60 BIOCHEMICAL SOCIETY TRANSACTIONS action liberated from the membranc-associated glycolipid precursor [33]. Clearly, more work is required to elucidate both the intimate mode of action of POS upon insulin release and the identity of those first messengers which could stimulate its production in islet cells. 1. Malaisse, W. J. & Sener, A. ( 1 987) Biochim. Biophys. Aciu 927, 190- I 9 5 2. Malaisse, W. J. & Malaise-Lagae, F, ( 1968) J. Lab. Clin. M e d 72,438-448 3. Malaise, W. J., Sener, A,, Herchuelz, A. & Hutton, J. C. ( 1 979) Meiubolism 28, 373-386 4. Malaisse, W. J. ( 1984) UiubefesMeiub. 9,313-320 5. Sener. A., Kawazu, S., Hutton. J. C., Boschero, A. C., Devis, G.. Somers, G., Herchuelz, A. & Malaise, W. J. (1978) Biochem. J. l 7 6 , 2 17-232 6. Malaisse, W. J., Hutton, J. C., Kawazu, S., Herchuelz, A,, Valverde, I. 62 Sencr. A. ( 1979) Diuberologiu 1 6 , 3 3 1-341 7. Malaisse, W. J., Sener, A,, Carpinelli, A. R., Anjaneyulu, K., Lebrun. P., Herchuelz, A. & Christophe, J. (1980) Mol. Cell. Endocrinol. 20, I7 I - I 8 9 8. Malaisse, W. J., Best, L., Kawazu, S., Malaise-Lagae, F. & Sener, A. ( 1983)Arch. Biochem. Biophys. 224, 102- I 10 9. Malaisse, W. J., Malaisse-Lagae, F., Scner, A. & Hcllcrstrom, C. ( I 985) Biochem. J . 227,995- 1002 10. Malaisse. W. J. ( I986) Uiubeies ille/ub. Rev. 2,243-259 I I . Malaise, W. J., Malaisse-Lagae, F., Wright, P. H. & Ashmore, J. ( 1967) Endocrinology 80,975-978 12. Malaise, W. J., Mahy, M. & Mathias, P. C. F. ( 1985) IHCS Merl. Sci. 13, 503-504 13. Dunlop, M. & Malaisse, W. J. ( 1986) Arch. Biochern. Biophys. 244,42 1-429 14. Blachier. F. & Malaisse. W. J. ( 1987) Experieriiiu 43. 60 1-602 15. Blachier, F., Segura, M. C. & Malaise, W. J. ( I 987) Res. Cornmiin. Chem. l’u!hol. I’harmucol. 5 5 , 33 5 -3 5 5 16. Malaisse, W. J., Svoboda, M., Dul’ranc, S. P., Malaisse-Lagae, F. & Christophe, J. ( 1 084) Biochern. Biophp. Rex Cornmiin. 124, 190- I96 7. Svoboda, M., Garcia-Morales, P., Dufrane, S. P., Sener, A,, Valverde, I., Christophe, J. & Malaise, W. J. ( 1 985) Cell Biochem. Funci. 3,25-32 8. Best, L. & Malaisse, W. J. (1984) Endocrinology 115, 1814-1 820 19. Best, L. & Malaise, W. J. (1983) Biochem. Biophys. Res. Commun. 116.9-16 20. Hubinont, C., Best, L., Sener, A. & Malaisse, W. J. ( 1 984) FEBS Leit. 170,247-253 21. Malaisse, W. J. & Sener, A. (1985) IKCS Med. Sci. 13, 1239- I240 22. Mathias, P. C. F., Carpinelli, A. R., Billaudel, B., GarciaMorales, P., Valverde, I. & Malaise, W. J. ( I985) Biochem. Pl?urmucol.34, 345 1-3457 23. Best. L. & Malaisse, W. J. ( I 983) Mol. Cell. Endocrinol. 32, 205-214 24. Albor, A,, Valverde, I., Mato, J. M. & Malaise, W. J. (1988) Absir. 111 Congr. Luso- Espmnol Bioqirim., p. 238 2.5. Mato, J. M., Kelly, K. L., Abler, A. & Jarctt, L. (19x7) J . Biol. Chem. 262,2131-2137 26. Alvarez, J. F., Varela, I., Ruiz-Albusac, J. M. & Mato, J . M. ( 1988)Biochem. Biophys. Res. Commun. 152, 1455- 1462 27. Malaise, W. J., Malaise-Lagae, F., Lacy, P. E. 62 Wright, P. H. ( 1967) /’roc. Soc. Exp. Biol. Med. 124,497-500 28. Arnmon, H. P. T. & Verspohl, E. ( I 976) Endocrinoiogy 99, 1469- I476 29. Pace, C. S., Matschinsky, F. M., Lacy. P. E. & Conant, S. (1977) Biochim.Biophys. Aciu 497,408-4 I4 30. Van Schravendijk, C. F. H., Foriers. A.. Van den Brande, J. L. & Pipeleers, D. G. ( 1987) Endocrinology I 2 1, 1 784- I 788 3 I . Van Schravendijk, C. F. H., Pezzino, V., Vigneri, R. & Pipeleers, D. G. ( I988) Uiubeies 37 (Suppl. I ) , 187A 32. Garcia-Morales, P., Dufrane, S. P., Sencr, A,, Valverdc, I. & Malaise, W. J. ( 1984) Biosci. Rep. 4, 5 I 1-52 1 33. Saltiel, A. R. ( 1 987) Endocrinology 120. 