Modelling surface mass balance and water discharge of tropical glaciers The case study of three glaciers in La Cordillera Blanca of Perú Presented by: MSc. Maria Fernanda Lozano Supervised by: Prof. Dr. rer. nat. Manfred Koch Content Problem statement Objectives Study area Available data (temperature, precipitation, mass balance measurements, radiation data) Filling data gaps Methods Energy balance Model Temperature Index Model Modelling mass balance under climate change simulation by REMO Problem statement Changes in climate Alteration of mass balance Front advance or Retreatment Changes in discharge Identification of causes what will happen Energy balance models Temperature Index models Not large records Data gaps Estimation of Future discharge Objectives Contribute to the understanding of glacier climate interaction in tropical areas. Foresee the possible variation on surface water discharge due to climate change. Evaluate historical trends of hidroclimatic time series. Fill the gaps in time series Simulate the dynamic of the mass balance and runoff with a Energy Balance Model (4 years) Simulate runoff of the glaciers with a Temperature Index model. Examine the sensitivity of stream-flow of surface water resources under future climate scenarios of global warming Study Area Study Area Available data Temperature Precipitation Relative humidity Wind Speed Discharge Total Number of Stations Station over 4000 Stations in (Santa) m.a.s.l Glaciers 52 10 5 90 11 4 6 5 4 18 4 1 12 6 5 Available data Time series available in glaciers Time series available in related basins Glacier Artesonraju Variables Radiation, wind and relative humidity Mass balance Temperature Precipitation Discharge Relative Humidity Wind Speed 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 Variables Radiation Mass balance Temperature Precipitation Discharge Relative Humidity Wind Speed 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 Variables Radiation Mass balance Temperature Precipitation Discharge Relative Humidity Wind Speed 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 Basin Artesoncocha Variable Temperature Precipitation Discharge 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 0 1 2 3 4 5 6 7 8 Variable Temperature Precipitation Discharge Wind Speed 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 0 1 2 3 4 5 6 7 8 Variable Temperature Precipitation Discharge Relative Humidity Wind Speed 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 0 1 2 3 4 5 6 7 8 Variable Temperature Precipitation Discharge 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 0 1 2 3 4 5 6 7 8 Variable Temperature Precipitation Discharge 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 0 1 2 3 4 5 6 7 8 Variable Temperature Precipitation Discharge 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 0 1 2 3 4 5 6 7 8 Basin Paron Glacier Yanamarey Basin Querococha Glacier Uruashraju Basin Olleros Basin Quilcay Glacier Shallap Variables Radiation Mass balance Temperature Precipitation Discharge Relative Humidity Wind Speed 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 Variables Radiation Mass balance Temperature Precipitation Discharge Relative Humidity Wind Speed 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 Basin Llanganuco Glacier Huarapasca Temperature and precipitation Mean Daily T emperature vs Elevation Monthly Temperature Artesonraju °C -5 4 1.0 5 0 1.5 6 °C oC 7 5 2.0 8 2.5 9 10 10 Monthly Temperature Querococha 3500 4000 4500 5000 5500 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec m.a.s.l Monthly Precipitation Querococha Monthly Precipitation Artesonraju mm 100 100 200 150 mm 4.0 3.5 50 3.0 3800 4000 4200 4400 4600 4800 5000 0 0 2.5 mm 200 