International Journal of Bioinformatics Research, ISSN: 0975–3087, Volume 1, Issue 2, 2009, pp-27-36 Molecular phylogeny of angiospermic plant families using RBCL gene sequences B. Uma Reddy* Department of Bioinformatics, Gulbarga University, Gulbarga, India E. mail: [email protected], Ph. No: +91-9449329266 Abstract: The present study was undertaken to assess the role of plastid-rbcL (ribulose-1, 5-bisphosphate carboxylase large-subunit) gene sequences in addressing the evolutionary relationships within the angiosperms at inter and intra-familial levels using computational experiment. In order to elucidate the relationships, a set of 92 chloroplast rbcL sequences representing from 90 taxa of 12 genera and 10 angiospermic plant families (dicot and monocots) were withdrawn from the GenBank database. The multiple sequence alignment was performed using Genebee-ClustalW service to findout the regions of conserved or indels among the sequences. The phylogenetic tree was inferred from these sequences by employing Bootstrap method of UPGMA (Unweighted Pair Group Method with Arithmetic Mean) using MEGA (Molecular Evolutionary Genetics Analysis) software. The consistency of these generic-wise groupings was further confirmed by the MP (Maximum-Parsimony), ME (Minimum-Evolution) and NJ (Neighbor-Joining) methods. The analysis of these studies strongly indicates that, out of the 12 selected genera Trichosanthes (Cucurbitaceae), Phyllanthus (Phyllanthaceae), Austrobryonia (Cucurbitaceae), Solanum (Solanaceae), Piper (Piperaceae) and Saxifraga (Saxifragaceae) are grouped into separate clusters and exhibiting monophyletic conditions. Where as, Drypetes (Putranjivaceae), Asparagus (Asparagaceae), Cassia (Caesalpinioideae, sub-family), Canna (Cannaceae), Mentha (Lamiaceae), are paraphyletic and the members of the Salvia (Lamiaceae) are distributed throughout these hiraeoid clades, confirming the polyphyly of this large genus. Similar observations were noticed in all four methods. Thus, chloroplast rbcL gene sequences can unambiguously resolve the relationships, as well as provided a good indication of major supra-generic groupings among the selected angiospermic plant families and also gave many clues for future studies. Key Words: rbcL gene, monophyletic, paraphyletic, polyphyletic, Phylogenetic relationship, MEGA INTRODUCTION The use of DNA nucleotide sequence data has awakened a quickly growing interest in molecular systematic analyses. Since last decade molecular systematics in plants has progressed rapidly with in-vitro DNA amplification and direct sequencing methods. In angiosperm systematics, this molecular approach has been effective in addressing many phylogenetic questions that had not been solved only by using phenotypic characters. The gene for the large subunit of the ribulose-bisphosphate carboxylase/oxygenase (rbcL), located on the chloroplast genome, is an appropriate choice for inference of phylogenetic relationships at higher taxonomic levels [1—3]. Because of its slow synonymous nucleotide substitution rate in comparison with nuclear genes and its functional constraint that reduces the evolutionary rate of non-synonymous substitution [4]. The substitution rate of rbcL appears appropriate for studies involving taxa that diverged from 10’s of million years [5]. In recent years, there has been a growing interest in using sequences of the gene coding for the large subunit of ribulose-1, 5-bisphosphate carboxylase/ oxygenase (rbcL) to estimate the plant phylogenies [6]. Several research groups have shown the usefulness of this gene for solving intergeneric and interspecific relationships among flowering plants example, Cucurbitaceae [7], Orchidaceae [8], Rhamnaceae [9], Araucariaceae [10]. The present study was undertaken to evaluate the relationships at the intra and inter familial, intergeneric and interspecific levels, and also to examine the rates, patterns and types of nucleotide substitutions within the rbcL gene in all the selected taxa of each genera, through a computational experiment using 92 chloroplast rbcL gene sequences from 90 taxa, 12 genera, 10 families, and discussed the utilization of plastid-rbcL gene for molecular phylogeny. MATERIALS AND METHODS Cladistic parsimony analyses of a total 92 rbcL nucleotide sequence data representing 90 species (Spp) and 2 duplicates from Austrobryonia micrantha and Mentha longifolia of 12 genera, 10 angiospermic plant families (both dicots and monocots) are presented here in the table-1, were withdrawn from GenBank database). The multiple sequence alignment was performed using Genebee-ClustalW service. All gap characters were scored as missing data rather than a fifth character. Phylogenetic analyses of the sequence data was analyzed with UPGMA using MEGA software. The consistency of these