Rowe, MCW A Complex way to Compute fMRI Activations Daniel B. Rowe, Ph.D. [email protected] (Joint with BR Logan, MCW Biostat) Department of Biophysics Graduate School of Biomedical Sciences 8701 Watertown Plank Rd. Milwaukee, WI 53226 Rowe, MCW Outline ☞ Introduction ☞ Images ☞ Complex/Magnitude Time Course Model ☞ Simulation Example ☞ Real fMRI Example ☞ Discussion Rowe, MCW Introduction In MRI/fMRI, (non)Fourier “image reconstruction” results in complex valued proton spin densities that make up our voxel time course observations. The complex part of the proton spin density is a result of phase imperfections due to magnetic field inhomogeneities. Nearly all fMRI studies obtain a statistical measure of functional “activation” based on magnitude image time courses. Rowe, MCW Introduction However, it is the real and imaginary parts of the original signal that are measured with normally distributed error, and not the magnitude. A more accurate model should use the correct distributional specification. A model is presented that uses the original complex form of the data and not the magnitude. The result is the correct distribution and twice as many quantities to estimate the model parameters which results in improved power for low SNR. Focus on a single axial slice. Rowe, MCW Complex Single Time Images (a) real image (b) imaginary image Rowe, MCW Magnitude/Phase Single Time Images (c) magnitude image (d) phase image Rowe, MCW Complex Time Course Images In fMRI we observe a series of complex images over time. Rowe, MCW Magnitude Time Course Images And not a series of real magnitude images. Phase not used. Rowe, MCW Complex Time Course Model In a voxel, the complex valued quantity measured over time is ρmt = (ρRt + ηRt) + i(ρIt + ηIt), t = 1, ..., n ρmt = complex voxel measurement at time t ρRt = true real part of voxel measurement at time t ηRt = noise real part voxel measurement at time t ρIt = imaginary part voxel measurement at time t ηIt = noise imaginary part voxel measurement at time t (ηRt, ηIt)0 ∼ N (0, Σ), Σ = σ 2I2. The distributional specification is on the real and imaginary parts of the image and not on the magnitude. Rowe, MCW Magnitude Time Course Model The typical method to compute activations is to use the magnitude h |ρmt| = (ρRt + nRt)2 + (ρIt + nIt)2 = yt i1 2 , t = 1, ..., n that is Rician distributed and approximately normal for a large signal to noise ratio (relatively small error variance). The phase which may contain information is not used. φt = tan−1 ρIt + nIt ρRt + nRt . Rowe, MCW Magnitude Time Course Model: Assumptions The magnitude, does not have a normal distribution. Ricean Distribution Rayleigh Distribution 0.6 0.6 0.5 0.5 0.4 p(y) t p(r /σ) 0.4 0.3 0.3 0.2 0.2 0.1 0.1 0 0 1 2 3 4 5 6 7 8 9 10 rt/σ p(yt) = (yt2+ρ2t ) − yt ρt ·yt 2σ 2 Io e σ2 σ2 11 0 0 1 2 3 4 5 6 7 8 y p(yt) = yt2 yt − 2σ 2 e σ2 9 10 11 12 13 14 15 Rowe, MCW Magnitude Time Course Model: Assumptions Data justification. Histogram of no signal, noise only outside voxels. 