DUNMAN HIGH SCHOOL H2 Mathematics 2009 Yr 6 Prelim Paper 1 Suggested Solns 1 Let x, y, z be the number of B1, B2, B3 bears made in the month. x y z 180 5 x 4 y 3z 650 20 x 12 y 9 z 2100 1 1 1 180 Augmented matrix M = 5 4 3 650 20 12 9 2100 1 0 0 30 RREF(M) = 0 1 0 50 0 0 1 100 Thus x = 30, y = 50, z = 100 2 From GC, a = 0 tan 1 x y x tan y x tan y Since x 0 and 0 y f 1 : x , therefore x tan y 2 tan x , 0 x 2 3(a) 9 x 2 4 y 2 36 x 0 9 x 2 4 y 2 36 2 x 2 2 4 y2 1 i.e Hyperbola 9 Asymptotes: x 2 2 4 3 y x3 2 y2 3 3 y x 2 or y x 2 9 2 2 3 y y x 2 2 2 (b)(i) (ii) Asymptotes: y 4 x and x 1 2 dy 1 A 0 dx 2 x 12 x 1 2 2A Therefore, for C not to have stationary points, A < 0. 4(a) f ( x) tan eg( x ) f '( x) sec 2 eg( x ) g '( x)eg( x ) x f '(5) sec2 (e)(3)e 9.81 (b) x2 dy (2 x 1)(2 x) x 2 (2) 2 x 1 dx (2 x 1)2 2 x2 2 x (2 x 1)2 dy 2 x2 2 x Function is increasing 0 0 dx (2 x 1)2 2 x( x 1) 0 x 0 or x 1 (2 x 1)2 y 5(a) 2 5 3 2 1 4 4 2 By ratio theorem, OP 1 3 3 0 (b) 11 3 8 AB EC OE 4 4 14 6 8 2 AD 1 1 (c) 3 2 4 1 6 1 Angle required = cos 1 102 61 6 (d) 11 5 6 3 BC k AB BC 1 1 k 4 14 2 12 6 k 2 & 8 1 9 6(i) Set (ii) (iii) dm R Bm, where R and B are positive constants. dt dm 2 3 R B( ) 0, B R. dt 3 2 dm 3 R Rm dt 2 3 R(1 m) 2 R (2 3m) k (2 3m) 2 dm k (2 3m) dt 1 dm k (2 3m) dt 1 ln | 2 3m | kt c 3 ln | 2 3m | 3kt 3c dm 3 R (2 3m) e 3kt 3c ( R Rm (2 3m) 0) dt 2 2 2 m Ae 3kt 3 Any positive value of k But A must be a positive value STRICTLY LESS than 1 1 e.g. k=1, A= , then m [2 e3t ] 3 3 m 2/3 2/3-A 0 t 2 3 7 (a) r4 2 3 1 r r 1 r 2 r r 1 r 2 2 3 1 r r 1 r 2 1 r 2r 3(1 r ) 2 1 2 47 Coefficient of r3 = 16 n n 2 r4 3 1 r r 1 r 2 r 1 r (r 1) (r 2) r 1 1 (b) 1 2 (1) 2 (2) 2 (3) 3 (2) 3 (3) 3 (4) 1 (3) 1 (4) 1 (5) 2 3 1 (n 2) ( n 1) ( n) 2 3 1 (n 1) ( n) (n 1) 2 3 1 n (n 1) (n 2) 3 1 3 1 2 (n 1) (n 1) (n 2) 3 2 1 2 (n 1) (n 2) 3 2n 4 (n 1) 3 n3 2 (n 1)(n 2) 2 n 1 n 2 (shown) n r4 3 r r 1 r 2 2 r 1 n r 1 n r 1 n r4 (r 2) r 2 r 2 r 1 r4 r 2 n 3 r 1 r4 r 2 r4 3 r r 1 r 2 2 3 8(a) 2 0 2 x 4 x 3 dx 1 0 x 2 4 x 3 dx 1 (b) 1 x 2 4 x 3 dx 2 x3 x3 2 2 x 3x 2 x2 3x 3 0 3 1 1 8 1 2 3 8 6 2 3 3 3 3 2 1 tan 1 x dx x tan 1 x x dx 2 1 x 1 2x x tan 1 x dx 2 1 x2 1 x tan 1 x ln(1 x 2 ) c 2 1 1 dx sec 2 tdt 2 2 2 tan t sec t x x 1 (c) 2 cos t sin t dt 2 (sin t )1 c x2 1 c x 9(a) Common ratio = S n S S n q p 2 S n S q n p 1 p p 2 q q 1 1 p p q n 2 1 1 p n q 2 1 p p n 2q n (shown) (b)(i) First term of each row: 2, 4, 8, 14…. Difference between the first