generic wise groupings was further confirmed by the MP, NJ and ME methods as implemented in MEGA 4.1 software [11]. Tree statistics included the consistency index (CI) [12], retention index (RC) [13] and rescaled Bioinfo Publications, International Journal of Bioinformatics Research, ISSN: 0975–3087, Volume 1, Issue 2, 2009 Molecular phylogeny of angiospermic plant families using RBCL gene sequences consistency index (RCI) [13]. Branch lengths (ACCTRAN optimization with equal weights) and the level of support for branches of the phylogenetic trees was evaluated with the bootstrap analysis [14] to verify the strength of the branches based on 100 replicates, using branch and bound search. Bootstrap percentages are described as high (85-100%), moderate (75 – 84%) or low (50 – 74%) [15]. The number of nucleotide substitutions per site was estimated by Kimura’s two parameter method [16] with the DNADIST program. RESULTS The 12 genera of angiosperms namely, Trichosanthes (4 Spp), Solanum (2 Spp), Austrobryonia (4 Spp and 5 sequences), Piper (11 Spp), Phyllanthus (9 Spp.), Saxifraga (2 Spp.), Drypetes (10 Spp), Asparagus (3 Spp), Salvia (35 Spp.), Cassia (4 Spp), Canna (3 Spp), Mentha (3 Spp and 4 sequences) were selected for the study are highly divergent in several respects from one another. But the properties, such as, biochemical, morphological and cytological characteristics of species within each genus are exhibiting greater level of similarity. This in turn inferred that the molecular makeup of these organisms at the generic and family levels is also highly conserved. The analysis of the above studies strongly indicates that, out of the 12 selected genera, the members of Trichosanthes, Austrobryonia, Phyllanthus, Solanum, Piper and Saxifraga are nested into a separate clusters as a monophyletic group, within the major clades and sub-clades in the tree topology, this is strongly supported by high bootstrap replications (100%). Where as, Drypetes, Asparagus, Cassia, Canna, Mentha are paraphyletic and the members of the Salvia are distributed throughout these hiraeoid clades, confirming the polyphyletic condition of this large genus. These observations were noticed in all UPGMA, MP, ME and NJ methods, but only the positions of the generic-wise clusters were altered into the tree topology in all these methods. The members of the Asparagus (Asparagales) and Canna (Cannaceae) were nested within the angiospermic dicot plant families also exhibiting the paraphyletic conditions of these genera with selected dicot plant families. The total length of the tree is 14029. Of the 92 sequences ranging between 968 – 1471 in the data matrix, of which only 877 nucleotide residues were used to infer the phylogenetic relationships among the selected taxa and were shown to be invariant and 305 were variable. These trees were characterized by a consistency index (CI) of 0.187540, retention index (RI) of 0.733592 and the rescaled consistency index i.e., RCI = 0.137578 (for all sites). The strict consensus of these weighted trees is shown in the Fig 1-4. Branch lengths 28 (ACCTRAN optimization with equal weights) and bootstrap are shown. The composition of adenine (A)-0.27, thymine (T)-0.29, guanine (G)-0.25 and cytosine (C)-0.19 nucleotides were observed as constant in all the test genera. But slight changes were noticed in the ratio of transition and transversion substitutions. In case of Saxifraga the ratio of transition and transversion is 1.83, Asparagus is 0.7, Cassia is 1.33, Drypetes is 1.63, Salvia is 2.7, Mentha is 1.8, Trichosanthes is 0.5, Piper is 1.0, Phyllanthus is 0.7. Perhaps the members within genera of Austrobryonia, Solanum and Canna are exhibiting highest level of similarity, the rate of transition and transversion ratios are almost negligible. In these selected taxa, there is no significant cluster at the level of subclass was found, particularly, there is no clear-cut segregation between monocots and dicotyledonous plants was observed in the tree topology. The members of the genera Canna and Asparagus belongs to monocotyledons are nested within the clades of the dicot plant families. The length of the rbcL gene sequence in the members of few genera included in the present study possess fixed number of nucleotide residues, which is evident from the genus Trichosanthes is 1356, Phyllanthus -1408, Saxifraga – 1346 and 1377, Solanum – 1370, Austobryonia – 1355, Piper – 1428. Where as, considerable variation in substitution rates and length of the sequences were observed in some other selected genera namely, Saxifraga stellaris and S. integrifolia– 1346 and 1377, respectively. Similar observations were found with Asparagus officinalis, A. cochinchinensis and A. capensis – 1206, 1369 and 1340, respectively, Drypetes – 1398, except D. littoralis