4 5 Outer brain histogram x 10 4.5 4 3.5 N(y) 3 2.5 2 1.5 1 0.5 0 0 0.25 0.5 0.75 1 y Outside histogram Magnitude Sequence Rowe, MCW Magnitude Time Course Model: Assumptions Data justification. Histogram of no signal, noise only outside voxels. 4 5 Outer brain histogram x 10 Rayleigh Distribution 4.5 0.6 4 0.5 3.5 3 p(y) N(y) 0.4 2.5 0.3 2 1.5 0.2 1 0.1 0.5 0 0 0.25 0.5 0.75 1 0 0 1 2 3 4 5 6 y Outside histogram 7 8 y Rayleigh PDF’s 9 10 11 12 13 14 15 Rowe, MCW Complex Time Course Model A complex phase model was introduced that includes a phase imperfection θ in which at time t, the measured proton spin density is given by ρmt = (ρt cos θ + ηRt) + i(ρt sin θ + ηIt) ρRt = ρt cos θ ρIt = ρt sin θ (ηRt, ηIt)0 ∼ N (0, Σ), Σ = σ 2I2. This model which includes a phase error is an accurate representation of the true physical process that generates the data. Rowe, MCW Complex Time Course Model: Assumptions Data justification. Phase and correlation of no signal noise only outside voxels. 3 2 1 0 −1 −2 −3 0 32 64 96 128 Constant Phase 160 192 224 256 R-I Uncorrelated Rowe, MCW Complex Time Course Model: Assumptions Data justification. Phase and correlation of no signal noise only outside voxels. 3 8 16 24 2 32 40 1 48 56 64 0 72 80 −1 88 96 104 −2 112 120 128 8 16 24 32 40 48 56 64 72 Constant Phase 80 88 96 104 112 120 128 −3 R-I Uncorrelated Rowe, MCW Complex Time Course Model: Assumptions Data justification. Histogram of no signal noise only outside voxels. Outside histogram Complex Sequence Rowe, MCW Magnitude Time Course Model The magnitude model from the complex phase model h i1 2 |ρmt| = (ρt cos θ + nRt)2 + (ρt sin θ + nIt)2 h i1 2 yt = ρ2t + (n2Rt + n2It) + 2ρt(nRt cos θ + nIt sin θ) " #1 (nRt cos θ + nIt sin θ) (n2Rt + n2It) 2 = ρt 1 + 2 + ρt ρ2t ≈ ρt + t, t = 1, ..., n t = nRt cos θ + nIt sin θ ∼ N (0, σ 2). √ 1 + u ≈ 1 + u/2, |u| 1. Rowe, MCW Time Course Model In fMRI, we take repeated measurements over time while a subject is performing a task. We know the timing of the task, tap fingers for 16 seconds, rest for 16 seconds, and repeat several times. 