎢⎢166.98 ⎥⎥ ⎢⎣0.3660 0.2721 1.4013 ⎥⎦ ⎢⎣60 ⎥⎦ ⎢⎣137.85 ⎥⎦ The total output of R, S, and T required for the forecast demand D2 is to produce 203.28 units of product R, 166.98 units of product S, and 137.85 units of product T. 6. The total output vector X for an open Leontief model is from the system X = [I3 − A]−1 · D where D ⎡100 ⎤ represents future demand for the goods produced in the system. If D4 = ⎢⎢ 80 ⎥⎥ , then using the ⎢⎣ 60 ⎥⎦ information from Table 5, we get ⎡1.6048 0.3568 0.7131⎤ ⎡100 ⎤ ⎡ 231.81⎤ X = ⎢⎢0.2946 1.3363 0.3857 ⎥⎥ ⎢⎢ 80 ⎥⎥ = ⎢⎢159.51⎥⎥ ⎢⎣0.3660 0.2721 1.4013 ⎥⎦ ⎢⎣ 60 ⎥⎦ ⎢⎣142.45 ⎥⎦ The total output of R, S, and T required for the forecast demand D4 is to produce 231.81 units of product R, 159.51 units of product S, and 142.45 units of product T.
© Copyright 2026 Paperzz