John A. Bonita Figure 3.1 Chapter 3: Experimental Testing Program Scanning Electron Photographs of Light Castle Sand 71 John A. Bonita Chapter 3: Experimental Testing Program Silt Gravel Sand 100 Percent Passing (%) 80 Boundaries for Potentially Liquefiable Soil 60 40 20 Boundaries for Most Liquefiable Soil Light Castle Monterey 0 0 0.01 0.1 1 10 Grain Size (mm) Figure 3.2 Grain Size Distribution Curves for Light Castle and Monterey 0 Sands (Modified from Ishihara 1993) 72 John A. Bonita Chapter 3: Experimental Testing Program 700 e(avg) = 0.801, Dr = 22% 600 q (kPa) 500 400 Peak α' = 27.1o o φ' = 30.8 300 200 Steady State α' = 26.0 o φ' = 29.1 100 o 0 0 200 400 600 800 1000 p' (kPa) a) Loose (Adapted from Porter (1998)) 700 600 e(avg) = 0.698, Dr = 55% q (kPa) 500 Peak α' = 33o φ' = 40.5o 400 300 200 Steady State α' = 26.6o φ' = 28.9o 100 0 0 200 400 600 800 1000 p' (kPa) b) Medium Dense Figure 3.3 Effective Stress Paths for ICU Triaxial Tests in Light Castle Sand 73 John A. Bonita Chapter 3: Experimental Testing Program 1000 Residual α' = 26.0 o φ' = 29.1 Steady State Strength Envelope (from Porter (1998)) ICU Testing in Medium Dense Samples o q (kPa) 800 600 400 200 0 0 200 400 600 800 1000 p' (kPa) Figure 3.4 Steady State Failure Envelope for Light Castle Sand Based on ICU Triaxial Tests 74 John A. Bonita Chapter 3: Experimental Testing Program 0.95 0.90 Loose Samples (From Porter 1998) 0.85 Void Ratio, e 0.80 0.75 Steady State Line (From Porter 1998) 0.70 0.65 0.60 Solid = Initial Hollow = Final 0.55 Medium Dense Samples (This Investigation) 0.50 1 10 100 1000 10000 σ3' (kPa) Figure 3.5 Steady State Line Generated for Light Castle Sand Based on ICU Triaxial Tests 75 John A. Bonita Chapter 3: Experimental Testing Program 125 σ3' 100 100 uf 75 75 50 50 25 25 0 0 CSR = 0.12 -25 -25 0 10 20 30 40 50 40 50 Number of Cycles, N a) Effective Stress 15 12 Axial Strain, εa (%) 9 6 3 0 -3 -6 -9 CSR = 0.12 -12 -15 0 10 20 30 Number of Cycles, N b) Axial Strain Figure 3.6 Cyclic Triaxial Test Results for Loose Samples at CSR = 0.12 76 Induced Pore Water Pressure, ∆u (kPa) Effective Confining Stress, σ3' (kPa) 125 John A. Bonita Chapter 3: Experimental Testing Program 125 σ3' uf 100 100 75 75 50 50 25 25 0 0 CSR = 0.15 -25 -25 0 10 20 30 40 50 Number of Cycles, N a) Effective Stress 15 12 Axial Strain, εa (%) 9 6 3 0 -3 -6 -9 CSR = 0.15 -12 -15 0 10 20 30 40 50 Number of Cycles, N b) Axial Strain Figure 3.7 Cyclic Triaxial Test Results for Loose Samples at CSR = 0.15 77 Induced Pore Water Pressure, ∆u (kPa) Effective Confining Stress, σ3' (kPa) 125 John A. Bonita Chapter 3: Experimental Testing Program 125 σ3' uf 100 100 75 75 50 50 25 25 0 0 CSR = 0.18 -25 Induced Pore Water Pressure, ∆u (kPa) Effective Confining Stress, σ3' (kPa) 125 -25 0 10 20 30 40 50 Number of Cycles, N a) Effective Stress 15 12 Axial Strain, εa (%) 9 6 3 0 -3 -6 -9 CSR = 0.18 -12 -15 0 10 20 30 40 50 Number of Cycles, N b) Axial Strain Figure 3.8 Cyclic Triaxial Test Results for Loose Samples at CSR = 0.18 78 John A. Bonita Chapter 3: Experimental Testing Program 50 CSR = 0.12 q (kPa) 25 0 -25 -50 0 25 50 75 100 125 150 175 p' (kPa) 50 