300 4.5 250 5.0 400 300 Mean Daily Precipitation vs Elevation 5200 Jan Feb Mar Apr May Jun Elevation (m.a.s.l) Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Temperature and precipitation -5.5 oC -5.0 -4.5 Reanalysis North 1970 1980 1990 2000 Year 1000 800 600 mm 1200 1400 Querococha 1970 1980 1990 Year 2000 Mass balance measurements ELA Artesonraju Uruashraju Yanamarey 2003 5000 4850 -5 4900 -4 4950 -3 m.w.e m.a.s.l -2 -1 5050 0 5100 Mass Balance 2004 2005 Time 2006 2007 Artesonraju Uruashraju Yanamarey 2003 2004 2005 Time 2006 2007 Retreatment of the Yanamarey glacier since 1948. 27- Morrena cubierto de hielo, producto de pequeñas avalanchas 0907 GLACIAR YANAMAREY 1948 27 06-1 15-1100 09- 0806 28-09 -95 Y-1 8 -0 84 6- Y-1 6 Y-9 1948 1986 Derrumbe ocurrido en el mes de junio 2007 23/01/09 01 6- 0994 -9 1 31- -99 1096 23- -1 0 08-0905 -0 2 0-04 02-0903 170702 23-10 1097 02- 907 22 28 2 9-9 93 0- 03 2409- 10-89 088 2 20- 4-09- 8 058 86 7 5 -8 5 9-0 -0 -1 30 14 5-83 20-05-82 05-0 76 5-0 -80 1 -8 -05 5 -0 06 29-12-98 21 10 -0 1993 2001 2009 Glacier front variation in glaciers of the Cordillera Blanca VARIACIONES DEL FRENTE DE LOS GLACIARES MONITOREADOS EN LA CORDILLERA BLANCA 0 -100 -200 -400 -500 -600 -700 -800 -900 ALPAMAYO BROGGI URUASHRAJU YANAMAREY GAJAP PASTORURI 2005 2006 2007 2008 Años 98 99 2000 01 02 03 2004 91 92 93 94 95 96 97 84 85 86 87 88 89 90 77 78 79 80 81 82 83 68 70 71 72 74 1976 -1000 1948 Retroceso (m) -300 Energy data in Artesonraju Longwave incoming radiation 200 250 300 350 Wm-2 300 200 100 Wm-2 400 Shortwave incoming radiation 2004 2004 2005 2006 2007 2008 2005 2006 2007 2008 2009 2008 2009 2009 Time Time Artesama Longwave emitted radiation 310 290 300 Wm-2 150 50 0 Wm-2 250 320 Shortwave reflected radiation 2004 2005 2006 2007 2008 2004 2009 2005 2006 Time Time Artesama Station 2007 Swin (Wm ) Min 110.00 1st Q 182.40 Median 227.50 Mean 234.60 3rd Q 282.60 Max 408.80 SD 65.76 VAR 4325.37 Swref (Wm-2) -2 6.97 60.56 91.01 95.64 126.50 248.14 48.23 2326.76 -2 194.30 254.20 290.70 280.60 311.10 369.40 36.36 1322.31 -2 287.70 303.90 309.70 308.50 313.50 320.00 6.80 46.27 -2 -38.79 44.26 80.68 87.87 123.02 266.38 56.51 3193.47 Lwatm (Wm ) Lwsurf (Wm ) Rnette (Wm ) Filling gaps in time series Multilinear regression STL Harmonic analysis 300 100 100 350 data 5 4 3 200 2010 300 0 -50 ATRSwinc 245 2000 240 1990 150 2006 2007 2008 2004 2005 2006 2000 2010 2009 2008 2009 Data with interpolated gaps 0.4 1990 2008 Time ACF 1980 2007 2009 time 1970 0.3 400 years Multilinear regression method 200 ATRSwinc 0.2 1980 1990 2000 2010 years 0 1970 0.0 100 0.4 0.1 0.6 0.8 ATRSwinc 1.0 300 Nash Coefficient-Filled Temperature Artesonraju Nash Coefficient 100 -50 0 50 -150 2 2005 1 2004 -1 0 T oC 3 4 5 remainder Filled Temperature Artesonraju 150 230 years 235 1980 trend 1970 250 seasonal 50 2 1 -1 0 T oC 200 Original Temperature Artesonraju 400 400 Initially interpolated data 0 5 10 15 20 Lag 25 30 2004 2005 2006 2007 Time Energy balance model (Hock) Distributed model. Works in a subdiurnal or diurnal temporal resolution. Solves the energy balance equation on the glacierized area (calculation per each grid of DTM). Calculates water discharge from the melting of three areas (firn, snow and ice) and the liquid precipitation. Accounts for the spatial distribution of topographic shading. Calculates individual energy balance components ACCUMULATION: Precipitation (temperature) ABLATION Melting and Sublimation QM / S G G ( ) L L QG QH QL QR QM M L f w Energy balance model (Hock) Main station Extrapolation 1.Interpolation of G directly Gs/Ics Amounts of diffuse radiation Cloud Cover Global radiation Gg=Icg*(Gs/Ics) 2. Separating G into direct and diffuse radiation