MIT OpenCourseWare http://ocw.mit.edu 6.013/ESD.013J Electromagnetics and Applications, Fall 2005 Please use the following citation format: Markus Zahn, 6.013/ESD.013J Electromagnetics and Applications, Fall 2005. (Massachusetts Institute of Technology: MIT OpenCourseWare). http://ocw.mit.edu (accessed MM DD, YYYY). License: Creative Commons Attribution-Noncommercial-Share Alike. Note: Please use the actual date you accessed this material in your citation. For more information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms 6.013 - Electromagnetics and Applications Fall 2005 Lecture 15 - Dielectric Waveguides Prof. Markus Zahn November 3, 2005 I. TM Solutions We are considering solutions with ∂ =0 ∂y ⎧ � � −α(x−d) ej(ωt−kz z) ⎪ x ≥ d ⎨ Re � A2 e � j(ωt−k z) z Ez (x, z, t) = Re (A1 sin(kx x) + B1 cos(kx x)) e |x| ≤ d ⎪ ⎩ � +α(x+d) j(ωt−kz z) � x ≤ −d Re A3 e e kx2 + kz2 = ω 2 �µ (in dielectric) −α2 + kz2 = ω 2 �0 µ0 (in free space) For propagation in the dielectric and evanescence in free space kz2 = ω 2 �µ − kx2 = ω 2 �0 µ0 + α2 kz2 < ω 2 �µ, kz2 > ω 2 �0 µ0 ⇒ ω 2 �0 µ0 < kz2 < ω 2 �µ 1 A. Odd Solutions [Ez (x, z, t) = −Ez (−x, z, t)] ⎧ −α(x−d) ⎪ ⎨A2 e Êz (x) = A1 sin(kx x) ⎪ ⎩ −A2 eα(x+d) x≥d |x| ≤ d x ≤ −d ¯ ⇒ ∂Êx − jkz Êz = 0 �·E ∂x ⎧ jk −α(x−d) x > d z ⎪ ⎨− α A2 e z ⇒ Êx = − jk kx A1 cos(kx x) |x| < d ⎪ ⎩ jkz − α A2 eα(x+d) x < −d ¯ ¯ = −µ ∂ H ⇒ Ĥx = 0, Ĥz = 0 �×E ∂t � � 1 ∂Êz Ĥy = − −jkz Êx − jωµ ∂x ⎧ jω� −α(x−d) x ≥ d 0 ⎪ ⎨− α A2 e = − jω� kx A1 cos(kx x) |x| ≤ d ⎪ ⎩ jω� − α 0 A2 eα(x+d) x ≤ −d Boundary Conditions Ez (x = d+ ) = Ez (x = d− ) ⇒ A1 sin(kx d) = A2 �0 � jω� jω� Hy (x = d+ ) = Hy (x = d− ) ⇒ + � A2 = +� A1 cos(kx d) kx α A1 1 kx �0 �0 kx ⇒α= = = tan(kx d) A2 sin(kx d) α� cos(kx d) � Critical condition for a guided wave occurs when α = 0. At this point kx d = nπ, kz2 = ω 2 �0 µ0 � nπ �2 d + ω 2 �0 µ0 = ω 2 �µ ⇒ ω 2 = (nπ/d)2 , n = 1, 2, 3, . . . �µ − �0 µ0 For real frequencies (ω 2 > 0), �µ > �0 µ0 B. Even Solutions [Ez (x, z, t) = +Ez (−x, z, t)] ⎧ −α(x−d) ⎪ ⎨B2 e Êz (x) = B1 cos(kx x) ⎪ ⎩ α(x+d) B2 e x≥d |x| ≤ d x ≤ −d ∂Êx − jkz Êz = 0 ∂x ⎧ jk −α(x−d) x > d z ⎪ ⎨ − α B2 e ˆx = jkz B1 sin(kx x) ⇒ E |x| < d k ⎪ ⎩ jkxz α(x+d) x < −d α B2 e 2 ⎧ jω� −α(x−d) 0 ⎪ ⎨− α B2 e jω� Ĥy = kx B1 sin(kx x) ⎪ ⎩ jω�0 α(x+d) α B2 e x≥d | x| ≤ d x ≤ −d Boundary Conditions Ez (x = d+ ) = Ez (x = d− ) ⇒ B2 = B1 cos(kx d) jω�0 jω� Hy (x = d+ ) = Hy (x = d− ) ⇒ − B2 = B1 sin(kx d) α kx B2 �α �0 kx = cos(kx d) = − sin(kx d) ⇒ α = − cot(kx d) B1 �0 kx � π Critical Condition: α = 0 ⇒ kx d = (2n + 1) , kz2 = ω 2 �0 µ0 2 � �2 2 ω = (2n+1)π 2d n = 0, 1, 2, . . . �µ − �0 µ0 II. TE Solutions A. Odd Solutions ⎧ −α(x−d) ⎪ ⎨A2 e Ĥz = A1 sin(kx x) ⎪ ⎩ −A2 eα(x−d) x≥d |x| ≤ d x ≤ −d ¯ = ∂Hx + ∂Hz ⇒ ∂Ĥx − jkz Ĥz = 0 � · H ∂x ∂z ∂x ⎧ jk −α(x−d) z ⎪ ⎨− α A2 e z Ĥx = − jk k A1 cos(kx x) ⎪ ⎩ jkxz − α A2 eα(x+d) ¯ ¯ = � ∂E ⇒ Êx = 0, Êz = 0 � × H ∂t ∂Ĥz jω�Êy = −jkz Ĥx − ∂x ⎧ jωµ −α(x−d) 0 ⎪ ⎨ α A2 e Êy = jωµ kx A1 cos(kx x) ⎪ ⎩ jωµ α(x+d) 0 α A2 e x>d |x| < d x < −d x≥d |x| ≤ d x ≤ −d Boundary Conditions � 0 � jωµ jωµ Êy (x = d+ ) = Êy (x = d− ) ⇒ � A2 = � A1 cos(kx d) kx α Ĥz (x = d+ ) = Ĥz (x = d− ) ⇒ A2 = A1 sin(kx d) A2 µα µ0 kx = sin(kx d) = cos(kx d) ⇒ α = tan(kx d) A1 µ0 kx µ 3 B. Even Solutions ⎧ −α(x−d) ⎪ x≥d ⎨B2 e Ĥz = B1 cos(kx x) |x| ≤ d ⎪ ⎩ B2 eα(x+d) x ≤ −d ⎧ jk −α(x−d) x > d z ⎪ ⎨− α B2 e jkz Ĥx = kx B1 sin(kx x) |x| < d ⎪ ⎩ jkz α(x+d) x < −d α B2 e ⎧ jωµ −α(x−d) 0 ⎪ x≥d ⎨ α B2 e jωµ Êy = − kx B1 sin(kx x) |x| ≤ d ⎪ ⎩ jωµ0 − α B2 eα(x+d) x ≤ −d � 0 � jωµ jωµ Êy (x = d+ ) = Êy (x = d− ) ⇒ � B2 = −� B1 sin(kx d) kx α Ĥz (x = d+ ) = Ĥz (x = d− ) ⇒ B2 = B1 cos(kx d) B2 αµ µ0 kx = cos(kx d) = − sin(kx d) ⇒ α = − cot(kx d) B1 µ0 kx µ 4
© Copyright 2026 Paperzz