Supplementary Data

Supplementary Data
Table S1. Simplified kinetic models for the LHHW formalism considering the rate limiting
step (RLS) the adsorption of 1-butanol
LHHW - RLS: 1-butanol adsorption
LHHW-RLS1/1a
LHHW-RLS1/1b
rDNBE
0.5

a
 
·a
k BuOH  a BuOH   DNBE H 2 O  

 

K eq

 


0.5
 a DNBE ·a H 2 O 
1  K BuOH 
  K DNBE ·a DNBE  K H 2 O ·a H 2 O

K eq


rDNBE
0.5
a
 
·a
k BuOH 
a BuOH   DNBE H 2 O  

 
K BuOH 
K eq

 


0.5
 a DNBE ·a H 2 O 
K H2O
K
·a H 2 O

  DNBE ·a DNBE 
K
K
K
eq
BuOH
BuOH


LHHW-RLS1/2a
LHHW-RLS1/2b

a
 
·a
k BuOH  a BuOH   DNBE H 2 O  

 

K eq

 


0.5
 a DNBE ·a H 2 O 
1  K BuOH 
  K DNBE ·a DNBE

K eq


0.5
rDNBE
rDNBE
LHHW-RLS1/3a
LHHW-RLS1/3b

a
 
·a
k BuOH  a BuOH   DNBE H 2 O  

 

K eq

 


0.5
 a DNBE ·a H 2 O 
1  K BuOH 
  K H 2 O ·a H 2 O

K eq


0.5
rDNBE
rDNBE
LHHW-RLS1/4a
rDNBE
0.5
a
 
·a
k BuOH 
a BuOH   DNBE H 2 O  

 
K BuOH 
K eq

 


0.5
 a DNBE ·a H 2 O 
K

  DNBE ·a DNBE
K
K BuOH
eq


0.5
a
 
·a
k BuOH 
a BuOH   DNBE H 2 O  

 
K BuOH 
K eq

 


0.5
 a DNBE ·a H 2 O 
K H2O
·a H 2 O

 
K
K
eq
BuOH


LHHW-RLS1/4b
0.5

a
 
·a
k BuOH  a BuOH   DNBE H 2 O  

 

K eq

 


0.5
 a DNBE ·a H 2 O 
1  K BuOH 


K eq


rDNBE
1
0.5
a
 
·a
k BuOH 
a BuOH   DNBE H 2 O  

 
K BuOH 
K eq

 


0.5
 a DNBE ·a H 2 O 


K eq


Table S2. Simplified kinetic models for the LHHW formalism considering the rate limiting
step (RLS) the surface reaction. n is the number of additional active centers participating in the
surface reaction ranging from 0 to 2
LHHW – RLS: Surface reaction
LHHW-RLS2/1a
LHHW-RLS2/1b
rDNBE 
1  K