1 0.8 0.6 0.4 0.2 0 −0.2 −0.4 −0.6 −0.8 −1 0 16 32 48 64 80 96 112 128 144 160 176 192 208 224 240 256 In each voxel, compute a measure of association between observed time course and a preassigned reference function that characterizes the experimental paradigm (Bandettini et al., 1993; Cox et al., 1995). Rowe, MCW Magnitude Time Course Model Linear multiple regression model individually for each voxel ρt = x0tβ = β0 + β1x1t + · · · + βq xqt. yt = x0tβ + t, t = 1, ..., n Also written as y = X β + n×1 n × (q + 1) (q + 1) × 1 n×1 and ∼ N (0, σ 2Φ), Φ is the temporal correlation matrix usually Φ = In. Rowe, MCW y y1 .. y8 y9 .. y16 .. = .. y241 .. y248 y249 .. y256 en 1 .. 1 1 .. 1 .. .. 1 .. 1 1 .. 1 cn 1 .. 8 9 .. 16 .. .. 241 .. 248 249 .. 256 rn 1 .. 1 -1 .. -1 .. ∗ .. 1 .. 1 -1 .. -1 β β0 + β1 β2 1 .. 8 9 .. 16 .. .. 241 .. 248 249 .. 256 Rowe, MCW Magnitude Time Course Model The magnitude activation likelihood is given by p(y|β, σ 2, X) = 0(y−Xβ) (y−Xβ) n 2 −n − − 2σ 2 (2π) 2 (σ ) 2 e . We want to see if the observed time course has a component related to the reference function. H0 : Cβ = γ vs H1 : Cβ 6= γ i.e. Is the coefficient for the reference function zero. C = (0, ..., 0, 1), β 0 = (β0, β1, · · · , βq ), γ = 0 Rowe, MCW Magnitude Time Course Model By maximizing the likelihood under the unconstrained alternative β̂ = (X 0X)−1X 0y, 0 1 y − X β̂ σ̂ 2 = y − X β̂ . n By maximizing the likelihood under the constrained null hypotheses β̃ = Ψβ̂ + (X 0X)−1C 0[C(X 0X)−1C 0]−1γ, 0 1 y − X β̃ σ̃ 2 = y − X β̃ n Ψ = Iq+1 − (X 0X)−1C 0[C(X 0X)−1C 0]−1C . Rowe, MCW Magnitude Model By maximizing the likelihood under constrained null and unconstrained alternative hypotheses the GLR statistic is λ = p(y|β̃, σ̃ 2, X, H0) p(y|β̂, σ̂ 2, X, H1) − n 2 = σ̃ 2/σ̂ 2 0[C(X 0X)−1C 0]−1 (C β̂ − γ) 2 (C β̂ − γ) n−q−1 (λ− n − 1) = r rnσ̂ 2/(n − q − 1) This magnitude model uses n quantities to estimate the q + 2 parameters being the q + 1 regression coefficients, the 1 variance. Rowe, MCW Magnitude Model For example with q = 2, X = (en, cn, rn), H0 : β2 = 0 can be evaluated with C = (0, 0, 1), γ = 0, and any of the test statistics t = F = χ2 = β̂2 1 2 [W33nσ̂ /(n−2−1)] 2 β̂22 W33nσ̂ 2/(n−2−1) n log σ̃ 2/σ̂ 2 ∼ tn−2−1 ∼ F1,n−2−1 · ∼ Where W33 is (3, 3) element of W = (X 0X)−1. χ21 Rowe, MCW Complex Time Course Model The previous complex model ρmt = (ρt cos θ + ηRt) + i(ρt sin θ + ηIt) can be written as yRt yIt = ρt cos θ ρt sin θ + where again (ηRt, ηIt)0 ∼ N (0, Σ), Σ = σ 2I2. ηRt ηIt Rowe, MCW Complex Time Course Model A non-linear multiple regression model can be introduced in which ρt = x0tβ = β0 + β1x1t + · · · + βq xqt as in the magnitude model then written in terms of matrices as y 2n × 1 = X 0 β cos θ + η 0 X β sin θ 2n × 2(q + 1) 2(q + 1) × 1 2n × 1 0 , y 0 )0 and η = (η 0 , η 0 )0 ∼ N (0, Σ ⊗ Φ) where y = (yR I Rt It Σ = σ 2I2, Φ = In. Rowe, MCW yR yR1 .. yR8 yR9 .. yR16 vec .. .. yR241 .. yR248 yR249 .. yR256 yI en yI1 1 .. .. yI8 1 yI9 1 .. .. yI16 1 .. =I ⊗ .. 2 .. .. yI241 1 .. .. yI248 1 yI249 1 .. .. yI256 1 cn 1 .. 