DAY 3 HW ANS - White Plains Public Schools

Lesson 31
NYS COMMON CORE MATHEMATICS CURRICULUM
M2
GEOMETRY
Exit Ticket Sample Solutions
1.
Given two sides of the triangle shown, having lengths of ๐Ÿ‘ and ๐Ÿ•, and their included angle of ๐Ÿ’๐Ÿ—°, find the area of
the triangle to the nearest tenth.
๐Ÿ
(๐Ÿ‘)(๐Ÿ•)(๐ฌ๐ข๐ง ๐Ÿ’๐Ÿ—)
๐Ÿ
๐‘จ๐’“๐’†๐’‚ = ๐Ÿ๐ŸŽ. ๐Ÿ“(๐ฌ๐ข๐ง ๐Ÿ’๐Ÿ—) โ‰ˆ ๐Ÿ•. ๐Ÿ—
๐‘จ๐’“๐’†๐’‚ =
The area of the triangle is approximately ๐Ÿ•. ๐Ÿ— square units.
1.
In isosceles triangle ๐‘ท๐‘ธ๐‘น, the base ๐‘ธ๐‘น = ๐Ÿ๐Ÿ, and the base angles have measures of ๐Ÿ•๐Ÿ. ๐Ÿ’๐Ÿ“°. Find the area of โ–ณ
๐‘ท๐‘ธ๐‘น to the nearest tenth.
Drawing an altitude from ๐‘ท to midpoint ๐‘ด on ฬ…ฬ…ฬ…ฬ…
๐‘ธ๐‘น cuts
the isosceles triangle into two right triangles with ๐‘ธ๐‘ด =
๐‘ด๐‘น = ๐Ÿ“. ๐Ÿ“. Using tangent solve the following:
๐ญ๐š๐ง ๐Ÿ•๐Ÿ. ๐Ÿ’๐Ÿ“ =
๐‘ท๐‘ด
๐Ÿ“. ๐Ÿ“
๐‘ท๐‘ด = ๐Ÿ“. ๐Ÿ“(๐ญ๐š๐ง ๐Ÿ•๐Ÿ. ๐Ÿ’๐Ÿ“)
๐Ÿ
๐’ƒ๐’‰
๐Ÿ
๐Ÿ
๐‘จ๐’“๐’†๐’‚ = (๐Ÿ๐Ÿ)(๐Ÿ“. ๐Ÿ“(๐ญ๐š๐ง ๐Ÿ•๐Ÿ. ๐Ÿ’๐Ÿ“))
๐Ÿ
๐‘จ๐’“๐’†๐’‚ =
๐‘จ๐’“๐’†๐’‚ = ๐Ÿ‘๐ŸŽ. ๐Ÿ๐Ÿ“(๐ญ๐š๐ง ๐Ÿ•๐Ÿ. ๐Ÿ’๐Ÿ“) โ‰ˆ ๐Ÿ—๐ŸŽ. ๐Ÿ
The area of the isosceles triangle is approximately ๐Ÿ—๐ŸŽ. ๐Ÿ square units.
Problem Set Sample Solutions
Find the area of each triangle. Round each answer to the nearest tenth.
1.
๐Ÿ
(๐Ÿ๐Ÿ)(๐Ÿ—) (๐ฌ๐ข๐ง ๐Ÿ๐Ÿ)
๐Ÿ
๐‘จ๐’“๐’†๐’‚ = ๐Ÿ“๐Ÿ’(๐ฌ๐ข๐ง ๐Ÿ๐Ÿ) โ‰ˆ ๐Ÿ๐Ÿ—. ๐Ÿ’
๐‘จ๐’“๐’†๐’‚ =
The area of the triangle is approximately ๐Ÿ๐Ÿ—. ๐Ÿ’ square
units.
2.