a
·a
k̂·K 2BuOH  a 2BuOH  DNBE H 2 O 


K
eq


BuOH
·a BuOH  K DNBE ·a DNBE  K H2 O·a H2 O

rDNBE 
2 n
a DNBE ·a H 2 O 
K2  2
k̂· BuOH
a


n 
 BuOH
K 2BuOH
K eq


K H2 O


K DNBE
·a DNBE 
·a H 2 O 
 a BuOH 
K BuOH
K BuOH


LHHW-RLS2/2a
rDNBE
LHHW-RLS2/2b
 2
a DNBE ·a H 2 O 
k̂·K 2BuOH  a BuOH



K eq



2 n
1  K BuOH·a BuOH  K DNBE·a DNBE 
rDNBE 
LHHW-RLS2/3a
rDNBE
rDNBE 

LHHW-RDS2/4a
rDNBE
rDNBE 


a DNBE ·a H 2 O 
k̂·K 2BuOH  a 2BuOH 


K eq



2 n
1  K BuOH·a BuOH 
rDNBE 
rDNBE 
a DNBE ·a H 2 O 
K 2BuOH  2
a


n 
 BuOH
K 2DNBE
K eq


K H2 O


·a H 2 O 
 a DNBE 
K
DNBE


2 n
a DNBE ·a H 2 O 
K2  2
k̂· BuOH
a


n 
 BuOH
K 2BuOH
K eq


 a BuOH 
2 n
 2
a DNBE ·a H 2 O 
K2
k̂· 2BuOH
a BuOH 

n 

K DNBE 
K eq

 a DNBE 
2 n
LHHW-RLS2/7b


a
·a
k̂·K 2BuOH  a 2BuOH  DNBE H 2 O 


K
eq



2 n
1  K H2 O ·a H 2 O

2 n
LHHW-RLS2/6b

a DNBE ·a H 2 O 
k̂·K 2BuOH  a 2BuOH 


K eq



2 n
1  K DNBE·a DNBE 
LHHW-RLS2/7a
rDNBE
K H2 O


·a H 2 O 
 a BuOH 
K
BuOH


LHHW-RLS2/5b
LHHW-RLS2/6a
rDNBE
a DNBE ·a H 2 O 
K2  2
k̂· BuOH
a BuOH 

2 n 

K BuOH 
K eq

k̂·
LHHW-RLS2/5a
rDNBE
2 n
LHHW-RLS2/4b
 2

a
·a
k̂·K 2BuOH  a BuOH
 DNBE H 2 O 


K
eq



2 n
1  K DNBE ·a DNBE  K H 2 O ·a H 2 O



K DNBE
·a DNBE 
 a BuOH 
K
BuOH


LHHW-RLS2/3b


a
·a
k̂·K 2BuOH  a 2BuOH  DNBE H 2 O 


K eq



2 n
1  K BuOH ·a BuOH  K H2 O·a H2 O

a DNBE ·a H 2 O 
K2  2
k̂· BuOH
a BuOH 

2 n 

K BuOH 
K eq

rDNBE 

a DNBE ·a H 2 O 
K2  2
k̂· BuOH
 a BuOH 

K 2H2 On 
K eq

a 
H2 O
2
2 n
2 n
Table S3. Simplified kinetic models for the LHHW formalism considering the rate limiting
step (RLS) the desorption of DNBE.
LHHW – RLS: DNBE desorption
LHHW-RLS3/1a
LHHW-RLS3/1b
rDNBE


a2
k DNBE  K eq BuOH  a DNBE 


aH 2O



2

a BuOH 
1  K BuOH ·a BuOH  K DNBE · K eq
  K H 2 O·a H2 O

a H 2 O 

rDNBE

k DNBE 
a2
 K eq BuOH  a DNBE 
K DNBE 
aH 2O


2
K H2 O
K BuOH
a BuOH
·a BuOH  K eq

·a H O
K DNBE
a H 2 O K DNBE 2
LHHW-RLS3/2a
LHHW-RLS3/2b


a2
k DNBE  K eq BuOH  a DNBE 


a
H 2O





a2
1  K BuOH ·a BuOH  K DNBE · K eq BuOH 

a H 2 O 

rDNBE
rDNBE 
LHHW-RLS3/3a
rDNBE
K BuOH
a2
·a BuOH  K eq BuOH
K DNBE
aH 2O
LHHW-RLS3/3b


a2
k DNBE  K eq BuOH  a DNBE 


aH 2O



2


a
1  K DNBE · K eq BuOH   K H 2 O ·a H 2 O

a H 2 O 

rDNBE
LHHW-RLS3/4a
rDNBE

k DNBE 
a2
 K eq BuOH  a DNBE 
K DNBE 
aH 2O


k DNBE 
a2
 K eq BuOH  a DNBE 
K DNBE 
aH 2O


2
a BuOH K H2 O
K eq

·a H O
a H 2 O K DNBE 2
LHHW-RLS3/4b


a2
k DNBE  K eq BuOH  a DNBE 


aH 2O




a 2BuOH 
1  K DNBE · K eq


a H 2 O 

rDNBE 

k DNBE 
a2
 K eq BuOH  a DNBE 
K DNBE 
aH 2O

K eq
3
a 2BuOH
aH 2O
Table S4. Simplified kinetic models for the LHHW formalism considering the rate limiting
step (RLS) the desorption of water.
LHHW – RLS: H2O desorption
LHHW-RLS4/1b
LHHW-RLS4/1a
rDNBE 


a2
k H2 O  K eq BuOH  a H2 O 
a DNBE




a2
1  K BuOH ·a BuOH  K DNBE ·a DNBE  K H2O· K eq BuOH 
a
DNBE 



a2
k H2 O  K eq BuOH  a H2 O 
a DNBE




a 2BuOH 
1  K BuOH ·a BuOH  K H2 O· K eq

a DNBE 

rDNBE 


a2
k H2 O  K eq BuOH  a H2 O 
a
DNBE




a 2BuOH 
1  K DNBE ·a DNBE  K H2 O· K eq

a DNBE 

rDNBE 
LHHW-RLS4/4a
rDNBE
k H2 O 

a 2BuOH
 a H2 O 
 K eq
K H2 O 
a DNBE

K BuOH
a2
·a BuOH  K eq BuOH
K H2 O
a DNBE
LHHW-RLS4/3b
LHHW-RLS4/3a
rDNBE
K BuOH
K
a2
·a BuOH  DNBE ·a DNBE  K eq BuOH
K H2 O
K H2 O
a DNBE
LHHW-RLS4/2b
LHHW-RLS4/2a
rDNBE
rDNBE 
k H2 O 