terms: 2, 4, 6…. is AP with a = 2, d = 2. Sum of the first (n – 1) differences n 1 2 2 n 2 2 n 2 n = 2 (ii) First term of nth row = Sum of the first (n – 1) differences + 1st term = n 2 n 2 Total no. of terms from 1st row to (n – 1)th row = 1 + 2 + 3 …+ (n – 1) n 1 1 2 n 1 n n 1 2 Sum of all terms from 1st row to (n – 1)th row n n 1 2 2 n2 n 2 2 2 n n 1 n 2 n 2 4 10(i) (ii) (iii) At point A, 7 1 2 8 8 1 RHS 1 0 14 Normal vector of 2 = 4 2 4 1 4 2 Let be the angle required. 14 7 4 2 2 1 108 sin 1 90 or 2 216 54 11664 7 Normal vector of 1= 2 is parallel to direction vector of l 1 Since l is both perpendicular to 1 and 2, 1 and 2 must be parallel. Alternative: (iv) 7 14 1 Normal vector of 1= 2 = 4 1 2 2 Since the normal vectors of 1 and 2 are parallel, 1 and 2 are also parallel. Observe that 2 contains origin, Shortest distance required = 1 72 2 12 2 1 54 1 54 Alternative: Let B 0,1, 2 0 1 1 AB 1 8 7 2 8 6 Shortest distance required = 1 7 7 2 6 1 7 2 2 12 2 (v) Let M be the foot of perpendicular of P on 1. 3 7 7 7 2 2 7 8 1 1 1 PM PA nˆ nˆ 2 2 54 54 1 OP ' PP ' OP 7 4 3 1 2 2 1 3 2 1 0 1 Alternative: Let l2 be the line passing through point P and parallel to normal vector of 1. 4 7 l2 : r 1 s 2 0 1 4 7 7 1 s 2 2 1 0 1 1 1 28 49 s 2 4 s s 1 s 2 Let M be the foot of perpendicular of P on 1 and P’ be the point of reflection required. 1 a 2 OM 2 & OP ' b c 1 2 0c 1 4 a 1 1 b , 2, Using midpoint theorem: 2 2 2 2 2 3 Thus OP ' 3 1 11(a) (b) dC 2π dr dA A πr 2 2πr dr dC dC dA 1 dA dr dr r When r k cm, dC dC dA 2 dt dA dt k dC 2 k 3 dt 3 2 1 1 1 2 xy 2 xy π x (πx)(2 x) 800π 2 2 2 C 2πr 1 2 3 xy πx 2 πx 2 800π 8 5 6 xy πx 2 800π 4 2 5πx 24 xy 3200π 1 V xy πx 2 (2 x) 8 1 2 x 2 y πx 3 4 2 1 3 2 3200π 5πx 2x πx 24 x 4 800 1 πx πx 3 3 6 1 πx 1600 x 2 6 For max. V, dV 1 π(1600 3x 2 ) 0 dx 6 x 23.094 (reject negative ans.) y = 3.0230 Thus the values of x and y are 23.1 and 3.02cm resply. d 2V 1 π(6 x) πx 0 dx 2 6 Thus volume is maximum. 12(a) i i 1 e e (e 2 i 2 i e ) = 2 cos 2 1 e 1 e i 4 i 2 i e 2 , . 4 i 2 i 2 2 cos e 2 cos e 2 2 4 2 cos 4 4 24 cos 4 16 cos 4 2 2 2 e i 4 2 2 cos 4 4 2 e i 4 4 2 (ei2 e i2 ) (2i sin 2 ) (b) 32i cos 4 ( ) sin(2 ). 2 1 arg iz 2 4 1 arg i[ z ] 2i 4 i arg(i) arg z 2 4 i 3 L : arg z 2 4 L h cos 1 4 | (1) | 2 min | z i | h 1 2 2 From the graph above, observe that in order for the two loci 1 arg iz and z i c to have 2 intersection points, 2 4 1 1 1 1 we have c | (1) | c 2 2 2 2 2 2
© Copyright 2026 Paperzz