967-972 Received 3 August I 9 8 8 How does glucose induce inositol lipid hydrolysis in pancreatic islets? A considerable amount of work has focused on thc nature of the coupling mechanism between nutrient oxidation and islet cell depolarization. It is generally accepted that a rise in cellular ATP concentration as a result of nutrient oxidation Pancrcatic islets are one, if not the only, example of a tissue in depolarizes the cell membrane by reducing its permeability which inositol lipid metabolism can be triggered by a nutrient to K + [6, 71. There are, however, a number of observations stimulus, in addition to hormonal and neurotransmitter-type which are not consistent with this as the sole mechanism for agonists. Among the nutrients capable of eliciting such an nutrient-induced islet cell dcpolarization. First, there is a lack of correlation between islet ATP effect are glucose, glyceraldehyde and a-ketoisocaproate, each of which are potent stimuli for insulin secretion. The levels and glucose-induced insulin secretion [S, 91. Second, a initial response to these substances, as with neurotrans- maximal effect of glucose on K’ permcability is observed at mitters, is hydrolysis of phosphatidylinositol 4,5-bisphos- approximately 7-8 mM of the sugar [ 101, whereas clcctrical phatc and the formation of inositol 1,4,5-trisphosphate [ I ] activity and insulin secretion increase up to 20 mM 19, 111. and phosphatidate 121 and of inositol 1,3,4,5-tetrakisphos- Consequently, it seems likely that an additional mechanism exists which couples glucose oxidation to islet cell dcpolariphate and inositol 1,3,4-trisphosphate[3]. As is the case for insulin secretion, inositol lipid hydrolysis zation and Ca2+entry. Recent work in our laboratory has demonstrated that in response to nutrients appears to require oxidation of that nutrient [2] and also the presence of Ca2+( l o - ‘ M or above) addition of lactate to perifused islets results in a transient in thc incubation medium [4]. lnositol lipid breakdown in stimulation of 4sCa2+and [‘H]inositol efflux (Fig. I ) , suggestislets can be induced by raising cytosolic Ca2+ concentra- ing Ca2 entry and inositol lipid breakdown, respectively. tions, cither by K + depolarization [4] or by removing Na+ Furthermore, subsequent removal of lactate resulted in a from the medium (L. Best, unpublished work). In addition, similar increase in jsCa2+and [3H]inositol efflux. It is highly inositol lipid breakdown can be induced in digitonin- unlikely that the latter effect occurred as a result of increased permeabilized islets by raising the concentration of C a 2 + oxidation of the substrate. An alternative explanation is that from lo-’ to 1 V sM [4]. Taken as a whole, these observa- the flux of lactate across the islet cell plasma membrane is a tions strongly suggest that nutrient-induced inositol lipid determinant of membrane potential. Thus, the production of metabolism occurs as a result of depolarization and Ca2+ lactate from glucose, and the subsequent efflux of lactate entry into the islet cell via voltage-sensitive Ca?+ channels from the islet cell, could be at least a part of the mechanism whereby glucose depolarizes islet cells. In this respect, it is of [51. LEONARD BEST Department of Medicitie, Utiiversity of Munchester, Oxford Road, Munchester MI3 9l’T U.K . + 1989 61 627th MEETING, NOTTINGHAM 0.025- 0.020 X g 0.015’ 3 + m ,o 0.010 0.005 0’ 0.~~~1 0.025 Fig. 2. A possible role for luctate formation arid efflux it7 the depolurizution of islet cells by glucose X G .