a 2BuOH
 a H2 O 
 K eq
K H2 O 
a DNBE

k H2 O 

a 2BuOH
 a H2 O 
 K eq
K H2 O 
a DNBE

K DNBE
a2
·a DNBE  K eq BuOH
K H2 O
a DNBE
LHHW-RLS4/4b


a2
k H2 O  K eq BuOH  a H2 O 
a
DNBE




a 2BuOH 
1  K H2 O· K eq

a DNBE 

rDNBE 
k H2 O 

a 2BuOH
 a H2 O 
 K eq
K H2 O 
a DNBE

K eq
a 2BuOH
a DNBE
Table S5. Simplified kinetic models for the ER formalism where the produced DNBE remains
adsorbed while water is released into solution. The rate limiting step (RLS) considered is the
adsorption of 1-butanol.
ER(DNBE) – RLS: 1-butanol adsorption
ERDNBE-RLS1/1b
ERDNBE-RLS1/1a
rDNBE

a DNBE ·a H 2 O 
k BuOH  a BuOH 


K eq ·a BuOH 


 a DNBE ·a H 2 O 
1  K BuOH ·
  K DNBE ·a DNBE
 K ·a
 eq BuOH 
rDNBE 
ERDNBE-RLS1/2a
rDNBE
a DNBE ·a H 2 O 
k BuOH 
 a BuOH 

K BuOH 
K eq ·a BuOH 
 a DNBE ·a H 2 O  K DNBE
·a DNBE

 
 K eq ·a BuOH  K BuOH
ERDNBE-RLS1/2b

a DNBE ·a H 2 O 
k BuOH  a BuOH 


K eq ·a BuOH 


 a DNBE ·a H 2 O 
1  K BuOH ·

 K ·a
 eq BuOH 
rDNBE 
4
a DNBE ·a H 2 O 
k BuOH 
 a BuOH 

K BuOH 
K eq ·a BuOH 
 a DNBE ·a H 2 O 


 K eq ·a BuOH 
Table S6. Simplified kinetic models for the ER formalism where the produced DNBE remains
adsorbed while water is released into solution. The rate limiting step (RLS) considered is the
surface reaction. n is the number of additional active centers participating in the surface reaction
ranging from 0 to 2*
ER(DNBE) – RLS: Surface reaction
ERDNBE-RLS2/1a
ERDNBE-RLS2/1b
rDNBE
 2
a DNBE ·a H 2 O 
k̂·K 2BuOH  a BuOH



K eq



1 n
1  K BuOH·a BuOH  K DNBE·a DNBE 
rDNBE 
ERDNBE-RLS2/2a
rDNBE
1 n


K DNBE
·a DNBE 
 a BuOH 
K
BuOH


ERDNBE-RLS2/2b

a DNBE ·a H 2 O 
k̂·K 2BuOH  a 2BuOH 


K eq



1 n
1  K BuOH·a BuOH 
rDNBE 
ERDNBE-RLS2/3a
rDNBE
a DNBE ·a H 2 O 
K2  2
k̂· 1BuOH
a


n 
 BuOH
K BuOH
K eq


a DNBE ·a H 2 O 
K2  2
k̂· 1BuOH
 a BuOH 

n
K BuOH 
K eq

 a BuOH 
1 n
ERDNBE-RLS2/3b

a DNBE ·a H 2 O 
k̂·K 2BuOH  a 2BuOH 


K eq



1 n
1

K
·a

DNBE DNBE 
rDNBE 
 2
a DNBE ·a H 2 O 
K2
k̂· 1BuOH
 a BuOH 

n
K DNBE
K eq


 a DNBE 
1 n
*
Only for n = 0. For n = 1, 2 the expressions are equivalent to LHHW-RLS2/2a & b, LHHWRLS2/5a & b and LHHW-RLS6/2a & b (Table S2).
Table S7. Simplified kinetic models for the ER formalism where the produced DNBE remains
adsorbed while water is released into solution. The rate limiting step (RLS) considered is the
desorption of DNBE.
ER(DNBE) – RLS: DNBE desorption
ERDNBE-RLS3/1a
ERDNBE-RLS3/1b
rDNBE


a2
k DNBE  K eq BuOH  a DNBE 


a
H 2O





a2
1  K BuOH ·a BuOH  K DNBE · K eq BuOH 

a H 2 O 

rDNBE 
ERDNBE-RLS3/2a
rDNBE

k DNBE 
a2
 K eq BuOH  a DNBE 
K DNBE 
aH 2O

K BuOH
a2
·a BuOH  K eq BuOH
K DNBE
aH 2O
ERDNBE-RLS3/2b


a2
k DNBE  K eq BuOH  a DNBE 


aH 2O



2


a
1  K DNBE · K eq BuOH 

a H 2 O 

rDNBE 

k DNBE 
a2
 K eq BuOH  a DNBE 
K DNBE 
aH 2O

K eq
a 2BuOH
aH 2O
Simplified models gathered in Table S7 are equivalent to models LHHW-RLS3/2a&b and
LHHW-RLS3/4a&b (Table S3).
5
Table S8. Simplified kinetic models for the ER formalism where the produced water remains
adsorbed while DNBE is released into solution. The rate limiting step (RLS) considered is the
adsorption of 1-butanol.
ER(H2O) – RLS: 1-butanol adsorption
ERH2O-RLS1/1b
ERH2O-RLS1/1a