8 9 .. 16 .. .. 241 .. 248 249 .. 256 rn ηR ηI 1 ηR1 ηI1 .. .. .. 1 ηR8 ηI8 -1 ηR9 ηI9 .. .. .. β phase -1 ηR16 ηI16 β .. ∗ cos θ ⊗ 0 +vec .. .. β1 .. sin θ .. .. β2 1 ηR241 ηI241 .. .. .. 1 ηR248 ηI248 -1 ηR249 ηI249 .. .. .. -1 ηR256 ηI256 Rowe, MCW Complex Time Course Model The non-linear multiple regression model X 0 β cos θ y = + η 0 X β sin θ 2n × 1 2n × 2(q + 1) 2(q + 1) × 1 2n × 1 0 , y 0 )0, η = (η 0 , η 0 )0 ∼ N (0, Σ ⊗ Φ), Σ = σ 2I and Φ = I . y = (yR n 2 I Rt It The likelihood is h 2n 2 − 2n − 2 − p(y|β, θ, σ , X) = (2π) 2 (σ ) 2 e 2σ2 where 0 X 0 β cos θ X 0 β cos θ h = y− y− . 0 X β sin θ 0 X β sin θ Rowe, MCW Complex Time Course Model Just as in the magnitude model, we want to see if the observed time course has a component related to the reference function. H0 : Cβ = γ vs H1 : Cβ 6= γ i.e. Is the coefficient for the reference function zero. C = (0, ..., 0, 1), β 0 = (β0, β1, · · · , βq ), γ = 0 Rowe, MCW Complex Time Course Model By maximizing the likelihood under the unconstrained alternative " 0 (X 0X)β̂ 2 β̂ 1 I R θ̂ = tan−1 0 (X 0X)β̂ − β̂ 0 (X 0X)β̂ 2 β̂R R I I β̂ = β̂R cos θ̂ + β̂I sin θ̂, " 1 X 0 2 y− σ̂ = 0 X 2n β̂ cos θ̂ β̂ sin θ̂ !#0 " # y− β̂R = (X 0X)−1X 0yR, β̂I = (X 0X)−1X 0yI . X 0 0 X β̂ cos θ̂ β̂ sin θ̂ !# Rowe, MCW Complex Time Course Model By maximizing the likelihood under the constrained null hypotheses " # 0 Ψ(X 0X)β̂ 2 β̂ 1 I R θ̃ = tan−1 0 Ψ(X 0X)β̂ − β̂ 0 Ψ(X 0X)β̂ 2 β̂R R I I β̃ = Ψ[β̂R cos θ̃ + β̂I sin θ̃] + (X 0X)−1C 0[C(X 0X)−1C 0]−1γ, 0 1 X 0 β̃ cos θ̃ X 0 β̃ cos θ̃ 2 σ̃ = y− y− 0 X 0 X β̃ sin θ̃ β̃ sin θ̃ 2n Ψ = Iq+1 − (X 0X)−1C 0[C(X 0X)−1C 0]−1C . Rowe, MCW Complex Time Course Model The way this is formulated, we have to worry about phase angles. An alternative formulation is to let α1 = cos θ and α2 = sin θ y = X 0 0 X α1β α2β + η, α12 + α22 = 1 0 , y 0 )0, η = (η 0 , η 0 )0 ∼ N (0, Σ ⊗ Φ), Σ = σ 2I and Φ = I . y = (yR n 2 I Rt It With this formulation, it can be seen that this is a reduced rank regression model (Reinsel, 1998). Rowe, MCW Complex Time Course Model By maximizing the likelihood under the unconstrained alternative α̂1 = β̂ 0(X 0X)β̂R/[(β̂ 0(X 0X)β̂R)2 + (β̂ 0(X 0X)β̂I )2]1/2 α̂2 = β̂ 0(X 0X)β̂I /[(β̂ 0(X 0X)β̂R)2 + (β̂ 0(X 0X)β̂I )2]1/2 β̂ = α̂1β̂R + α̂2β̂I , " 1 X 0 2 y− σ̂ = 0 X 2n α̂1β̂ α̂2β̂ !#0 " y− β̂R = (X 0X)−1X 0yR, β̂I = (X 0X)−1X 0yI . X 0 0 X α̂1β̂ α̂2β̂ !