and D. roxburghii -1331 and 1420, respectively. Canna indica and C. glauca – 1327 but C. tuerckheimii – 1334; Mentha rotundifolia, longifolia (2) – 1420 and M. suaveolens, M. longifolia – 1402; Cassia senna, C. didymobotrya – 1368, C. grandis – 1421, C. fistula- 1465. However, the sequence length of rbcL in 35 members of the genus Salvia is ranging between 968 -1474. But the members of this genus located in the subclades-I of CladeV are strictly containing 1323 and subclades-I of Clade-I containing 1371 nucleotide residues only, and these exhibited highest level of sequence similarity and originated from one common ancestral forms. Where as, the members of this genus located in the sub-clade-IV of clade-I, clade-II, and clade – III are found to be highly variable. The UPGMA method of phylogenetic analysis strongly suggests that, the members of the genus Trichosanthes are evolved first and forms a primitive, and then Phyllanthus, Drypetes, Saxifraga, Solanum, Austrobryonia are evolved in a sequential order. Where as, the members of the genus Piper are found to be late evolved and inferred them as highly advanced among the selected genera. Where as, the Bioinfo Publications, International Journal of Bioinformatics Research, ISSN: 0975–3087, Volume 1, Issue 2, 2009 B. Uma Reddy members of the genus Mentha are evolved twice with the members of Salvia. Mentha suaveolens and M. longifolia are early evolved, they are found in the cluster-I and forms a basal group. But the M. rotundifolia and M. longifolia (2) are late evolved and nested in a cluster-V indicating that they are advanced. Among the four species of the Cassia, only the C. senna and C. didymobotrya exhibited high level of similarity, this is supported by high bootstrap values of 100% and occupying in the basal group. Where as, Cassia grandis nested with in the members of Salvia in clade-II and Cassia fistula originated sisterly with the members of the genus Saxifraga. Similarities between these individuals are strongly supported with bootstrap values as 96%. In case of the genus Canna, only the C. indica and C. glauca are highly similar, supporting with bootstrap values of 100% and located in the major clade-I. Another member of the same genus C. tuerckheimii is located in the clade-IV. Due to high sequence diversity among the three selected species of Asparagus are distributed distantly into the tree topology and indicated that, this is evolved several times during evolution. A. capensis is found in clade-I and referred as less evolved or primitive, where as, A. cochinchinensis in the cluster III and A. officinalis is in Clade-V and this A. officinalis is inferred as highly evolved among other selected species. Among the 35 species, the members located in the subclade-I of clade-I and members in the subclade –I of clade-V are exhibiting greater level of sequence similarity, members of the same genus located in the other clades and subclades are displaying much variable. It is evident that the members of this large genus evolved several times and are distributed into several patches all along the tree topology (FIG -1). The similar monophyletic, paraphyletic and polyphyletic conditions of these selected genera were also confirmed through other NJ, MP, and ME methods, indicating that these conditions are strictly conserved. Only the relative position of these generic level groupings was altered (FIG 2-4). DISCUSSION The study presented here is an attempt to employ a set of 92 plastid rbcL gene sequences of 90 taxa belonging to 12 genera of 10 angiospermic plant families to address intra familial relationships. The analyses of rbcL nucleotide sequences presented here provide a great deal of support for previous hypotheses of relationships within the family and generic levels of some angiospermic plants. The members of the genera belongs to Asparagus (Asparagales) and Canna (Cannaceae) belongs to the subclass monocotyledonous were nested within the angiospermic dicot plant families also exhibiting the paraphyletic conditions of these genera with selected dicot plant families. The present data also reject the views of Burger, 1997; Taylor and Hickey, 1992 [17–18], that Piperaceae are basal among most of the primitive angiosperms and that, the monocots included in the present study were derived from them. In contrast to the ShuMiaw et al., 1997 [19], that the monocots included in the present studies are not clustered into a separate monophyletic group. The members of the genera Canna and Asparagus belongs to monocotyledons are nested within the major clades of the dicot plant families. Therefore, the plastid-rbcL gene sequence data lend support to Hutchinson’s view that “the single cotyledon, parallel-veined leaves, absence of cambium, dissected stele and the adventitious root system of