considering terrain effects Ig=Icg*(Is/Ics) the radio of global radiation to top of the atmosphere G/IToA Is=Gs-Ds Direct radiation Diffuse radiation Energy balance model (Hock) Extrapolation Snow Albedo Variable: Assumed constant according to the surface Number of days since last snowfall Air temperature Albedo Variable for snow and ice. Ice Albedo Variable: Assumed increase of 3%(100m-1) Account for the tendency of debris to accumulate towards the glacier. Energy balance model (Hock) Main station Long inc. radiation Lsky: Lterrain: Extrapolation It requires the estimation of Lo at climate station and it is assumed invariant for all grids. Linc in each grid is calculated as the sum of Lsky and Lterrain in each grid. Long out. radiation Direct measurements of longwave outgoing radiation EL s TS4 TS4 Linear decrease with increasing elevation when surface temperature is negative, if temperature is 0 Lout is spatially constant Energy balance model (Hock) Calculated from the aerodynamic approach Sensible heat QH c p k2 u z Tz T0 ln z / z0 w ln z / z0T Qh proportional to Temperature (Tz) and Wind speed (zu) L Latent heat of evaporation or sublimation ρ density of air Po mean atmospheric pressure at the sea level Cp specific heat capacity of air k Calculated from the aerodynamic approach Latent heat Karman´s constant To surface temperature Eo vapor pressure of the surface QL L 0.63230 k u z ez e0 P0 ln z / z0 w ln z / z0e 2 QL proportional to vapour pressure (ez) and Wind speed (zu) Zow, zoT and zoe are the roughness lengths fro logarithmic profiles of wind speed, temperature and water vapor Energy balance model (Hock) Conditions Daily resolution No separation of direct and diffuse radiation Albedo constant Snow water equivalent interpolated with linear interpolation. Qmeas Qcalc 0.0 0.5 m3/s 1.0 1.5 Discharge 2004.5 2005.0 Time Artesoncocha (r2=0.64) 2005.5 Temperature Index Model (Hock) Melting is related to the positive air temperatures and the amount of time that this temperature exceeds the melting point. This relation uses a factor of proportionality (DDF) which shows the decrease of water content in the snow cover or ice by 1°C above freezing in 24 hours. Melt=(DDF/24)*T(timestep) Melt=0 Melt=(MF/24+ rsnow/ice*I)*T(timestep) T>0 Melt=0 T<=0 Melt=(MF+rsnow/ice*I*Globs/Is)*T(timestep) T>0 Melt=0 T<=0 DDF= Degree day factor mm/oCdía MF= Melt factor mm/h K rsnow/ice= radfactorice mm m2/WhK T>0 T<=0 Incorporates clear sky solar radiation (I) accounts for the spatial topographic variability Incorporates global measured radiation Which account for deviations on clear sky conditions Temperature Index Model (Hock) Discharge 0.8 0.6 0.4 0.2 m3/s 1.0 1.2 1.4 r2 fm ice 4 5 6 7 8 9 8 0.5605 9 0.6044 0.6166 0.648 0.6617 0.6622 0.6512 0.6504 0.6712 0.6739 0.6631 0.648 10 0.637 0.6715 0.6812 0.6724 0.6499 0.616 11 0.6578 0.6801 0.6777 0.657 0.6226 0.5769 12 0.6665 0.6756 0.6606 0.6277 0.5811 0.5232 13 0.6633 0.6581 0.6298 0.5841 0.525 0.4548 14 0.6482 0.6274 0.5853 0.5264 0.4544 0.3717 15 0.621 fm ice 1 2 3 4 13 0.2384 0.526 0.6312 0.6633 14 0.2791 0.5489 0.6347 0.6482 15 0.3134 0.5642 0.6282 0.621 0.5719 0.6116 0.5816 16 2004.4 2004.6 2004.8 2005.0 Time Artesoncocha 2005.2 2005.4 2005.6 fm snow Simulation of glacier discharge in future scenarios of climate change MPI Regional Climate Model Remo Horizontal Resolution 50Km x 50 Km (0.44°x 0.44°) Variables: Temperature, surface pressure, horizontal wind components, precipitation and humidity. Domain. South América Time step: 240 s Forcing Data: ERA Interim Simulation Period: 1989-2008 Future Simulation: until 2100 (in process) THANK YOU Mass Balance Year of positive mass balance Year of negative mass balance
© Copyright 2026 Paperzz