# Rowe, MCW Complex Time Course Model By maximizing the likelihood under the constrained null hypotheses α̃1 = β̃ 0(X 0X)β̂R/[(β̃ 0(X 0X)β̂R)2 + (β̃ 0(X 0X)β̂I )2]1/2 α̃2 = β̃ 0(X 0X)β̂I /[(β̃ 0(X 0X)β̂R)2 + (β̃ 0(X 0X)β̂I )2]1/2 β̃ = Ψ(α̃1β̂R + α̃2β̂I ) + (X 0X)−1C 0[C(X 0X)−1C 0]−1γ, 0 1 X 0 α̃1β̃ X 0 α̃1β̃ 2 y − y − σ̃ = 0 X 0 X α̃2β̃ α̃2β̃ 2n Ψ = Iq+1 − (X 0X)−1C 0[C(X 0X)−1C 0]−1C . Rowe, MCW Complex Time Course Model GLR statistic is λ = p(y|β̃, σ̃ 2, X, H0) p(y|β̂, σ̂ 2, X, H1) −n = σ̃ 2/σ̂ 2 or −2 log λ = 2n log σ̃ 2/σ̂ 2 . This complex model uses all the 2n observations to estimate the q + 3 parameters being the q + 1 regression coefficients, the 1 variance, and the 1 phase error or trigonometric coefficient. Rowe, MCW Real fMRI Experiment Imaging Parameters: 1.5T GE Signa 5 axial slices of 128x128 96 acq.-2.0833mm2 128 recon.-1.5625mm2 FOV =20cm TR=1000ms TE=47ms FA=90◦ Task: Bilateral finger tapping Block design 16 off + 8×(16on+16off); Rowe, MCW Time Course Models Compare the two models for testing H0 : β2 = 0. (q = 2, X = (en, cn, rn), C = (0, 0, 1), γ = 0) · 2 ∼ χ1 · ∼ χ21 2 /σ̂ 2 χ2M = n log σ̃M M 2 /σ̂ 2 χ2C = 2n log σ̃C C Both χ21 distributed for large samples! Rowe, MCW Real fMRI-Magnitude H1 Estimated 8 8 8 16 16 16 24 24 24 32 32 32 40 40 40 48 48 48 56 56 56 64 64 64 72 72 72 80 80 80 88 88 88 96 96 96 104 104 104 112 112 112 120 120 120 128 128 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128 128 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128 8 8 8 16 16 16 24 24 24 32 32 32 40 40 40 48 48 48 56 56 56 64 64 64 72 72 72 80 80 80 88 88 88 96 96 96 104 104 104 112 112 112 120 120 120 128 128 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128 128 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128 Rowe, MCW Real fMRI-Magnitude H0 Estimated 8 8 8 16 16 16 24 24 24 32 32 32 40 40 40 48 48 48 56 56 56 64 64 64 72 72 72 80 80 80 88 88 88 96 96 96 104 104 104 112 112 112 120 120 120 128 128 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128 128 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128 8 8 8 16 16 16 24 24 24 32 32 32 40 40 40 48 48 48 56 56 56 64 64 64 72 72 72 80 80 80 88 88 88 96 96 96 104 104 104 112 112 112 120 120 120 128 128 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128 128 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128 Rowe, MCW Real fMRI-Complex H1 Estimated 8 8 8 16 16 16 24 24 24 32 32 32 40 40 40 48 48 48 56 56 56 64 64 64 72 72 72 80 80 80 88 88 88 96 96 96 104 104 104 112 112 112 120 120 120 128 128 8 16 24 32 40 48 56 64 72 + 80 88 96 104 112 120 128 = 8 16 24 32 40 48 56 64 72 80 8 8 16 16 24 24 32 32 40 40 48 48 56 56 64 64 72 72 80 80 88 88 96 96 104 104 112 112 120 120 128 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128 * 88 96 104 112 120 128 * 128 8 16 24 32 40 48 56 128 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128 64 72 80 88 96 104 112 120 128 Rowe, MCW Real fMRI-Complex H1 Estimated 8 8 8 16 16 16 24 24 24 32 32 32 40 40 40 48 48 48 56 56 56 64 64 64 72 72 72 80 80 