a DNBE ·a H 2 O 
k BuOH  a BuOH 


K eq ·a BuOH 


 a DNBE ·a H 2 O 
1  K BuOH ·
  K H 2 O ·a H 2 O
 K ·a
 eq BuOH 
rDNBE
rDNBE 
ERH2O-RLS1/2aa
rDNBE
a DNBE ·a H 2 O 
k BuOH 
 a BuOH 

K BuOH 
K eq ·a BuOH 
 a DNBE ·a H 2 O  K H 2 O
·a H2 O

 
 K eq ·a BuOH  K BuOH
ERH2O-RLS1/2ba

a DNBE ·a H 2 O 
k BuOH  a BuOH 


K eq ·a BuOH 


 a DNBE ·a H 2 O 
1  K BuOH ·

 K ·a
 eq BuOH 
rDNBE 
a DNBE ·a H 2 O 
k BuOH 
 a BuOH 

K BuOH 
K eq ·a BuOH 
 a DNBE ·a H 2 O 


 K eq ·a BuOH 
Models ERH2O-RLS1/2a&b are equivalent to models ERDNBE-RLS1/2a&b (Table S5).
Table S9. Simplified kinetic models for the ER formalism where the produced water remains
adsorbed while DNBE is released into solution. The rate limiting step (RLS) considered is the
surface reaction. n is the number of additional active centers participating in the surface reaction
ranging from 0 to 2*
ER(H2O) – RLS: Surface reaction
ERH2O-RLS2/1a
ERH2O-RLS2/1b
rDNBE
 2

a
·a
k̂·K 2BuOH  a BuOH
 DNBE H 2 O 


K
eq



1 n
1  K BuOH ·a BuOH  K H 2 O ·a H 2 O

rDNBE 

ERH2O-RLS2/2ab
rDNBE

a DNBE ·a H 2 O 
k̂·K 2BuOH  a 2BuOH 


K eq



1 n
1

K
·a

BuOH BuOH 
rDNBE 
a DNBE ·a H 2 O 
K2  2
k̂· 1BuOH
 a BuOH 

n
K BuOH
K eq


 a BuOH 
1 n
ERH2O-RLS2/3b


a
·a
k̂·K 2BuOH  a 2BuOH  DNBE H 2 O 


K
eq



1 n
1  K H 2 O ·a H 2 O

1 n
KH 2O


·a H 2 O 
 a BuOH 
K BuOH


ERH2O-RLS2/2bb
ERH2O-RLS2/3a
rDNBE
a DNBE ·a H 2 O 
K2  2
k̂· 1BuOH
 a BuOH 

n
K BuOH
K eq


rDNBE 

a DNBE ·a H 2 O 
K2  2
k̂· BuOH
 a BuOH 

K1H2nO 
K eq

a 
1 n
H 2O
Models ERH2O-RLS2/2a&b are equivalent to models ERDNBE-RLS2/2a&b (Table S6).
*
For n = 1, 2 the expressions are equivalent to LHHW-RLS2/3a & b, LHHW-RLS2/5a & b and
LHHW-RLS7/2a &b (Table S2).
6
Table S10. Simplified kinetic models for the ER formalism where the produced water remains
adsorbed while DNBE is released into solution. The rate limiting step (RLS) considered is the
desorption of water.
ER(H2O) – RLS: H2O desorption
ERH2O-RLS3/1b
ERH2O-RLS3/1a
rDNBE


a2
k H2 O  K eq BuOH  a H2 O 
a DNBE




a 2BuOH 
1  K BuOH ·a BuOH  K H2 O· K eq

a DNBE 

rDNBE 
k H2 O 

a 2BuOH
 a H2 O 
 K eq
K H2 O 
a DNBE



K BuOH
a2
·a BuOH   K eq BuOH 
K H2 O
a DNBE 

ERH2O-RLS3/2b
ERH2O-RLS3/2a


a
k H2 O  K eq
 a H2 O 
a
DNBE




a 2BuOH 
1  K H2 O· K eq

a DNBE 

2
BuOH
rDNBE
rDNBE 
k H2 O 

a 2BuOH
 a H2 O 
 K eq
K H2 O 
a DNBE


a 2BuOH 
 K eq

a DNBE 

Simplified models gathered in Table S10 are equivalent to models LHHW-RLS4/2a&b and
LHHW-RLS4/4a&b (Table S4).
7