- 0.020. u -s sequestration of Ca?+ into endoplasmic reticulum [ 131, whereas the other products of inositide hydrolysis, inositol 1,3,4,5-tetrakisphosphate and diacylglycerol, may exert an additional regulatory function upon the secretory process II 41. y 0.01 5. ?, I 0.010 0.005’ 20 25 30 35 40 45 50 55 Time (min) Fig. I . Fractional o u ~ l o w rutes (t;OR) for 45Ca2+ Ulld /~’I-t]iiiositoI froin pre-loudecl puricreutic islets: eflects of mdditiori mid sirbseqireiit withdrawal of luctute Groups of 150 islets were perifused in the presence of 5.6 mM-glucose and exposed to 40 mwlactate during the period designated by the vertical lines. interest that the conversion of glucose to lactate is approximately linear within the range 2.5-20 mwglucose. The extrusion of protons, produced during glycolysis, could occur in exchange for Na+; we have previously demonstrated an amiloride-sensitive N a + / H + exchange system in islets [12]. The efflux of lactate via such a system would constitute a net loss of negative charge (see Fig. 2) and, theoretically, result in a depolarization of the islet cell membrane and Ca?+ entry via voltage-sensitive Ca2+ channels. One of the consequences of a rise in cytosolic Ca?+ concentration would be the initiation of inositol lipid breakdown. The inositol 1,4,5-trisphosphate produced as a result could limit the I . Best, L. & Malaisse, W. J. (1984) Enr/ocrino/ogy 115, I8 14- I820 2. Best. L. & Malaisse, W. J. (1983) Mol. Cell. Endocrinol. 32, 205-2 14 3. Best, L., Tomlinson, S., Hawkins, P. T. & Downes, C. P. (1987) Biochim. Biophp. Acrcr 927, 1 12- I 16 4. Best, L. ( 1986) Biochem. J. 235,773-779 5. Findlay, I. & Dunne, M. J. ( 1 985) FEBSLetr. 189,28 1-285 6 . Sturgess. N. C.. Hales. C. N. & Ashford. M. L. J . ( 1987) I’j7ugers Arch. 409,607-6 15 7. Arkhammar, P., Nilsson. T., Korsman, P. & Berggren, P.-0. ( 1 987) J. Biol. Chem. 262.5448-5454 8. Hellman, B.. Idahl, L.-A. & Danielsson, A. ( 1969) Diuberes 18, 509-5 16 9. Malaisse, W. J., Sener, A.. Herchuelz. A. & Hutton, J . C. (1979) Mercrbolism 28.373-386 10. Boschero, A. C. & Malaisse. W. J. ( I98 1 ) J. f’hysiol. (London) 315, 143-156 I I . Mcissner, H. P. & Schmelz. H. ( I 974) I’Jiigers Archiv. 351, 195-206 12. Best, L., Bone, E. A.. Meats, J. E. 6( Tomlinson, S. (1988) J. Mol. Eticlocritiol. 1, 33-38 13. Nilsson. T., Arkhammar, P., Hallberg. A,, Hellman. B. & Berggren. P.-0. ( I 987) Biocheni. J. 248,329-336 14. Metz, S. ( 1988) Dirrberes 37,3-7 Kcceived 3 August 1988 Role of protein kinase C in the regulation of insulin secretion PETER M. JONES and SIMON L. HOWELL Department of Physiology, Kirig’s College Loiidori, Kerairigtori, London W8 7AH, U.K . The Ca2+/phospholipid-dependent protein kinase C (PKC) has been implicated in a variety of physiological systems, Abbreviations used: PKC. protein kinase C; DAG, diacylglycerol; PMXB. polymyxin B; PMA. phorbol 12-myristate 13-acetate; PDD, 4u-phorbol I2,13-didecanoate; PS, phosphatidylserine. Vol. 17 including the control of insulin secretion from @-cellsof pancreatic islets of Langerhans (see Nishizuka, 1984). PKC has been identified.and characterized in islets of Langerhans and insulin-secreting tumour cells (for review, see Harrison et al., 1984), and a number of endogenous substrates have been reported for PKC in studies using intact, homogcnized or clectrically permeabilized islets (Harrison el al., 1984; Jones et al., 1988). The activity of PKC in sirir is thought to be regulated by the availability of diacylglyccrols (DAG) which can be
© Copyright 2026 Paperzz