80 88 88 88 96 96 96 104 104 104 112 112 112 120 120 120 128 128 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128 128 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128 8 8 8 16 16 16 24 24 24 32 32 32 40 40 40 48 48 48 56 56 56 64 64 64 72 72 72 80 80 80 88 88 88 96 96 96 104 104 104 112 112 112 120 120 120 128 128 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128 128 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128 Rowe, MCW Real fMRI-Complex H0 Estimated 8 8 8 16 16 16 24 24 24 32 32 32 40 40 40 48 48 48 56 56 56 64 64 64 72 72 72 80 80 80 88 88 88 96 96 96 104 104 104 112 112 112 120 120 120 128 128 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128 128 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128 8 8 8 16 16 16 24 24 24 32 32 32 40 40 40 48 48 48 56 56 56 64 64 64 72 72 72 80 80 80 88 88 88 96 96 96 104 104 104 112 112 112 120 120 120 128 128 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128 128 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128 Rowe, MCW Real fMRI-Magnitude/Complex H1 Estimated β̂2 0.05 8 8 16 16 24 24 32 32 40 40 48 48 56 56 64 64 72 72 80 80 88 88 96 96 104 104 112 112 120 120 0.04 0.03 128 0.02 0.01 0 −0.01 −0.02 −0.03 −0.04 128 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128 8 16 24 32 40 48 These coefficients are not visually that different. 56 64 72 80 88 96 104 112 120 128 −0.05 Rowe, MCW Real fMRI-Magnitude/Complex −2 log(λ) Maps 45 16 16 40 32 32 35 48 48 30 64 64 80 80 25 20 15 96 96 10 112 112 5 128 128 16 32 48 64 80 96 · 112 These voxel statistics are ∼ χ21! 128 16 32 48 64 80 96 112 128 0 Rowe, MCW Real fMRI-Magnitude/Complex −2 log(λ) Maps 45 16 16 40 32 32 35 48 48 64 64 80 80 30 25 20 15 96 96 10 112 112 5 128 128 16 32 48 64 80 96 5% Unadjusted Threshold 112 128 16 32 48 64 80 96 112 128 Rowe, MCW Real fMRI-Magnitude/Complex −2 log(λ) Maps 45 16 16 40 32 32 35 48 48 64 64 80 80 30 25 20 15 96 96 10 112 112 5 128 128 16 32 48 64 80 5% Bonferroni Threshold 96 112 128 16 32 48 64 80 96 112 128 Rowe, MCW Real fMRI-Magnitude/Complex −2 log(λ) Maps 45 16 16 40 32 32 35 48 48 64 64 80 80 30 25 20 15 96 96 10 112 112 5 128 128 16 32 48 64 5% FDR Threshold 80 96 112 128 16 32 48 64 80 96 112 128 Rowe, MCW Simulation In each voxel, simulate complex valued time courses like real data. yt = [(β0 + β1x1t + β2x2t)α1 + nRt] +i[(β0 + β1x1t + β2x2t)α1 + nIt] 2 From a real dataset, fitted complex model, took β̂C and σ̂C from a “highly activated” voxel. α̂1’s and α̂2’s from whole image. Created complex data where the coefficients in each voxel were the first two elements of β̂C . Effect to noise ratio EN R = β2/σ̂C . Created four 7 × 7 square ROI’s, EN R = 1, 1/2, 1/4, 1/8, β2 = 0 