monocots are all regarded as apomorphies within the angiosperms. Moreover monocots are regarded as derived from dicots, the point of origin being Ranales [20]. These results show that analyses of the chloroplast DNA rbcL is a useful approach for inferring phylogenetic relationships especially at the supra-generic level. CONCLUSION However, the present study, the tree relations among the genera are well resolved and providing support for the monophyly of large clades and subclades for many of the selected plant genera such as Trichosanthes, Austrobryonia, Saxifraga, Solanum, Phyllanthus and Piper. The polyphyletic condition of the genus Salvia is supported by the higher rate of the transition and transversion ratio is 2.7, 554 gaps as well as significant variation in the total number nucleotide residues in the different members of the genus Salvia among 35 species (i.e., 968 in Salvia nubicola to 1474 in Salvia divinorum). The present investigation also concludes that, the gene plastid-rbcL alone is not likely to provide robust estimates of phylogeny. Data from additional molecular (complete nuclear and chloroplast genetic systems) and morphological sources and their combined analyses are necessary to establish a stable and firm base for a plant systematics (Family classification) that better reflects phylogenetic relationships. REFERENCES [1] Chase, M. W.; Soltis, D.E.; Olmstead, R.G.; Morgan, D.; Les, D. H.; Mishler, B. D.; Duvall, M. R.; Price, J. H.; Hillis, H. G.; Qiu, Y. L.; Kron, K. A.; Rettig, J. H.; Conti, E.; Palmer, J. D.; Manhart, J. R.; Sytsma, K. J.; Michaels, H. J.; Kress, W. J.; Karol, K. G.; Clark, W. D.; Hedren, M.; Gaul, B. S.; Jansen, R. K.; Kim, K. J.; Wimpee, C. F.; Smith, J. F.; Furnier, G.R.; Strauss, S. H.; Xiang, Q. Y.; International Journal of Bioinformatics Research, ISSN: 0975–3087, Volume 1, Issue 2, 2009 29 Molecular phylogeny of angiospermic plant families using RBCL gene sequences [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] 30 Plunkett, G. M.; Soltis, P. S.; Swensen, S. M.; Williams, S. E.; Gadek, P. A.; Quinn, C. J.; Eguiarte, L. E.; Goldenberg, E.; Lean, G. H.; Graham, S. W.; Barrett, S. C. H.; Dayanandan, S. and Albert, V. A. (1993) Ann. Mo. Bot. Gard, 80, 528 -580. Les, D. E.; Garvin, D. K. and Wimpee, C. F. (1991). Proc. Natl. Acad. Sci, 88, 10119 – 10123. Duvall, M. R.; Learn, G.H.; Jr.; Eguiate, L. E. and Clegg, M. T. (1993) Proc Natl Acad Sci, 90, 4641 – 4644. Wolfe, K. H.; Li, W. H. and Sharp, P. M. (1987). Proc. Natl. Acad. Sci, 88, 9054 – 9058. Zurawski, G.; Clegg, M. T. and Brown, A. H. D. (1984). Genetics, 106, 735-749. Ritland, K. and Clegg, M. T. (1987) Am Nat, 130, 74 – 100. Uma Reddy, B. (2009) Int J Bioinf, ISSN: 0974 - 6439, 2(1), 54 – 59. Kenneth Wurdack, J.; Petra Hoffmann.; Rosabelle Samuel.; Anette De Bruun.; Michelle Van Der Bank. and Mark Chase W. (2004) Am. J. Bot, 91(11), 1882 – 1900. James Richardson, E.; Michael Fay, F.; Quentin Cronk, C.B.; Diane Bowman. and Mark Chase, W. (2000) Am. J. Bot, 87(9), 1309 – 1324. Sasa Stefanovic.; Bernard Pfeil, E.; Jeffrey Palmer, D. and Jeff Doyle J. (2009) Syst. Bot, 34(1), 115 – 128. Sudhir Kumar.; Masatoshi Nei.; Joel Dudley. and Koichiro Tamura (2008) Brief in Bioinf, 9(4), 299-308. Kluge, A. G. and Farris, J. S. (1969) Syst. Bot, 18, 1-22. Farris, J. S. (1989) Cladistics, 5, 417 – 419. Felsenstein, J. (1985) Evolution, 39, 783 791. Kenneth Cameron, M.; Mark Chase, W.; Mark Whitten, W.; Paul Kores, J.; David Jarrell, C.; Victor Albert, A.; Tomosia Yukawa.; Harold Hillis, G. and Douglas Goldman, H. (1999) Am. J. Bot, 86(2), 208 – 224. Kimura, M. (1980) J Mol Evol, 16, 111-120. Burger, W. C. (1977) Bot Rev, 43, 345 – 393. [18] Taylor, D. W. and Hickey, L. J. (1992) Plant Syst Evol, 180, 137 – 156. [19] Shu-Miaw Chaw.; Andrey Zharkikh.; HuangMo Sung.; Tak Cheung Lau. and Wen Hsiung Li. (1997) Mol. Biol. Evol, 14(1), 56 – 68. [20] Vasishta, P. C. (2001) Taxonomy of Angiosperms. Published by G.S. Sharma, Proprietor, R. Chand and Company, 1 –Ansari Road, Daryaganj, New Delhi, 32.. [21] Wurdack, K. J.; Hoffmann, P.; Samuel, R.; de Bruijn, A.; Van der Bank, M. and Chase, M. W. (2004) Am. J. Bot, 91 (11), 1882-1900. [22] Tokuoka, T. and Tobe, H. (2006) J. Plant Res, 119 (6), 599-616. [23] Schaefer, H.; Kocyan, A. and Renner, S. S. (2008) Syst. Bot, 33 (2), 349-355. [24] Kress, W. J.; Prince, L. M.; Hahn, W. J. and Zimmer, E. A. (2001) Syst. Biol, 50 (6), 926-944 [25] Walker, J. B.; Sytsma, K. J.; Treutlein, J. and Wink, M. (2004) Am. J. Bot, 91 (7), 1115-1125. [26] Kaufmann, M. and Wink, M. (1994) Biosci. Rep, 49, 635-645. [27] Wagstaff, S. J. and Olmstead, R. G. (1997) Syst. Bot, 22 (1), 165-179. [28] Olmstead, R. G.; Bremer, B.; Scott, K. M. and Palmer, J. D. (1993) Ann. Mo. Bot. Gard, 80, 700-722. [29] Rodman, J. E.; Price, R. A.; Karol, K. G.; Conti, E.; Sytsma, K. and