CSR = 0.15 q (kPa) 25 0 -25 -50 0 25 50 75 100 125 150 175 p' (kPa) 50 CSR = 0.18 q (kPa) 25 0 -25 -50 0 25 50 75 100 125 150 175 p' (kPa) Figure 3.9 Stress Paths from Cyclic Triaxial Tests on Loose Samples 79 John A. Bonita Chapter 3: Experimental Testing Program 125 σ3' 100 100 uf 75 75 50 50 25 25 0 0 CSR = 0.16 -25 Induced Pore Water Pressure, ∆u (kPa) Effective Confining Stress, σ3' (kPa) 125 -25 0 10 20 30 40 50 60 70 80 60 70 80 Number of Cycles, N a) Effective Stress 50 40 Axial Strain, εa (%) 30 20 10 0 -10 -20 -30 CSR = 0.16 -40 -50 0 10 20 30 40 50 Number of Cycles, N b) Axial Strain Figure 3.10 Cyclic Triaxial Test Results for Medium Dense Samples at CSR = 0.16 80 John A. Bonita Chapter 3: Experimental Testing Program 125 σ3' uf 100 100 75 75 50 50 25 25 0 0 CSR = 0.18 -25 Induced Pore Water Pressure, ∆u (kPa) Effective Confining Stress, σ3' (kPa) 125 -25 0 10 20 30 40 50 Number of Cycles, N a) Effective Stress 50 40 Axial Strain, εa (%) 30 20 10 0 -10 -20 -30 CSR = 0.18 -40 -50 0 10 20 30 40 50 Number of Cycles, N b) Axial Strain Figure 3.11 Cyclic Triaxial Test Results for Medium Dense Samples at CSR = 0.18 81 John A. Bonita Chapter 3: Experimental Testing Program 125 σ3' uf 100 100 75 75 50 50 25 25 0 0 CSR = 0.20 -25 Induced Pore Water Pressure, ∆u (kPa) Effective Confining Stress, σ3' (kPa) 125 -25 0 10 20 30 40 50 Number of Cycles, N a) Effective Stress 50 40 Axial Strain, εa (%) 30 20 10 0 -10 -20 -30 CSR = 0.20 -40 -50 0 10 20 30 40 50 Number of Cycles, N b) Axial Strain Figure 3.12 Cyclic Triaxial Test Results for Medium Dense Samples at CSR = 0.20 82 John A. Bonita Chapter 3: Experimental Testing Program 125 σ3' 100 100 uf 75 75 50 50 25 25 0 0 CSR = 0.22 -25 Induced Pore Water Pressure, ∆u (kPa) Effective Confining Stress, σ3' (kPa) 125 -25 0 10 20 30 40 50 Number of Cycles, N a) Effective Stress 50 40 Axial Strain, εa (%) 30 20 10 0 -10 -20 -30 CSR = 0.22 -40 -50 0 10 20 30 40 50 Number of Cycles, N b) Axial Strain Figure 3.13 Cyclic Triaxial Test Results for Medium Dense Samples at CSR = 0.22 83 John A. Bonita Chapter 3: Experimental Testing Program q (kPa) 25 0 CSR = 0.16 -25 0 25 50 75 100 125 150 175 p' (kPa) q (kPa) 25 0 CSR = 0.18 -25 0 25 50 75 100 125 150 175 p' (kPa) q (kPa) 25 0 CSR = 0.20 -25 0 25 50 75 100 125 150 175 p' (kPa) q (kPa) 25 0 CSR = 0.22 -25 0 25 50 75 100 125 150 175 p' (kPa) Figure 3.14 Stress Paths from Cyclic Triaxial Tests on Medium Dense Samples 84 John A. Bonita Chapter 3: Experimental Testing Program Cyclic Stress Ratio, CSR (σd/2σ'(consol)) 0.40 0.35 0.30 0.25 Dr = 55% 0.20 0.15 0.10 Dr = 25% 0.05 0.00 1 10 100 Number of Cycles, N Figure 3.15 CSR vs. Number of Cycles to Failure for Loose and Medium Dense Soils 85 John A. Bonita Chapter 3: Experimental Testing Program 0.30 Cyclic Stress Ratio, CSR 0.25 Dr = 55% 0.20 0.15 0.10 Dr = 25% 0.05 0.00 0 20 40 60 80 100 Effective Stress Ratio At Point of Failure, σ3'(c) /σ3'(o)(%) Figure 3.16 Comparison of the Effective Stress in the Soil at the Point of Failure 86 Deviator Stress, σd (kPa) John A. Bonita Chapter 3: Experimental Testing Program 50 CSR = 0.12 25 0 -25 -50 -20 -15 -10 -5 0 5 10 15 20 Axial