outside ROI’s. 2 ). Varied SN R = β /σ. Added normal noise N (0, σ̂C 0 Rowe, MCW Activation: 5% Unadjusted 45 16 16 16 40 32 32 32 35 48 48 48 64 64 64 80 80 80 96 96 96 112 112 112 30 25 20 15 10 5 128 128 16 32 48 64 80 96 112 128 128 M: SNR = 1 16 32 48 64 80 96 112 128 16 M: SNR = 2.5 32 48 64 80 96 112 128 M: SNR = 5 45 16 16 16 40 32 32 32 35 48 48 48 64 64 64 80 80 80 96 96 96 112 112 112 30 25 20 15 10 5 128 128 16 32 48 64 C: SNR = 1 80 96 112 128 128 16 32 48 64 80 C: SNR = 2.5 96 112 128 16 32 48 64 C: SNR = 5 80 96 112 128 Rowe, MCW Activation: 5% Bonferroni 45 16 16 16 40 32 32 32 35 48 48 48 64 64 64 80 80 80 96 96 96 112 112 112 30 25 20 15 10 5 128 128 16 32 48 64 80 96 112 128 128 M: SNR = 1 16 32 48 64 80 96 112 128 16 M: SNR = 2.5 32 48 64 80 96 112 128 M: SNR = 5 45 16 16 16 40 32 32 32 35 48 48 48 64 64 64 80 80 80 96 96 96 112 112 112 30 25 20 15 10 5 128 128 16 32 48 64 C: SNR = 1 80 96 112 128 128 16 32 48 64 80 C: SNR = 2.5 96 112 128 16 32 48 64 C: SNR = 5 80 96 112 128 Rowe, MCW Activation: 5% FDR 45 16 16 16 40 32 32 32 35 48 48 48 64 64 64 80 80 80 96 96 96 112 112 112 30 25 20 15 10 5 128 128 16 32 48 64 80 96 112 128 128 M: SNR = 1 16 32 48 64 80 96 112 128 16 M: SNR = 2.5 32 48 64 80 96 112 128 M: SNR = 5 45 16 16 16 40 32 32 32 35 48 48 48 64 64 64 80 80 80 96 96 96 112 112 112 30 25 20 15 10 5 128 128 16 32 48 64 C: SNR = 1 80 96 112 128 128 16 32 48 64 80 C: SNR = 2.5 96 112 128 16 32 48 64 C: SNR = 5 80 96 112 128 Rowe, MCW Simulation Repeated simulation 1000 times. For each thresholding method, the power in, or relative frequency over the 1000 simulated images with which each voxel was detected as active, was recorded. 16 32 48 64 80 96 112 128 16 32 48 64 80 96 112 128 5% Unadjusted, 5% FDR, and 5% Bonferroni thresholds. Rowe, MCW Power: 5% Unadjusted 100 16 16 16 32 32 32 48 48 48 64 64 64 80 80 80 96 96 96 112 112 112 90 80 70 60 50 40 30 20 10 128 128 16 32 48 64 80 96 112 128 128 M: SNR = 1 16 32 48 64 80 96 112 128 16 M: SNR = 2.5 32 48 64 80 96 112 128 0 M: SNR = 5 100 16 16 16 32 32 32 48 48 48 64 64 64 80 80 80 96 96 96 112 112 112 128 128 128 90 80 70 60 50 40 30 20 10 16 32 48 64 C: SNR = 1 80 96 112 128 16 32 48 64 80 C: SNR = 2.5 96 112 128 16 32 48 64 C: SNR = 5 80 96 112 128 0 Rowe, MCW Power: 5% Bonferroni 100 16 16 16 32 32 32 48 48 48 64 64 64 80 80 80 96 96 96 112 112 112 90 80 70 60 50 40 30 20 10 128 128 16 32 48 64 80 96 112 128 128 M: SNR = 1 16 32 48 64 80 96 112 128 16 M: SNR = 2.5 32 48 64 80 96 112 128 0 M: SNR = 5 100 16 16 16 32 32 32 48 48 48 90 80 70 60 64 64 64 80 80 80 96 96 96 112 112 112 128 128 128 50 40 30 20 10 16 32 48 64 C: SNR = 1 80 96 112 128 16 32 48 64 80 C: SNR = 2.5 96 112 128 16 32 48 