๐Ÿ
(๐Ÿ)(๐Ÿ๐Ÿ)(๐ฌ๐ข๐ง ๐Ÿ‘๐Ÿ’)
๐Ÿ
๐‘จ๐’“๐’†๐’‚ = ๐Ÿ๐Ÿ(๐ฌ๐ข๐ง ๐Ÿ‘๐Ÿ’) โ‰ˆ ๐Ÿ”. ๐Ÿ
๐‘จ๐’“๐’†๐’‚ =
The area of the triangle is approximately ๐Ÿ”. ๐Ÿ square units.
Lesson 31:
Date:
Using Trigonometry to Determine Area
7/31/17
© 2014 Common Core, Inc. Some rights reserved. commoncore.org
462
This work is licensed under a
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.
Lesson 31
NYS COMMON CORE MATHEMATICS CURRICULUM
M2
GEOMETRY
3.
๐Ÿ
๐Ÿ
(๐Ÿ–) (๐Ÿ” ) (๐ฌ๐ข๐ง ๐Ÿ“๐Ÿ“)
๐Ÿ
๐Ÿ
๐‘จ๐’“๐’†๐’‚ = ๐Ÿ๐Ÿ”(๐ฌ๐ข๐ง ๐Ÿ“๐Ÿ“) โ‰ˆ ๐Ÿ๐Ÿ. ๐Ÿ‘
๐‘จ๐’“๐’†๐’‚ =
The area of the triangle is approximately ๐Ÿ๐Ÿ. ๐Ÿ‘ square
units.
4.
The included angle is ๐Ÿ”๐ŸŽ° by the angle sum of a triangle.
๐Ÿ
(๐Ÿ๐Ÿ)(๐Ÿ” + ๐Ÿ”โˆš๐Ÿ‘) ๐ฌ๐ข๐ง ๐Ÿ”๐ŸŽ
๐Ÿ
โˆš๐Ÿ‘
๐‘จ๐’“๐’†๐’‚ = ๐Ÿ”(๐Ÿ” + ๐Ÿ”โˆš๐Ÿ‘) ( )
๐Ÿ
๐‘จ๐’“๐’†๐’‚ =
โˆš๐Ÿ‘
๐‘จ๐’“๐’†๐’‚ = (๐Ÿ‘๐Ÿ” + ๐Ÿ‘๐Ÿ”โˆš๐Ÿ‘) ( )
๐Ÿ
๐‘จ๐’“๐’†๐’‚ = ๐Ÿ๐Ÿ–โˆš๐Ÿ‘ + ๐Ÿ๐Ÿ–(๐Ÿ‘)
๐‘จ๐’“๐’†๐’‚ = ๐Ÿ๐Ÿ–โˆš๐Ÿ‘ + ๐Ÿ“๐Ÿ’ โ‰ˆ ๐Ÿ–๐Ÿ“. ๐Ÿ
The area of the triangle is approximately ๐Ÿ–๐Ÿ“. ๐Ÿ square units.
5.
In โ–ณ ๐‘ซ๐‘ฌ๐‘ญ, ๐‘ฌ๐‘ญ = ๐Ÿ๐Ÿ“, ๐‘ซ๐‘ญ = ๐Ÿ๐ŸŽ, ๐š๐ง๐ โˆ ๐‘ญ = ๐Ÿ”๐Ÿ‘. Determine the area of the triangle. Round to the nearest tenth.
๐Ÿ
๐Ÿ
๐‘จ๐’“๐’†๐’‚ = (๐Ÿ๐ŸŽ)(๐Ÿ๐Ÿ“)๐ฌ๐ข๐ง(๐Ÿ”๐Ÿ‘) โ‰ˆ ๐Ÿ๐Ÿ‘๐Ÿ‘. ๐Ÿ• ๐ฎ๐ง๐ข๐ญ๐ฌ ๐Ÿ
Lesson 31:
Date:
Using Trigonometry to Determine Area
7/31/17
© 2014 Common Core, Inc. Some rights reserved. commoncore.org
463
This work is licensed under a
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.
Lesson 31
NYS COMMON CORE MATHEMATICS CURRICULUM
M2
GEOMETRY
6.