Palmer, J. (1993) Ann. Mo. Bot. Gard, 80, 686-699. [30] Forest, F., Chase, M. W., Persson, C., Crane, P. R. and Hawkins, J. A. (2007) Evolution, 61 (7), 1675-1694. [31] Doyle, J. J.; Doyle, J. L.; Ballenger, J. A.; Dickson, E. E.; Kajita, T. and Ohashi, H. (1997) Am. J. Bot, 84, 541-554. [32] Yamashita, ,J. and Tamura,, M. N. (2000) Molecular phylogeny of the Convallariaceae (Asparagales) Wilson, K. L. and Morrison, D. A. (Eds.); Monocots: Systematics And Evolution: 387-400; CSIRO, Melbourne. [33] Solits, D. E.; Kuzoff, R. K.; Mort, M. E.; Zanis, M.; Fishbein, M.; Hufford, L.; Koontz, J. and Arroyo, M. K. (2001). Ann. Mo. Bot. Gard, 88 (4), 669-693. Bioinfo Publications, International Journal of Bioinformatics Research, ISSN: 0975–3087, Volume 1, Issue 2, 2009 B. Uma Reddy Table: List of the rbcL sequences using figure-1 Sl. No 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 Accession Number (GenBank) AY663611 AY663610 AY663609 AY663608 AY663607 AY663606 AY663605 AY663603 AB233921 EF450315 EF450314 EF450313 EF450312 EF450310 EF450309 EF450311 EF450308 EF450307 EF450305 EF450304 EU155605 EU155604 EU155603 EU155602 EF487553 EF487552 No of base pairs 1408 1408 1408 1408 1408 1408 1408 1408 1331 1428 1428 1428 1428 1428 1428 1428 1428 1428 1428 1428 1356 1356 1356 1356 1355 1355 27 EF487551 1355 28 29 30 31 32 33 34 35 36 37 38 EF487550 EF487549 AF378764 AF378763 AF378774 AY570390 Z37417 Z37415 U28876 L14407 AB295077 39 TAXA USED REFFERENCES FAMILY Phyllanthaceae Phyllanthaceae Phyllanthaceae Phyllanthaceae Phyllanthaceae Phyllanthaceae Phyllanthaceae Phyllanthaceae Phyllanthaceae Piperaceae Piperaceae Piperaceae Piperaceae Piperaceae Piperaceae Piperaceae Piperaceae Piperaceae Piperaceae Piperaceae Cucurbitaceae Cucurbitaceae Cucurbitaceae Cucurbitaceae Cucurbitaceae Cucurbitaceae [21] [21] [21] [21] [21] [21] [21] [21] [22] Yang et al., Yang et al., Yang et al., Yang et al., Yang et al., Yang et al., Yang et al., Yang et al., Yang et al., Yang et al., Yang et al., [23] [23] [23] [23] [23] [23] Cucurbitaceae [23] 1355 1355 1334 1327 1327 1371 1420 1420 1402 1474 1323 Phyllanthus polyphyllus Phyllanthus nutans Phyllanthus nummariifolius Phyllanthus lokohensis Phyllanthus juglandifolius Phyllanthus fluitans Phyllanthus flagelliformis Phyllanthus calycinus Phyllanthus flexuosus Piper nigrum Piper chinense Piper laetispicum Piper hainanse Piper hancei Piper sarmentosum Piper betle Piper kadsura Piper wallichii Piper austrosinense Piper longum Trichosanthes schlechteri Trichosanthes pentaphylla Trichosanthes cucumerina Trichosanthes bracteata Austrobryonia pilbarensis Austrobryonia micrantha HS4V Austrobryonia micrantha HS411 Austrobryonia centralis Austrobryonia argillicola Canna tuerckheimii Canna indica Canna glauca Mentha longifolia Mentha rotundifolia Mentha longifolia (2) Mentha suaveolens Salvia divinorum Salvia plebeia Cucurbitaceae Cucurbitaceae Cannaceae Cannaceae Cannaceae Lamiaceae Lamiaceae Lamiaceae Lamiaceae Lamiaceae Lamiaceae AB295076 1323 Salvia glabrescens Lamiaceae 40 AB295073 1323 Salvia nipponica Lamiaceae 41 AB295070 1323 Salvia arisanensis Lamiaceae 42 AB295069 1323 Salvia hayatana Lamiaceae 43 AB295068 1323 Salvia pygmea Lamiaceae 44 AB295067 1323 Salvia lutescens Lamiaceae 45 46 47 AY570451 AY570450 AY570449 1162 1368 1353 Salvia viscosa Salvia viridis Salvia staminea Lamiaceae Lamiaceae Lamiaceae [23] [23] [24] [24] Prince (Unpublished) [25] [26] [26] [27] [28] Sudarmono and Okada (Unpublished) Sudarmono and Okada (Unpublished) Sudarmono and Okada (Unpublished) Sudarmono and Okada (Unpublished) Sudarmono and Okada (Unpublished) Sudarmono and Okada (Unpublished) Sudarmono and Okada (Unpublished) [25] [25] [25] (Unpublished) (Unpublished) (Unpublished) (Unpublished) (Unpublished) (Unpublished) (Unpublished) (Unpublished) (Unpublished) (Unpublished) (Unpublished) International Journal of Bioinformatics Research, ISSN: 0975–3087, Volume 1, Issue 2, 2009 31 Molecular phylogeny of angiospermic plant families using RBCL gene sequences 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 AY570448 AY570447 AY570446 AY570445 AY570444 AY570443 AY570442 AY570439 AY570438 AY570437 AY570436 AY570435 AY570434 AY570433 AY570432 AY570431 AY570430 AY570427 AY570428 AY570426 AY570425 AY570424 AY570423 AY570422 AY663639 AY663638 AY663637 AY663636 AY663635 AY663634 AY663633 AY663632 M95757 AB233926 AM234244 U74195 Z70155 Z70154 AY149374 1187 1349 1365 1356 1371 1350 1371 1349 1371 1177 1364 1126 1371 1186 1371 1355 968 1182 1113 1371 1357 1296 1115 1135 1398 1398 1398 1398 1398 1398 1398 1398 1420 1331 1421 1465 1368 1368 1206 Salvia tiliifolia Salvia texana Salvia sylvestris Salvia taraxacifolia Salvia summa Salvia subincisa Salvia spathaceae Salvia sclarea Salvia roemeriana Salvia ringens Salvia