Supplementary Data Table S1. Simplified kinetic models for the LHHW formalism considering the rate limiting step (RLS) the adsorption of 1-butanol LHHW - RLS: 1-butanol adsorption LHHW-RLS1/1a LHHW-RLS1/1b rDNBE 0.5 a ·a k BuOH a BuOH DNBE H 2 O K eq 0.5 a DNBE ·a H 2 O 1 K BuOH K DNBE ·a DNBE K H 2 O ·a H 2 O K eq rDNBE 0.5 a ·a k BuOH a BuOH DNBE H 2 O K BuOH K eq 0.5 a DNBE ·a H 2 O K H2O K ·a H 2 O DNBE ·a DNBE K K K eq BuOH BuOH LHHW-RLS1/2a LHHW-RLS1/2b a ·a k BuOH a BuOH DNBE H 2 O K eq 0.5 a DNBE ·a H 2 O 1 K BuOH K DNBE ·a DNBE K eq 0.5 rDNBE rDNBE LHHW-RLS1/3a LHHW-RLS1/3b a ·a k BuOH a BuOH DNBE H 2 O K eq 0.5 a DNBE ·a H 2 O 1 K BuOH K H 2 O ·a H 2 O K eq 0.5 rDNBE rDNBE LHHW-RLS1/4a rDNBE 0.5 a ·a k BuOH a BuOH DNBE H 2 O K BuOH K eq 0.5 a DNBE ·a H 2 O K DNBE ·a DNBE K K BuOH eq 0.5 a ·a k BuOH a BuOH DNBE H 2 O K BuOH K eq 0.5 a DNBE ·a H 2 O K H2O ·a H 2 O K K eq BuOH LHHW-RLS1/4b 0.5 a ·a k BuOH a BuOH DNBE H 2 O K eq 0.5 a DNBE ·a H 2 O 1 K BuOH K eq rDNBE 1 0.5 a ·a k BuOH a BuOH DNBE H 2 O K BuOH K eq 0.5 a DNBE ·a H 2 O K eq Table S2. Simplified kinetic models for the LHHW formalism considering the rate limiting step (RLS) the surface reaction. n is the number of additional active centers participating in the surface reaction ranging from 0 to 2 LHHW – RLS: Surface reaction LHHW-RLS2/1a LHHW-RLS2/1b rDNBE 1 K a ·a k̂·K 2BuOH a 2BuOH DNBE H 2 O K eq BuOH ·a BuOH K DNBE ·a DNBE K H2 O·a H2 O rDNBE 2 n a DNBE ·a H 2 O K2 2 k̂· BuOH a n BuOH K 2BuOH K eq K H2 O K DNBE ·a DNBE ·a H 2 O a BuOH K BuOH K BuOH LHHW-RLS2/2a rDNBE LHHW-RLS2/2b 2 a DNBE ·a H 2 O k̂·K 2BuOH a BuOH K eq 2 n 1 K BuOH·a BuOH K DNBE·a DNBE rDNBE LHHW-RLS2/3a rDNBE rDNBE LHHW-RDS2/4a rDNBE rDNBE a DNBE ·a H 2 O k̂·K 2BuOH a 2BuOH K eq 2 n 1 K BuOH·a BuOH rDNBE rDNBE a DNBE ·a H 2 O K 2BuOH 2 a n BuOH K 2DNBE K eq K H2 O ·a H 2 O a DNBE K DNBE 2 n a DNBE ·a H 2 O K2 2 k̂· BuOH a n BuOH K 2BuOH K eq a BuOH 2 n 2 a DNBE ·a H 2 O K2 k̂· 2BuOH a BuOH n K DNBE K eq a DNBE 2 n LHHW-RLS2/7b a ·a k̂·K 2BuOH a 2BuOH DNBE H 2 O K eq 2 n 1 K H2 O ·a H 2 O 2 n LHHW-RLS2/6b a DNBE ·a H 2 O k̂·K 2BuOH a 2BuOH K eq 2 n 1 K DNBE·a DNBE LHHW-RLS2/7a rDNBE K H2 O ·a H 2 O a BuOH K BuOH LHHW-RLS2/5b LHHW-RLS2/6a rDNBE a DNBE ·a H 2 O K2 2 k̂· BuOH a BuOH 2 n K BuOH K eq k̂· LHHW-RLS2/5a rDNBE 2 n LHHW-RLS2/4b 2 a ·a k̂·K 2BuOH a BuOH DNBE H 2 O K eq 2 n 1 K DNBE ·a DNBE K H 2 O ·a H 2 O K DNBE ·a DNBE a BuOH K BuOH LHHW-RLS2/3b a ·a k̂·K 2BuOH a 2BuOH DNBE H 2 O K eq 2 n 1 K BuOH ·a BuOH K H2 O·a H2 O a DNBE ·a H 2 O K2 2 k̂· BuOH a BuOH 2 n K BuOH K eq rDNBE a DNBE ·a H 2 O K2 2 k̂· BuOH a BuOH K 2H2 On K eq a H2 O 2 2 n 2 n Table S3. Simplified kinetic models for the LHHW formalism considering the rate limiting step (RLS) the desorption of DNBE. LHHW – RLS: DNBE desorption LHHW-RLS3/1a LHHW-RLS3/1b rDNBE a2 k DNBE K eq BuOH a DNBE aH 2O 2 a BuOH 1 K BuOH ·a BuOH K DNBE · K eq K H 2 O·a H2 O a H 2 O rDNBE k DNBE a2 K eq BuOH a DNBE K DNBE aH 2O 2 K H2 O K BuOH a BuOH ·a BuOH K eq ·a H O K DNBE a H 2 O K DNBE 2 LHHW-RLS3/2a LHHW-RLS3/2b a2 k DNBE K eq BuOH a DNBE a H 2O a2 1 K BuOH ·a BuOH K DNBE · K eq BuOH a H 2 O rDNBE rDNBE LHHW-RLS3/3a rDNBE K BuOH a2 ·a BuOH K eq BuOH K DNBE aH 2O LHHW-RLS3/3b a2 k DNBE K eq BuOH a DNBE aH 2O 2 a 1 K DNBE · K eq BuOH K H 2 O ·a H 2 O a H 2 O rDNBE LHHW-RLS3/4a rDNBE k DNBE a2 K eq BuOH a DNBE K DNBE aH 2O k DNBE a2 K eq BuOH a DNBE K DNBE aH 2O 2 a BuOH K H2 O K eq ·a H O a H 2 O K DNBE 2 LHHW-RLS3/4b a2 k DNBE K eq BuOH a DNBE aH 2O a 2BuOH 1 K DNBE · K eq a H 2 O rDNBE k DNBE a2 K eq BuOH a DNBE K DNBE aH 2O K eq 3 a 2BuOH aH 2O Table S4. Simplified kinetic models for the LHHW formalism considering the rate limiting step (RLS) the desorption of water. LHHW – RLS: H2O desorption LHHW-RLS4/1b LHHW-RLS4/1a rDNBE a2 k H2 O K eq BuOH a H2 O a DNBE a2 1 K BuOH ·a BuOH K DNBE ·a DNBE K H2O· K eq BuOH a DNBE a2 k H2 O K eq BuOH a H2 O a DNBE a 2BuOH 1 K BuOH ·a BuOH K H2 O· K eq a DNBE rDNBE a2 k H2 O K eq BuOH a H2 O a DNBE a 2BuOH 1 K DNBE ·a DNBE K H2 O· K eq a DNBE rDNBE LHHW-RLS4/4a rDNBE k H2 O a 2BuOH a H2 O K eq K H2 O a DNBE K BuOH a2 ·a BuOH K eq BuOH K H2 O a DNBE LHHW-RLS4/3b LHHW-RLS4/3a rDNBE K BuOH K a2 ·a BuOH DNBE ·a DNBE K eq BuOH K H2 O K H2 O a DNBE LHHW-RLS4/2b LHHW-RLS4/2a rDNBE rDNBE k H2 O a 2BuOH a H2 O K eq K H2 O a DNBE k H2 O a 2BuOH a H2 O K eq K H2 O a DNBE K DNBE a2 ·a DNBE K eq BuOH K H2 O a DNBE LHHW-RLS4/4b a2 k H2 O K eq BuOH a H2 O a DNBE a 2BuOH 1 K H2 O· K eq a DNBE rDNBE k H2 O a 2BuOH a H2 O K eq K H2 O a DNBE K eq a 2BuOH a DNBE Table S5. Simplified kinetic models for the ER formalism where the produced DNBE remains adsorbed while water is released into solution. The rate limiting step (RLS) considered is the adsorption of 1-butanol. ER(DNBE) – RLS: 