A landscape designer is designing a flower garden for a triangular area that is bounded on two sides by the clientโ€™s
house and driveway. The length of the edges of the garden along the house and driveway are ๐Ÿ๐Ÿ– ๐Ÿ๐ญ. and ๐Ÿ– ๐Ÿ๐ญ.
respectively, and the edges come together at an angle of ๐Ÿ–๐ŸŽ°. Draw a diagram, and then find the area of the garden
to the nearest square foot.
The garden is in the shape of a triangle in which the lengths of two sides and the included angle have been provided.
๐‘จ๐’“๐’†๐’‚(๐‘จ๐‘ฉ๐‘ช) =
๐Ÿ
(๐Ÿ– ๐Ÿ๐ญ. )(๐Ÿ๐Ÿ– ๐Ÿ๐ญ. ) ๐ฌ๐ข๐ง ๐Ÿ–๐ŸŽ
๐Ÿ
๐‘จ๐’“๐’†๐’‚(๐‘จ๐‘ฉ๐‘ช) = (๐Ÿ•๐Ÿ ๐ฌ๐ข๐ง ๐Ÿ–๐ŸŽ) ๐Ÿ๐ญ.๐Ÿ
๐‘จ๐’“๐’†๐’‚(๐‘จ๐‘ฉ๐‘ช) โ‰ˆ ๐Ÿ•๐Ÿ ๐Ÿ๐ญ.๐Ÿ
7.
A right rectangular pyramid has a square base with sides of length ๐Ÿ“. Each lateral face of the pyramid is an isosceles
triangle. The angle on each lateral face between the base of the triangle and the adjacent edge is ๐Ÿ•๐Ÿ“°. Find the
surface area of the pyramid to the nearest tenth.
Using tangent, the altitude of the triangle to the base of length ๐Ÿ“ is equal to ๐Ÿ. ๐Ÿ“ ๐ญ๐š๐ง ๐Ÿ•๐Ÿ“.
๐Ÿ
๐’ƒ๐’‰
๐Ÿ
๐Ÿ
๐‘จ๐’“๐’†๐’‚ = (๐Ÿ“)(๐Ÿ. ๐Ÿ“ ๐ฌ๐ข๐ง ๐Ÿ•๐Ÿ“)
๐Ÿ
๐‘จ๐’“๐’†๐’‚ =
๐‘จ๐’“๐’†๐’‚ = ๐Ÿ”. ๐Ÿ๐Ÿ“(๐ฌ๐ข๐ง ๐Ÿ•๐Ÿ“)
The total surface area of the pyramid is the sum of the four lateral faces and the area of the
square base:
๐‘บ๐‘จ = ๐Ÿ’(๐Ÿ”. ๐Ÿ๐Ÿ“(๐ฌ๐ข๐ง ๐Ÿ•๐Ÿ“)) + ๐Ÿ“๐Ÿ
๐‘บ๐‘จ = ๐Ÿ๐Ÿ“ ๐ฌ๐ข๐ง ๐Ÿ•๐Ÿ“ + ๐Ÿ๐Ÿ“
๐‘บ๐‘จ โ‰ˆ ๐Ÿ’๐Ÿ—. ๐Ÿ
The surface area of the right rectangular pyramid is approximately ๐Ÿ’๐Ÿ—. ๐Ÿ square units.
Lesson 31:
Date:
Using Trigonometry to Determine Area
7/31/17
© 2014 Common Core, Inc. Some rights reserved. commoncore.org
464
This work is licensed under a
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.
Lesson 31
NYS COMMON CORE MATHEMATICS CURRICULUM
M2
GEOMETRY
8.
The Pentagon Building in Washington D.C. is built in the shape of a regular pentagon. Each side of the pentagon
measures ๐Ÿ—๐Ÿ๐Ÿ ๐Ÿ๐ญ. in length. The building has a pentagonal courtyard with the same center. Each wall of the center
courtyard has a length of ๐Ÿ‘๐Ÿ“๐Ÿ” ๐Ÿ๐ญ. What is the approximate area of the roof of the Pentagon Building?