pratensis Salvia polystachya Salvia pentstemonoides Salvia palaestina Salvia pachyphylla Salvia officinalis Salvia nubicola Salvia nilotica Salvia misella Salvia lyrata Salvia lycoides Salvia involucrate Salvia verbenaca Salvia hirsuta Drypetes staudtii Drypetes lateriflora Drypetes gilgiana Drypetes floribunda Drypetes fallax Drypetes diversifolia Drypetes deplanchei Drypetes brownie Drypetes roxburghii Drypetes littoralis Cassia grandis Cassia fistula Cassia senna Cassia didymobotrya Asparagus officinalis Lamiaceae Lamiaceae Lamiaceae Lamiaceae Lamiaceae Lamiaceae Lamiaceae Lamiaceae Lamiaceae Lamiaceae Lamiaceae Lamiaceae Lamiaceae Lamiaceae Lamiaceae Lamiaceae Lamiaceae Lamiaceae Lamiaceae Lamiaceae Lamiaceae Lamiaceae Lamiaceae Lamiaceae Putranjivaceae Putranjivaceae Putranjivaceae Putranjivaceae Putranjivaceae Putranjivaceae Putranjivaceae Putranjivaceae Putranjivaceae Putranjivaceae Caesalpinioideae Caesalpinioideae Caesalpinioideae Caesalpinioideae Asparagaceae 87 88 89 90 91 92 AB029849 AM234843 AF374732 L01953 FJ914175 FJ914174 1369 1340 1346 1377 1370 1370 Asparagus cochinensis Asparagus capsensis Saxifraga stellaris Saxifraga integrifolia Solanum chilense Solanum pennellii Asparagaceae Asparagaceae Saxifragaceae Saxifragaceae Solanceae Solanceae 32 [25] [25] [25] [25] [25] [25] [25] [25] [25] [25] [25] [25] [25] [25] [25] [25] [25] [25] [25] [25] [25] [25] [25] [21] [21] [21] [21] [21] [21] [21] [21] [21] [29] [22] [30] [31] [31] Kaess, (Unpublished). McPherson et al., (Unpublished) [32] [30] [33] [33] Dillon et al., (Unpublished) Dillon et al., (Unpublished) Bioinfo Publications, International Journal of Bioinformatics Research, ISSN: 0975–3087, Volume 1, Issue 2, 2009 B. Uma Reddy Pipe r nigrum 22 0.0000 53 0.0000 Pipe r a ustrosine nse 0.0000 56 0.0006 13 Pipe r lae tispicum 0.0006 Pipe r sa rmentosum 81 0.0000 0.0013 Pipe r longum 0.0000 18 0.0004 53 33 0.0009 0.0000 Pipe r w allichii 0.0000 0.0007 0.0001 100 P ipe r [Pipe rac e a e ] S ubc la de - I I Pipe r kadsura 0.0006 Pipe r chinense 62 0.0000 0.0006 Pipe r hancei 0.0000 Pipe r betle 0.0514 0.0018 100 Pipe r haina ne nse CLADE - V 0.0019 2.9732 Asparagus officinalis 0.0500 53 0.0033 Mentha rotundifolia 0.0125 100 0.0375 0.0042 7 Mentha longifolia 0.0083 87 Salvia plebeia 0.0070 47 100 0.0013 0.3018 0.0000 0.0042 64 0.0000 0.0029 0.0040 33 0.0001 92 2 0.0011 Salvia glabrescens Subclade - I Salvia nipponica Salvia arisanensis Salvia [Lamiaceae] Salvia lutescens Salvia hayatana 0.0029 92 0.0000 0.0011 Salvia pygmaea 0.0000 2.9073 36 2.3685 0.6579 2.3685 0 Salvia [Lamiaceae] Salvia involucrata Salvia lycioides 3.3282 3.5798 Salvia tiliifolia Salvia misella 4.5465 Austrobryonia pilbarensis 17 0.0000 17 0.0000 Austrobryonia micrantha 0.0000 86 0.0000 Austrobryonia micrantha (2) S ubclade - I V Austrobryonia ce ntra lis 14 0.0011 0.4800 33 0.2998 4 1.4746 Salvia officinalis 2.2921 Sola num chilense 100 0.0000 2.2921 Sola num penne llii 0.0000 Subclade - III S olanum Canna tuerckheimii 2.3779 CLADE - IV Sa xifra ga ste lla ris 100 0.0093 96 0.0263 Sa xifra ga inte grifolia 0.0093 0.0134 37 0.3442 [S ola na c e a e ] Salvia hirsuta 2.7221 6 0.3498 1.8296 [Cuc urbita c e ae ] Austrobryonia a rgillicola 0.0000 2.5908 0 Austrobryonia 0.0000 100 0.0011 2 1.6889 Sa xifra ga [S a xifra ga c ea e ] Subclade - II Cassia fistula 0.0356 Drypetes staudtii 18 0.0023 18 0.0000 Drypetes fallax 0.0023 28 0.0006 100 2.3289 0.0023 0.0011 0.0029 100 0.0451 1.3224 Drypetes gilgiana Drypetes 37 0.0023 Drypetes 19 0.0009 0.0023 0.0008 Drypetes 27 0.0029 0.0003 Drypetes 0.0029 14 3.0102 4.9248 0 1.8802 3.0102 Drypetes [Putanjivaceae] Subclade - I lateriflora deplanchei diversifolia brownii Salvia pratensis Out group Asparagus cochinchinensis Salvia texana 100 0.0000 Salvia sclarea 14 2.9688 0.0000 4.9662 47 Salvia subincisa 2.3426 0.6262 Salvia verbenaca 2.3426 26 2.8156 5.4417 0 2.8156 3.3875 Drypetes floribunda 3.1560 5 5.1013 14 2.8919 Salvia [Lamiaceae] CLADE - III Salvia viscosa Cassia grandis Salvia palaestina Salvia [Lamiaceae] CLADE - II Salvia polystachya Salvia staminea 0.2641 100 0.0006 2.8913 Salvia ringens 0.0006 100 0.0000 9.0506 0.0000 Canna indica Canna [Cannac eae] Subclade - VII Canna glauca Phylla nthus nutans 57 0.0029 30 0.0009 Phylla nthus jugla ndifolius 0.0029 34 0.0005 Phylla nthus polyphyllus 0.0037 26 0.0014 32 0 Phylla nthus fluita ns 0.0056 42 0.0009 100 3.9166 Phylla nthus fla ge lliformis 0.0042 0.0012 0.0317 P hylla nthus [P hyllantha c ea e ] Phylla nthus calycinus Subclade - VI 0.0058 Phylla nthus fle xuosus 0.0011 0.0058 100 51 2.4614 Phylla nthus nummulariifolius 0.0058 Phylla nthus lokohensis 0.0020 32 0.0058 2.5010 Drypetes littoralis 0.0395 Salvia sylvestris 2.5009 Salvia viridis 100 0.0516 23 2.5299 Asparagus capensis 0.0516 1 4.0488 1.3161 2.5815 37 1 2.3166 