Page 164 Problem 6cde Using only Definition 16.2, prove the following. 3n+1 n→∞ n+2 (c). lim = 3. Solution 5 5 and set Let ε > 0 be given, N = ε. Suppose n > N . Then n > ε , so 3n+1 3n+1−(3n+6) −5 5 n+2 − 3 = = n+2 < n < ε. Voilà n+2 (d) lim n→∞ sin n n n+2 2 n→∞ n −3 < ε, and 1 n < ε, and = 0. Solution ε > 0 be given, and set N = 1ε . Suppose n > N . Then n > 1ε , so Let sin n − 0 ≤ 1 < ε. El fin. n n (e) lim 5 n = 0. Solution Let ε > 0 be given, and set N = max 2, 4ε . Suppose n > N . Then n > 2, so 0 < n + 2 < 2n, and 4 4 4 n2 n+2 2n 2 0 < 2 < n − 3. Also, n > ε , so n < ε. Therefore, nn+2 2 −3 − 0 = n2 −3 < n2 = n < ε. 2
© Copyright 2026 Paperzz