Let ๐‘จ๐Ÿ represent the area within the outer perimeter of the
Pentagon Building in square feet.
๐‘จ๐Ÿ =
๐’๐’ƒ๐Ÿ
๐Ÿ๐Ÿ–๐ŸŽ
๐Ÿ’ ๐ญ๐š๐ง (
)
๐’
๐Ÿ“ โ‹… (๐Ÿ—๐Ÿ๐Ÿ)๐Ÿ
๐Ÿ๐Ÿ–๐ŸŽ
๐Ÿ’ ๐ญ๐š๐ง (
)
๐Ÿ“
๐Ÿ’, ๐Ÿ๐Ÿ’๐Ÿ, ๐Ÿ๐ŸŽ๐Ÿ“
๐‘จ๐Ÿ =
โ‰ˆ ๐Ÿ, ๐Ÿ’๐Ÿ“๐Ÿ—, ๐Ÿ‘๐Ÿ•๐Ÿ—
๐Ÿ’ ๐ญ๐š๐ง(๐Ÿ‘๐Ÿ”)
๐‘จ๐Ÿ =
The area within the outer perimeter of the Pentagon Building is
approximately ๐Ÿ, ๐Ÿ’๐Ÿ“๐Ÿ—, ๐Ÿ‘๐Ÿ•๐Ÿ— ๐Ÿ๐ญ ๐Ÿ.
Let ๐‘จ๐Ÿ represent the area within the perimeter of the
courtyard of the Pentagon Building in square feet.
๐‘จ๐Ÿ =
Let ๐‘จ๐‘ป represent the total area of the roof of the
Pentagon Building in square feet.
๐’๐’ƒ๐Ÿ
๐Ÿ’ ๐ญ๐š๐ง ๐Ÿ‘๐Ÿ”
๐‘จ๐‘ป = ๐‘จ๐Ÿ โˆ’ ๐‘จ๐Ÿ
๐‘จ๐‘ป =
๐Ÿ“(๐Ÿ‘๐Ÿ“๐Ÿ”)๐Ÿ
๐‘จ๐Ÿ =
๐Ÿ’ ๐ญ๐š๐ง ๐Ÿ‘๐Ÿ”
๐Ÿ”๐Ÿ‘๐Ÿ‘๐Ÿ”๐Ÿ–๐ŸŽ
๐‘จ๐Ÿ =
๐Ÿ’ ๐ญ๐š๐ง ๐Ÿ‘๐Ÿ”
๐Ÿ๐Ÿ“๐Ÿ–๐Ÿ’๐Ÿ๐ŸŽ
๐‘จ๐Ÿ =
โ‰ˆ ๐Ÿ๐Ÿ๐Ÿ–, ๐ŸŽ๐Ÿ’๐Ÿ”
๐ญ๐š๐ง ๐Ÿ‘๐Ÿ”
๐Ÿ’๐Ÿ๐Ÿ’๐Ÿ๐Ÿ๐ŸŽ๐Ÿ“ ๐Ÿ๐Ÿ“๐Ÿ–๐Ÿ’๐Ÿ๐ŸŽ
โˆ’
๐Ÿ’ ๐ญ๐š๐ง(๐Ÿ‘๐Ÿ”)
๐ญ๐š๐ง ๐Ÿ‘๐Ÿ”
๐Ÿ’๐Ÿ๐Ÿ’๐Ÿ๐Ÿ๐ŸŽ๐Ÿ“ ๐Ÿ”๐Ÿ‘๐Ÿ‘๐Ÿ”๐Ÿ–๐ŸŽ
โˆ’
๐Ÿ’ ๐ญ๐š๐ง ๐Ÿ‘๐Ÿ” ๐Ÿ’ ๐ญ๐š๐ง ๐Ÿ‘๐Ÿ”
๐Ÿ‘๐Ÿ”๐ŸŽ๐Ÿ•๐Ÿ“๐Ÿ๐Ÿ“
๐‘จ๐‘ป =
โ‰ˆ ๐Ÿ, ๐Ÿ๐Ÿ’๐Ÿ, ๐Ÿ‘๐Ÿ‘๐Ÿ‘
๐Ÿ’ ๐ญ๐š๐ง ๐Ÿ‘๐Ÿ”
๐‘จ๐‘ป =
The area of the roof of the Pentagon Building is approximately ๐Ÿ, ๐Ÿ๐Ÿ’๐Ÿ, ๐Ÿ‘๐Ÿ‘๐Ÿ‘ ๐Ÿ๐ญ ๐Ÿ.