0.9530 1.1042 2.3166 Out group Subclade - V Salvia [Lamiaceae] Subclade - IV CLADE - I Salvia nilotica 0.0006 76 0.0009 Trichosanthes cucume rina 0.0006 100 0.0016 6 [Lamiaceae] Salvia nubicola Trichosanthes pentaphylla 71 0.6282 Salv ia Salvia taraxacifolia T ric hosa nthe s [Cuc urbita c e a e ] Subc lade - I I I Trichosanthes schlechte ri 0.0014 2.6454 Trichosanthes bra cte ata 0.0031 27 0.6211 Drypetes roxburghii 0.0574 100 100 0.0034 0.0371 2.5911 0.0034 85 100 0.0332 0.0003 0.0058 0.0040 72 [Caesalpinoideae] Subclade - II Salvia spathacea 100 0.0000 25 0.0058 Salvia pachyphylla 0.0000 42 0.0012 Cassia Cassia didymobotrya Salvia divinorum 0.0073 0.0168 Cassia senna 0.0021 74 0.0019 0.0021 59 Mentha suaveolens Mentha longifolia Out group Out group Salvia [Lamiaceae] Subclade - I Salvia lyrata Salvia pentstemonoides 0.0011 0.0008 92 0.0000 Salvia summa 0.0011 Salvia roemeriana 0.0000 Fig -1 Phylogenetic tree from 92 rbcL sequences representing 90 taxa of family Cucurbitaceae, were inferred using UPGMA method. Bootstrap percentages and branch lengths are indicated above and below the branches, respectively. International Journal of Bioinformatics Research, ISSN: 0975–3087, Volume 1, Issue 2, 2009 33 Molecular phylogeny of angiospermic plant families using RBCL gene sequences 86 Salvia summa Salvia roemeriana 60 Salvia (Lamiaceae) Salvia pents temonoides 69 36 Salvia lyrata 59 Mentha longifolia (2) 99 Mentha s uaveolens Salvia divinorum 40 Salvia (Lamiaceae) Salvia spathac ea 39 94 99 Salvia pac hy phylla Cas sia senna 99 1 Cassia (Caesalpinioideae - sub family) Cas sia didymobotry a Drypet es rox burghii Salvia taraxacifolia Trichosa nthes bracte ata 11 3 Trichosa nthes schl echte ri 99 0 T ric hosa nthe s ( Cuc urbit a c e a e ) Trichosa nthes pentaphylla 62 70 Trichosa nthes cucumerina Salvia nilotic a 2 Salvia nubic ola Salvia verbenac a Salvia subincis a 0 Asparagus c apensis 5 99 18 Salvia staminea Salvia (Lamiaceae) Salvia ringens Drypet es litt oralis 14 Phylla nthus fl agel liformis 9 99 14 37 Phylla nthus nuta ns Phylla nthus fl uitans 99 Phylla nthus jugl andi fol ius 82 30 Phylla nthus nummul ari ifolius Phylla nthus ( Phylla nt ha c e a e ) Phylla nthus lokohe nsis Phylla nthus polyphyl lus 33 Phylla nthus calyci nus 30 74 Phylla nthus fl ex uosus Mentha rotundifolia 3 99 Mentha longifolia 94 Salvia glabresc ens 50 Mentha (Lamiaceae) Salvia nipponic a Salvia plebeia 33 Salvia viridis 57 83 Salvia sylves tris Salv ia (Lamiac eae) Salvia lutesc ens 99 Salvia hay at ana 70 72 Salvia pygmaea Salvia aris anensis 99 Asparagus offic inalis Pipe r ka dsura 2 18 29 Pipe r chine nse Pipe r ha ncei 99 23 28 Pipe r ha ina ne nse Pipe r be tle 65 49 Pipe r sarmentosum P ipe r ( Pipe ra c e a e ) Pipe r longum Pipe r nigrum 5 Pipe r austrosine nse 66 Pipe r lae tispi cum 15 11 Pipe r wa lli chii Canna tuerc kheimii 0 Asparagus c oc hinchinens is 0 99 Salvia tex ana Salv ia {Lamiac eae) Salvia sclarea 0 99 3 Canna indica Canna (Cannaceae) Canna glauc a Salvia polys tac hy a 21 Cas sia grandis 12 Salvia tiliifolia 3 Salvia visc os a 1 0 Salvia (Lamiaceae) Salvia involucrata 0 Salvia palaestina 1 8 Salvia lyc ioides Austrobryonia centra lis 0 Austrobryonia pilbarensis 99 Austrobryonia micrantha 56 Austrobryonia ( Cuc urbit a c e a e ) Austrobryonia micrantha(2) 15 13 99 Austrobryonia a rgi lli col a Salvia officinalis Salvia hirs ut a Salvia pratensis Salvia mis ella 0 99 75 Sax ifraga ste lla ris Sa xif ra ga ( Sa xif ra ga c e a e ) Sax ifraga i nte grifolia 10 Cas sia fis tula Drypet es brownii 99 49 13 99 Drypet es lat eriflora Drypet es deplanc hei Drypet es divers ifolia Drypetes (Putranjivaceae) Drypet es staudtii 56 Drypet es gilgiana 50 Drypet es floribunda 51 21 Drypet es fallax Solanum chilense Solanum pennellii Fig-2 Phylogenetic tree from 92 rbcL sequences representing 90 taxa of family Cucurbitaceae, were inferred using the Maximum Parsimony method (length = 14029, CI = CI = 0.187540; RI = 0.733592; RCI = 0.137578 (for all sites). 34 Bioinfo Publications, International Journal of Bioinformatics Research, ISSN: 0975–3087, Volume 1, Issue 2, 2009 B. Uma Reddy 21 10 Salvia polys tachya Salvia palaest ina 3 Salvia involucrata 1 Salv ia (Lamiaceae) Salvia tiliifolia 0 Salvia vis cosa 0 Cas sia grandis 0 Salvia plebeia 0 Mentha longifolia (2) 0 Salvia py gmaea 0 Salvia hayatana 0 Salvia glabres cens 0 Salvia nipponica 0 Salvia lutes cens 0 Salvia arisanens is 0 Mentha rotundifolia 0 Asparagus officinalis 0 Piper hancei 0 Piper kadsura 0 Piper chinens e 0 Piper hainanense Piper sarment os um 0 14 0 Piper longum Piper betle 0 Piper laetis pic um 0 Piper wallic hii 0 Piper austrosinense Piper nigrum 0 Asparagus cochinc hinensis Asparagus capensis 0 Salvia viridis 0 90 0 Salvia st aminea Salv ia (Lamiac eae) Salvia ringens Dry petes lit