Strain, εa (%) Deviator Stress, σd (kPa) 50 CSR = 0.15 25 0 -25 -50 -20 -15 -10 -5 0 5 10 15 20 Axial Strain, εa (%) Deviator Stress, σd (kPa) 50 CSR = 0.18 25 0 -25 -50 -20 -15 -10 -5 0 5 10 15 20 Axial Strain, εa (%) Figure 3.17 Hysteresis Loops from Triaxial Tests on Loose Samples 87 Deviator Stress, σd (kPa) Deviator Stress, σd (kPa) Deviator Stress, σd (kPa) Deviator Stress, σd (kPa) John A. Bonita Chapter 3: Experimental Testing Program 50 25 0 CSR = 0.16 -25 -50 -20 -15 -10 -5 0 5 10 15 20 Axial Strain, εa (%) 50 25 0 -25 CSR = 0.18 -50 -20 -15 -10 -5 0 5 10 15 20 Axial Strain, εa (%) 50 25 0 -25 CSR = 0.20 -50 -20 -10 0 10 20 Axial Strain, εa (%) 50 25 0 -25 CSR = 0.22 -50 -20 -15 -10 -5 0 5 10 15 20 Axial Strain, εa (%) Figure 3.18 Hysteresis Loops from Triaxial Tests on Medium Dense Samples 88 Norm. Diss. Energy per Unit Volume, NDE John A. Bonita Chapter 3: Experimental Testing Program 0.010 CSR = 0.18 CSR = 0.12 0.008 CSR = 0.15 0.006 0.004 0.002 0.000 0 10 20 30 40 50 60 Number of Cycles, N Norm. Diss. Energy per Unit Volume, NDE a) Loose 0.010 0.008 CSR = 0.18 0.006 CSR = 0.20 0.004 CSR = 0.22 CSR = 0.16 0.002 0.000 0 10 20 30 40 50 Number of Cycles, N b) Medium Dense Figure 3.19 NDE as a Function of the Number of Cycles of Loading 89 60 John A. Bonita Chapter 3: Experimental Testing Program 0.30 Cyclic Stress Ratio, CSR 0.25 y = 0.224 - 12.391(x) 2 R = 0.9545 Dr = 55% 0.20 0.15 0.10 0.05 0.00 0.000 Dr = 25% y =0.2733-49.881(x) 2 R = 0.99908 0.001 0.002 0.003 0.004 0.005 0.006 0.007 Norm. Diss Energy at Liquefaction, DE(l) /σ'conf Figure 3.20 NDE at the Point of Liquefaction for Different CSR 90 0.008 John A. Bonita Chapter 3: Experimental Testing Program Figure 3.21 Schematics of 15-cm2 and 10-cm2 Cone Penetrometers Used in Testing 91 John A. Bonita Chapter 3: Experimental Testing Program 0321. 2150000000 Figure 3.22 Schematic of Cone Penetration System Used in Calibration Chamber Testing 92 John A. Bonita Chapter 3: Experimental Testing Program Figure 3.23 Drill Rod and Connecting Fitting for 15-cm2 Cone 93 John A. Bonita Chapter 3: Experimental Testing Program a) Vibrator Housing and Load Cells b) Accelerometer Location Figure 3.24 Schematic of Vibration Monitoring Devices 94 John A. Bonita Chapter 3: Experimental Testing Program × Figure 3.25 Schematic of Vibration Monitoring System 95 John A. Bonita Chapter 3: Experimental Testing Program φ stroke of p iston e= b ore = 2.7 0cm φ Figure 3.26 Schematic of Pneumatic Impact Vibrator 96 2 .26 cm John A. Bonita Chapter 3: Experimental Testing Program Figure 3.27 Schematic of Rotary Turbine Vibrator 97 John A. Bonita Chapter 3: Experimental Testing Program Figure 3.28 Schematic of Counter Rotating Mass Vibrator 98 John A. Bonita Chapter 3: Experimental Testing Program Figure 3.29 Schematic of Saturation Apparatus 99 John A. Bonita Chapter 3: Experimental Testing Program MTS 0321. 