9.
A regular hexagon is inscribed in a circle with a radius of ๐Ÿ•. Find the perimeter and area of the hexagon.
The regular hexagon can be divided into six equilateral triangular regions, with
each side of the triangles having a length of ๐Ÿ•. To find the perimeter of the
hexagon, solve the following:
๐Ÿ” โ‹… ๐Ÿ• = ๐Ÿ’๐Ÿ , so the perimeter of the hexagon is ๐Ÿ’๐Ÿ units.
To find the area of one equilateral triangle:
๐Ÿ
๐‘จ๐’“๐’†๐’‚ = (๐Ÿ•)(๐Ÿ•) ๐ฌ๐ข๐ง ๐Ÿ”๐ŸŽ
๐Ÿ
๐‘จ๐’“๐’†๐’‚ =
๐Ÿ’๐Ÿ— โˆš๐Ÿ‘
( )
๐Ÿ ๐Ÿ
๐‘จ๐’“๐’†๐’‚ =
๐Ÿ’๐Ÿ—โˆš๐Ÿ‘
๐Ÿ’
The area of the hexagon is six times the area of the equilateral triangle.
๐Ÿ’๐Ÿ—โˆš๐Ÿ‘
๐‘ป๐’๐’•๐’‚๐’ ๐’‚๐’“๐’†๐’‚ = ๐Ÿ” (
)
๐Ÿ’
๐‘ป๐’๐’•๐’‚๐’ ๐‘จ๐’“๐’†๐’‚ =
๐Ÿ๐Ÿ’๐Ÿ•โˆš๐Ÿ‘
โ‰ˆ ๐Ÿ๐Ÿ๐Ÿ•. ๐Ÿ‘
๐Ÿ
The total area of the regular hexagon is approximately ๐Ÿ๐Ÿ๐Ÿ•. ๐Ÿ‘ square units.
Lesson 31:
Date:
Using Trigonometry to Determine Area
7/31/17
© 2014 Common Core, Inc. Some rights reserved. commoncore.org
465
This work is licensed under a
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.
Lesson 31
NYS COMMON CORE MATHEMATICS CURRICULUM
M2
GEOMETRY
๐Ÿ
๐Ÿ
10. In the figure below, โˆ ๐‘จ๐‘ฌ๐‘ฉ is acute. Show that ๐‘จ๐’“๐’†๐’‚ (โ–ณ ๐‘จ๐‘ฉ๐‘ช) = ๐‘จ๐‘ช โ‹… ๐‘ฉ๐‘ฌ โ‹… ๐ฌ๐ข๐ง โˆ ๐‘จ๐‘ฌ๐‘ฉ.
Let ๐œฝ represent the degree measure of angle ๐‘จ๐‘ฌ๐‘ฉ, and let ๐’‰ represent the
altitude of โ–ณ ๐‘จ๐‘ฉ๐‘ช (and โ–ณ ๐‘จ๐‘ฉ๐‘ฌ).
๐‘จ๐’“๐’†๐’‚(โ–ณ ๐‘จ๐‘ฉ๐‘ช) =
๐ฌ๐ข๐ง ๐œฝ =
๐Ÿ
โ‹… ๐‘จ๐‘ช โ‹… ๐’‰
๐Ÿ
๐’‰
, which implies that ๐’‰ = ๐‘ฉ๐‘ฌ โ‹… ๐ฌ๐ข๐ง ๐œฝ.