1-butanol adsorption ERDNBE-RLS1/1b ERDNBE-RLS1/1a rDNBE a DNBE ·a H 2 O k BuOH a BuOH K eq ·a BuOH a DNBE ·a H 2 O 1 K BuOH · K DNBE ·a DNBE K ·a eq BuOH rDNBE ERDNBE-RLS1/2a rDNBE a DNBE ·a H 2 O k BuOH a BuOH K BuOH K eq ·a BuOH a DNBE ·a H 2 O K DNBE ·a DNBE K eq ·a BuOH K BuOH ERDNBE-RLS1/2b a DNBE ·a H 2 O k BuOH a BuOH K eq ·a BuOH a DNBE ·a H 2 O 1 K BuOH · K ·a eq BuOH rDNBE 4 a DNBE ·a H 2 O k BuOH a BuOH K BuOH K eq ·a BuOH a DNBE ·a H 2 O K eq ·a BuOH Table S6. Simplified kinetic models for the ER formalism where the produced DNBE remains adsorbed while water is released into solution. The rate limiting step (RLS) considered is the surface reaction. n is the number of additional active centers participating in the surface reaction ranging from 0 to 2* ER(DNBE) – RLS: Surface reaction ERDNBE-RLS2/1a ERDNBE-RLS2/1b rDNBE 2 a DNBE ·a H 2 O k̂·K 2BuOH a BuOH K eq 1 n 1 K BuOH·a BuOH K DNBE·a DNBE rDNBE ERDNBE-RLS2/2a rDNBE 1 n K DNBE ·a DNBE a BuOH K BuOH ERDNBE-RLS2/2b a DNBE ·a H 2 O k̂·K 2BuOH a 2BuOH K eq 1 n 1 K BuOH·a BuOH rDNBE ERDNBE-RLS2/3a rDNBE a DNBE ·a H 2 O K2 2 k̂· 1BuOH a n BuOH K BuOH K eq a DNBE ·a H 2 O K2 2 k̂· 1BuOH a BuOH n K BuOH K eq a BuOH 1 n ERDNBE-RLS2/3b a DNBE ·a H 2 O k̂·K 2BuOH a 2BuOH K eq 1 n 1 K ·a DNBE DNBE rDNBE 2 a DNBE ·a H 2 O K2 k̂· 1BuOH a BuOH n K DNBE K eq a DNBE 1 n * Only for n = 0. For n = 1, 2 the expressions are equivalent to LHHW-RLS2/2a & b, LHHWRLS2/5a & b and LHHW-RLS6/2a & b (Table S2). Table S7. Simplified kinetic models for the ER formalism where the produced DNBE remains adsorbed while water is released into solution. The rate limiting step (RLS) considered is the desorption of DNBE. ER(DNBE) – RLS: DNBE desorption ERDNBE-RLS3/1a ERDNBE-RLS3/1b rDNBE a2 k DNBE K eq BuOH a DNBE a H 2O a2 1 K BuOH ·a BuOH K DNBE · K eq BuOH a H 2 O rDNBE ERDNBE-RLS3/2a rDNBE k DNBE a2 K eq BuOH a DNBE K DNBE aH 2O K BuOH a2 ·a BuOH K eq BuOH K DNBE aH 2O ERDNBE-RLS3/2b a2 k DNBE K eq BuOH a DNBE aH 2O 2 a 1 K DNBE · K eq BuOH a H 2 O rDNBE k DNBE a2 K eq BuOH a DNBE K DNBE aH 2O K eq a 2BuOH aH 2O Simplified models gathered in Table S7 are equivalent to models LHHW-RLS3/2a&b and LHHW-RLS3/4a&b (Table S3). 