64 C: SNR = 5 80 96 112 128 0 Rowe, MCW Power: 5% FDR 100 16 16 16 32 32 32 48 48 48 64 64 64 80 80 80 96 96 96 112 112 112 90 80 70 60 50 40 30 20 10 128 128 16 32 48 64 80 96 112 128 128 M: SNR = 1 16 32 48 64 80 96 112 128 16 M: SNR = 2.5 32 48 64 80 96 112 128 0 M: SNR = 5 100 16 16 16 32 32 32 48 48 48 90 80 70 60 64 64 64 80 80 80 96 96 96 112 112 112 128 128 128 50 40 30 20 10 16 32 48 64 C: SNR = 1 80 96 112 128 16 32 48 64 80 C: SNR = 2.5 96 112 128 16 32 48 64 C: SNR = 5 80 96 112 128 0 Rowe, MCW Power Differences: 5% Unadjusted 10 16 16 16 32 32 32 48 48 48 64 64 64 80 80 80 96 96 96 112 112 112 8 6 4 2 0 −2 −4 −6 −8 128 128 16 32 48 64 80 96 112 128 128 SNR = 1 16 32 48 64 80 96 112 128 16 SNR = 2.5 32 48 64 80 96 112 128 −10 SNR = 5 10 16 16 16 32 32 32 48 48 48 64 64 64 80 80 80 96 96 96 112 112 112 128 128 128 8 6 4 2 0 −2 −4 −6 −8 16 32 48 64 SNR = 7.5 80 96 112 128 16 32 48 SNR = 10 64 80 96 112 128 16 32 48 64 SNR = 30 80 96 112 128 −10 Rowe, MCW Power Differences: 5% Bonferroni 10 16 16 16 32 32 32 48 48 48 8 6 4 2 64 64 64 80 80 80 96 96 96 112 112 112 0 −2 −4 −6 −8 128 128 16 32 48 64 80 96 112 128 128 SNR = 1 16 32 48 64 80 96 112 128 16 SNR = 2.5 32 48 64 80 96 112 128 −10 SNR = 5 10 16 16 16 32 32 32 48 48 48 64 64 64 80 80 80 96 96 96 112 112 112 8 6 4 2 0 −2 −4 −6 −8 128 128 16 32 48 64 SNR = 7.5 80 96 112 128 128 16 32 48 SNR = 10 64 80 96 112 128 16 32 48 64 SNR = 30 80 96 112 128 −10 Rowe, MCW Power Differences: 5% FDR 10 16 16 16 32 32 32 48 48 48 8 6 4 2 64 64 64 80 80 80 96 96 96 112 112 112 0 −2 −4 −6 −8 128 128 16 32 48 64 80 96 112 128 128 SNR = 1 16 32 48 64 80 96 112 128 16 SNR = 2.5 32 48 64 80 96 112 128 −10 SNR = 5 10 16 16 16 32 32 32 48 48 48 64 64 64 80 80 80 96 96 96 112 112 112 8 6 4 2 0 −2 −4 −6 −8 128 128 16 32 48 64 SNR = 7.5 80 96 112 128 128 16 32 48 SNR = 10 64 80 96 112 128 16 32 48 64 SNR = 30 80 96 112 128 −10 Rowe, MCW 100 90 90 80 80 70 70 60 60 50 40 30 30 20 20 10 10 0 1 2 3 4 5 SNR 6 7 8 9 0 10 100 100 90 90 80 80 70 70 60 60 50 40 30 30 20 20 10 10 0 1 2 3 4 5 SNR 6 7 8 9 10 0 1 2 3 4 5 SNR 6 7 8 9 10 ENR=1/4,1/8 50 40 0 ENR=1,1/2 50 40 0 Power Power 100 Power Power Power versus SNR: Complex (blue) and magnitude (red) 0 0 1 2 3 4 5 SNR 6 7 8 9 10 Rowe, MCW Discussion A complex data fMRI activation model was presented . Complex and magnitude models activation compared on real data. Complex and magnitude models power compared on simulated data. For a given ENR the complex model power constant irrespective of SNR while the magnitude model power decreases. For smaller SNR’s, the complex activation model demonstrated better power The complex model more useful as SNR decreases with voxel size.
© Copyright 2026 Paperzz