๐‘ฉ๐‘ฌ
Therefore, by substitution:
๐Ÿ
๐Ÿ
๐‘จ๐’“๐’†๐’‚(โ–ณ ๐‘จ๐‘ฉ๐‘ช) = ๐‘จ๐‘ช โ‹… ๐‘ฉ๐‘ฌ โ‹… ๐ฌ๐ข๐ง โˆ ๐‘จ๐‘ฌ๐‘ฉ.
ฬ…ฬ…ฬ…ฬ… and ๐‘ฉ๐‘ซ
ฬ…ฬ…ฬ…ฬ…ฬ…. Show that
11. Let ๐‘จ๐‘ฉ๐‘ช๐‘ซ be a quadrilateral. Let ๐’˜ be the measure of the acute angle formed by diagonals ๐‘จ๐‘ช
๐Ÿ
๐Ÿ
๐‘จ๐’“๐’†๐’‚(๐‘จ๐‘ฉ๐‘ช๐‘ซ) = ๐‘จ๐‘ช โ‹… ๐‘ฉ๐‘ซ โ‹… ๐ฌ๐ข๐ง ๐’˜.
(Hint: Apply the result from Problem 10 to โ–ณ ๐‘จ๐‘ฉ๐‘ช and โ–ณ ๐‘จ๐‘ช๐‘ซ.)
ฬ…ฬ…ฬ…ฬ… and ๐‘ฉ๐‘ซ
ฬ…ฬ…ฬ…ฬ…ฬ… be called point ๐‘ท.
Let the intersection of ๐‘จ๐‘ช
Using the results from Problem 10, solve the following:
๐Ÿ
and
๐Ÿ
๐Ÿ
๐‘จ๐’“๐’†๐’‚(โ–ณ ๐‘จ๐‘ซ๐‘ช) = ๐‘จ๐‘ช โ‹… ๐‘ท๐‘ซ โ‹… ๐’”๐’Š๐’ ๐’˜
๐Ÿ
๐Ÿ
๐Ÿ
๐‘จ๐’“๐’†๐’‚(๐‘จ๐‘ฉ๐‘ช๐‘ซ) = [ ๐‘จ๐‘ช โ‹… ๐‘ฉ๐‘ท โ‹… ๐’”๐’Š๐’ ๐’˜] + [ ๐‘จ๐‘ช โ‹… ๐‘ท๐‘ซ โ‹… ๐’”๐’Š๐’ ๐’˜]
Area is additive;
๐Ÿ
๐Ÿ
๐Ÿ
๐‘จ๐’“๐’†๐’‚(๐‘จ๐‘ฉ๐‘ช๐‘ซ) = [ ๐‘จ๐‘ช โ‹… ๐’”๐’Š๐’ ๐’˜] โ‹… [๐‘ฉ๐‘ท + ๐‘ท๐‘ซ]
Distributive property;
๐Ÿ
๐Ÿ
๐‘จ๐’“๐’†๐’‚(๐‘จ๐‘ฉ๐‘ช๐‘ซ) = [ ๐‘จ๐‘ช โ‹… ๐’”๐’Š๐’ ๐’˜] โ‹… [๐‘ฉ๐‘ซ]
Distance is additive;
๐Ÿ
๐‘จ๐’“๐’†๐’‚(โ–ณ ๐‘จ๐‘ฉ๐‘ช) = ๐‘จ๐‘ช โ‹… ๐‘ฉ๐‘ท โ‹… ๐’”๐’Š๐’ ๐’˜
And commutative addition gives us ๐‘จ๐’“๐’†๐’‚(๐‘จ๐‘ฉ๐‘ช๐‘ซ) =
Lesson 31:
Date:
๐Ÿ
โ‹… ๐‘จ๐‘ช โ‹… ๐‘ฉ๐‘ซ โ‹… ๐ฌ๐ข๐ง ๐’˜.
๐Ÿ
Using Trigonometry to Determine Area
7/31/17
© 2014 Common Core, Inc. Some rights reserved. commoncore.org
466
This work is licensed under a
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.