toralis 6 Phyll anthus fla ge lliformi s 67 Phyll anthus nutans 47 Phyll anthus jugla ndifolius 27 Phyll anthus ca lycinus 17 Phyll anthus polyphyllus Phylla nt hus (P hylla ntha c e a e ) 13 Phyll anthus lokohensi s 5 Phyll anthus fle xuosus 12 Phyll anthus nummula riifoli us 12 18 Phyll anthus fluita ns 17 Austrobryoni a pil ba rensi s Austrobryoni a mi cra ntha 66 Austrobryoni a mi cra ntha (2) 83 17 13 Austrobryonia (Cuc urbita c e a e ) Austrobryoni a a rgill icola Austrobryoni a centrali s Solanum chi lense 3 88 S ola num (Sola na c e a e ) Solanum pe nnell ii Salvia hirsuta 1 Sax ifraga s tellaris Sax ifraga integrifolia 55 Dry petes deplanchei 33 Dry petes lateriflora 29 Dry petes floribunda 18 Dry petes diversifolia 13 Dry petes s taudtii 3 Drypetes (Putranjivaceae) Dry petes fallax 6 Dry petes brownii 2 Dry petes gilgiana 2 13 5 0 Cas sia fistula Canna tuerckheimii Salvia (Lamiaceae) Salvia ly cioides Salvia officinalis 7 0 Salvia sy lvest ris Salvia pratens is 0 Salvia (Lamiaceae) Salvia verbenaca 92 12 0 Salvia texana Salvia sc larea Salv ia (Lamiaceae) 5 Salvia subincisa Salvia misella Salvia nilotica 0 Salvia tarax ac ifolia 26 0 53 Tri chosa nthe s schle chteri Tri chosa nthe s cucume rina T ric hosa nthe s (Cuc urbita c e a e ) 91 0 Tri chosa nthe s pe nta phyl la Tri chosa nthe s bra ctea ta Salvia nubic ola 0 97 1 Canna indic a Canna (Cannaceae) Canna glauca Mentha s uaveolens 7 Mentha longifolia 85 Salvia roemeriana 9 Salvia summa 3 Salvia pachyphy lla 1 Salvia spat hac ea 4 Salvia ly rat a 0 Salvia (Lamiaceae) Salvia pent stemonoides 3 Dry petes roxburghii 0 Salvia divinorum 7 Cas sia s enna 11 Cassia (out group from Salv ia) 41 Cas sia didy mobotry a Fig -3 Phylogenetic tree from 92 rbcL sequences belongs to 90 taxa of 12 genera and 10 families by the Neighbor-Joining method. Numbers above branches indicate percentage of 500 bootstrap replications. Horizontal bar indicates the nucleotide substitution scale International Journal of Bioinformatics Research, ISSN: 0975–3087, Volume 1, Issue 2, 2009 35 Molecular phylogeny of angiospermic plant families using RBCL gene sequences 7 0 Piper ni grum Piper w all ichii 0 Piper ka dsura 0 Piper la eti spi cum 0 Piper sa rmentosum P ipe r ( Pipe ra c e a e ) 0 Piper longum 0 Piper chinense 0 Piper ha ncei 0 Piper be tle 0 Piper austrosine nse 0 Salvia arisanensis 0 Salvia plebeia 0 Asparagus officinalis 0 Salvia hayatana 3 Salvia py gmaea 0 Piper hainanense 2 Salvia nipponic a 3 Salvia glabresc ens 11 Mentha rotundifolia 65 Salvia lut es cens Mentha longifolia 16 13 0 Austrobryonia micra ntha(2) Austrobryonia a rgilli cola 61 Austrobryonia micra ntha 86 Austrobrypnia ( Cuc urbit a c e a e ) Austrobryonia pilbarensis Austrobryonia centra lis Salvia hirsuta 2 87 6 Sol anum chil ense Sola num (S ola na c e a e ) Sol anum penne lli i Sax ifraga integrifolia 8 Dry petes floribunda 72 0 Dry petes diversifolia 12 Sax ifraga st ellaris 1 Cas sia fistula 1 Dry petes brownii 5 Dry petes lateriflora 7 0 Dry petes deplanc hei 3 Drypetes (Putranjivaceae) Dry petes st audtii 5 Dry petes gilgiana 7 7 Dry petes fallax Asparagus coc hinchinens is Canna tuerc kheimii Salvia officinalis 0 Salvia (Lamiaceae) 3 Salvia lyc ioides 5 Salvia vis cosa Salvia involucrata Salvia tiliifolia 0 Salvia (Lamiac eae) Cas sia grandis 1 Salvia polys tac hy a 8 21 Salvia palaestina 95 Salvia tex ana 10 Salvia sc larea 3 Salvia subincis a Salvia misella 0 Salv ia (Lamiac eae) Salvia verbenaca Salvia sy lvestris 1 6 Salvia pratensis Asparagus capensis 0 Salvia viridis 11 6 0 Phylla nthus flex uosus 4 Phylla nthus l okohensis 8 Phylla nthus pol yphyllus 8 P hylla nthus ( Phylla nt ha c e a e ) Phylla nthus cal yci nus 14 0 Phylla nthus nummul ari ifolius Phylla nthus flui tans 8 Phylla nthus j uglandi fol ius 37 Phylla nthus nutans 79 Phylla nthus flagel liformis 5 Dry petes lit toralis Salvia staminea Salvia (Lamiaceae) 89 Salvia ringens 20 Trichosa nthe s schlechteri 47 Trichosa nthe s cucumerina T ric hosa nthe s ( Cuc urbit a c e a e ) 90 0 Trichosa nthe s penta phyll a 9 Trichosa nthe s bra cte ata Salvia tarax acifolia 96 0 4 Canna indic a Canna (Cannaceae) Canna glauc a Salvia nubic ola Salvia nilotic a 0 Mentha s uaveolens 16 Salvia pents temonoides 88 Salvia summa 12 Salvia roemeriana 3 Salvia spathac ea 1 Salvia pachyphylla 6 Salvia lyrata 0 Mentha longifolia (2) 5 Dry petes roxburghii 2 Salvia divinorum 7 Cas sia s enna 12 Cassia (Caesalpinioide) 40 Cas sia didy mobotry a Fig -4 Phylogenetic tree from 92 rbcL sequences belongs to 90 taxa of 12 genera and 10 families using Minimum Evolution method. Numbers above branches indicate percentage of 500 bootstrap replications. 36 Bioinfo Publications, International Journal of Bioinformatics Research, ISSN: 0975–3087, Volume 1, Issue 2, 2009
© Copyright 2026 Paperzz