SuperKEKB Mini Workshop November 28, 2003 Machine parameters of SuperKEKB Y. Ohnishi / KEK 1 Luminosity • Luminosity formula: L Ne Ne f RL * * 4 x y N : number of particles/bunch f : collision frequency • Alternative luminosity formula: *y Ie ye RL L 1 * * 2ere x y R • Beam-beam • y parameter: e e x,y * N e x,y re R x,y * * * 2 e Transparency condition: x,y x y e e * * y,e ye ye y,e y*/x* = 1%-6% RL/Ry = ~0.8 w/o dynamical effect due to beam-beam e Ie e Ie Assumed that no beam size blowup due to electron cloud. 2 Luminosity reductions • Luminosity reduction RL a e K 0 b b y* a z 2 a2 b 1 *z tan x 2 2 x • Beam-beam reduction R y y y K0 : Bessel function x : crossing angle (in the boosted frame) dzz 1 S y* f y ztan x 2, *x S, *y S 2 Montague's factor S z* z 2 longitudinal beam distribution x/y=18/0.18 nm x/y=30/1.8 nm 3 List of machine parameters Luminosity 1035 is optimized by y*=3 mm, y=0.05, I=9.4/4.1 A. Parameters HER / LER Beam energy E 3.5 / 8.0 Beam current I 9.4 / 4.1 11 A 10 Particles/bunch N Number of bunches nb 5018 Circumference C 3016.26 Bunch spacing sb 0.6 m Horizontal at I.P x 0.2 m Vertical at I.P y 0.003 m bunch length z 0.003 m Momentum compaction p Radiation loss U0 Crab cavities 1.18x10 GeV 2.7x10 -4 / 5.13x10 m / 1.7x10 -4 1.23 / 3.48 MeV/turn No Yes Horizontal emittance x 30 18 nm Vertical emittance y 1.8 0.18 nm Coupling parameter 6 1 % Crossing angle x 30 0 mrad Luminosity reduction RL 0.76 0.86 x reduction Rx 0.74 0.99 y reduction Ry 0.94 1.11 Horizontal beam-beam parameter x 0.079 0.182 Vertical beam-beam parameter y 0.051 0.251 Luminosity L 1x10 35 4.7x10 35 -2 -1 cm s 4 Beam-beam parameters • Luminosity is given by overlap integral: fc 2 2 d 3 x d t x,t x,t c 2 v v v v c d 3 x x,t N f c c sb L ˆ ˆ I y 34 9.4(A) y * 7.6 10 L 2ere y* (cm) y (cm-2s-1) (Ohmi, beam-beam simulations) *y R L ˆ y 1 * y x R y ~1 ~0.8 ˆ includes beam size ratio and ratio of reduction factors. y 5 Coherent synchrotron radiation • SR is emitted independently when wave length is shorter than bunch length. – Intensity ∝ N (E ∝ N1/2;statistical) • SR of longer wave length is emitted coherently. (E ∝ N;same phase) – Intensity ∝ N2 ← Coherent Synchrotron Radiation (CSR) • CSR spectrum region is enlarged as bunch length decreases. Refs. : Yokoya, Oho2003, Juhao Wu, G. Stupakov, et al., SLAC-PUB-9629, G. Stupakov and S. Heifets, PR-ST vol.5 054402 6 Coherent synchrotron radiation (cont'd) Emitted energy per unit orbit length : B A ~c L= dE z 2Nre mc 2 13 23 ds 3 B' z dz z z z 13 z 2 1 ez 2 z 2 z2 Energy gain is expressed by : A' dE z Nre mc 2 z 2 3 4 3 F ds z z 2 F x 1 3 3 x dx x e x 2 2 2 x x 13 • Head of bunch is accelerated, tail of bunch is decelerated. F(z/ ) z z Head of bunch Tail of bunch +z 7 Coherent synchrotron radiation (cont'd) • Wakefield catch up bunch ? B A L3 BA'(arc) BA'(straight ) 2 sin 2 24 2 L= ~c B' L3 z 100 m 16.3 m L = 0.89 m in LER 2 24 A' • Shielding effect L Short range in a bunch ! ACB AB 2 half of chamber height : h C A 3 mm B shielding cut-off wave length : c ~ 4 mm (r=23/2/1/2) in LER L 2 2 h 2 L 2h 2 L z From z L3 24 2 h 31 6 z2 13 c r h 3 If chamber height >> h, reflected light reaches after bunch passes through. SR at longer wave length is shielded. Coefficient r has less accuracy. 8 CSR in wiggler • Dispersion relation: Z(k) 1 i 2 k p2 2 pe dp p 2 Z(k) 2 1 e Erfc i i 2 2 k 2 Particles : Gaussian distribution E E0 p 0 : energy spread 0 E0 n r 1 = 0 e2 p 0 ck 0 On ReZ and ImZ plane +i0 n0 : number of particles/unit length • Impedance of wiggler (low frequency) Z k k 2 Lw k 2 k k w 1 i log C k 0 k0 2 2 k w k0 1 K 2 2 K 93.4Bw w kw 2 w Bw : peak magnetic field of the wiggler (0.773 T) w : period in meter (1.6 m) 9 CSR in wiggler (cont'd) • Threshold wave length vs bunch current Lw = 120 m (half of KEKB LER) z = 6 mm z = 5 mm z = 4 mm z = 3 mm 10 Integrated luminosity Hazumi 5x1035 major upgrade more RF more RF crab cavities 11
© Copyright 2026 Paperzz