5 Table S8. Simplified kinetic models for the ER formalism where the produced water remains adsorbed while DNBE is released into solution. The rate limiting step (RLS) considered is the adsorption of 1-butanol. ER(H2O) – RLS: 1-butanol adsorption ERH2O-RLS1/1b ERH2O-RLS1/1a a DNBE ·a H 2 O k BuOH a BuOH K eq ·a BuOH a DNBE ·a H 2 O 1 K BuOH · K H 2 O ·a H 2 O K ·a eq BuOH rDNBE rDNBE ERH2O-RLS1/2aa rDNBE a DNBE ·a H 2 O k BuOH a BuOH K BuOH K eq ·a BuOH a DNBE ·a H 2 O K H 2 O ·a H2 O K eq ·a BuOH K BuOH ERH2O-RLS1/2ba a DNBE ·a H 2 O k BuOH a BuOH K eq ·a BuOH a DNBE ·a H 2 O 1 K BuOH · K ·a eq BuOH rDNBE a DNBE ·a H 2 O k BuOH a BuOH K BuOH K eq ·a BuOH a DNBE ·a H 2 O K eq ·a BuOH Models ERH2O-RLS1/2a&b are equivalent to models ERDNBE-RLS1/2a&b (Table S5). Table S9. Simplified kinetic models for the ER formalism where the produced water remains adsorbed while DNBE is released into solution. The rate limiting step (RLS) considered is the surface reaction. n is the number of additional active centers participating in the surface reaction ranging from 0 to 2* ER(H2O) – RLS: Surface reaction ERH2O-RLS2/1a ERH2O-RLS2/1b rDNBE 2 a ·a k̂·K 2BuOH a BuOH DNBE H 2 O K eq 1 n 1 K BuOH ·a BuOH K H 2 O ·a H 2 O rDNBE ERH2O-RLS2/2ab rDNBE a DNBE ·a H 2 O k̂·K 2BuOH a 2BuOH K eq 1 n 1 K ·a BuOH BuOH rDNBE a DNBE ·a H 2 O K2 2 k̂· 1BuOH a BuOH n K BuOH K eq a BuOH 1 n ERH2O-RLS2/3b a ·a k̂·K 2BuOH a 2BuOH DNBE H 2 O K eq 1 n 1 K H 2 O ·a H 2 O 1 n KH 2O ·a H 2 O a BuOH K BuOH ERH2O-RLS2/2bb ERH2O-RLS2/3a rDNBE a DNBE ·a H 2 O K2 2 k̂· 1BuOH a BuOH n K BuOH K eq rDNBE a DNBE ·a H 2 O K2 2 k̂· BuOH a BuOH K1H2nO K eq a 1 n H 2O Models ERH2O-RLS2/2a&b are equivalent to models ERDNBE-RLS2/2a&b (Table S6). * For n = 1, 2 the expressions are equivalent to LHHW-RLS2/3a & b, LHHW-RLS2/5a & b and LHHW-RLS7/2a &b (Table S2). 6 Table S10. Simplified kinetic models for the ER formalism where the produced water remains adsorbed while DNBE is released into solution. The rate limiting step (RLS) considered is the desorption of water. ER(H2O) – RLS: H2O desorption ERH2O-RLS3/1b ERH2O-RLS3/1a rDNBE a2 k H2 O K eq BuOH a H2 O a DNBE a 2BuOH 1 K BuOH ·a BuOH K H2 O· K eq a DNBE rDNBE k H2 O a 2BuOH a H2 O K eq K H2 O a DNBE K BuOH a2 ·a BuOH K eq BuOH K H2 O a DNBE ERH2O-RLS3/2b ERH2O-RLS3/2a a k H2 O K eq a H2 O a DNBE a 2BuOH 1 K H2 O· K eq a DNBE 2 BuOH rDNBE rDNBE k H2 O a 2BuOH a H2 O K eq K H2 O a DNBE a 2BuOH K eq a DNBE Simplified models gathered in Table S10 are equivalent to models LHHW-RLS4/2a&b and LHHW-RLS4/4a&b (Table S4). 7
© Copyright 2026 Paperzz