2150000000 a) Load Cell Calibration b) Pore Pressure Transducer Calibration Figure 3.30 Setup Used to Calibrate Cone Penetrometer Load Cells and Transducers 100 John A. Bonita Chapter 3: Experimental Testing Program Figure 3.31 Unequal End Area Effects in Cone Penetrometer (After Lunne et al. 1997) 101 John A. Bonita Chapter 3: Experimental Testing Program 300 a = An/Ac Measured Cone Resistance, qc (kPa) 1-a = 0.78 o 250 45 1-a = 0.71 200 150 2 15-cm Cone 100 2 10-cm Cone 50 0 0 50 100 150 200 250 300 Applied Air Pressure (kPa) Figure 3.32 Calibration Curve Used to Determine Magnitude of Unequal End Area Effects 102 John A. Bonita Chapter 3: Experimental Testing Program MTS a) Load Cell Calibration Setup MTS b) Accelerometer Calibration Setup Figure 3.33 Schematic of Calibration Systems for Load Cells and Accelerometer 103 John A. Bonita Chapter 3: Experimental Testing Program 80 60 Force (N) 40 20 0 -20 -40 Force Calculated From F= m*a Best Fit Regression Curve -60 -80 3.0 3.2 3.4 3.6 3.8 4.0 Time (sec) a) Estimated Force and Regression Curve 80 60 Force (N) 40 20 0 -20 -40 Force Measured by Load Cell Force Estimated from Accelerometer -60 -80 3.0 3.2 3.4 3.6 3.8 4.0 Time (sec) b) Measured Force at Load Cell and Estimated Force from Accelerometer Figure 3.34 Verification of Manufacturers Calibration Factor for the Kistler 8602A500 Accelerometer 104 John A. Bonita Chapter 3: Experimental Testing Program 400 o Note: Air Temperature at Time of Test was 16.6 C 350 ∆TA = 29.0 C o U1 Pore Pressure Value (kPa) 300 A = High Pressure Transducer B = Low Pressure Transducer 250 ∆TA = 22.8 C o 200 ∆TA = 12.2 C o Pore Pressure Measured During Dry Penetration Test in Sand 150 Penetration Ended 100 ∆TA = 12.2 C o 50 0 ∆TB = 31.0 C, 25.3 C, 19.4 C, 15.3 C o o o o -50 0 20 40 60 80 100 120 Time After Submergence (sec) Figure 3.35 Submergence Test Results for 15-cm2 Cone with High Pressure Transducers at the U1 and U2 locations 105 140 John A. Bonita Chapter 3: Experimental Testing Program 2 Accleration (cm/s ) 15000 10000 5000 0 -5000 -10000 -15000 1.00 1.05 1.10 1.15 1.20 1.25 1.20 1.25 1.20 1.25 Velocity (cm/s) Time (sec) 50 40 30 20 10 0 -10 -20 -30 -40 -50 1.00 1.05 1.10 1.15 Displacement (cm) Time (sec) 0.5 0.4 0.3 0.2 0.1 0.0 -0.1 -0.2 -0.3 -0.4 -0.5 1.00 1.05 1.10 1.15 Time (sec) Figure 3.36 Representative Acceleration, Velocity, and Displacement Measured During Penetration at the Accelerometer Location Using Rotary Turbine Vibrator 106 John A. Bonita Chapter 3: Experimental Testing Program 10 Force Measured at Load Cell 8 6 Load (kN) 4 2 0 2 4 6 8 10 Force Calculated from Measured Acceleration 200 220 240 260 280 300 320 340 360 380 400 Reading Number 15 Load Cell Amplitude 10 5 Accelerometer 0 5 10 0 100 200 300 400 500 Frequency (Hz) Figure 3.37 Representative Motion Generated by Rotary Turbine Vibrator 107 John A. Bonita Chapter 3: Experimental Testing Program 5 4 Force at Load Cell 3 3 2 2 1 1 0 0 -1 -1 -2 -2 Force at Load Cell (kN) Force at Tip (kN) 4 5 ∆t -3 -3 -4 -5 1.200 -4 Force at Tip -5 1.202 1.204 1.206 1.208 1.210 1.212 1.214 Time (sec) Figure 3.38 Comparison of Force Measured Through Load Cell to that Estimated at Tip Using Rotary Turbine Vibrator 108 Chapter 3: Experimental Testing Program 30000 3 Acceleration at Tip 20000 2 10000 1 0 0 -10000 -1 2 Accleration at Tip (cm/s ) Force at Load Cell -20000 Load Cells -2 Accelerometer ∆t -30000 1.200 L C = L/∆t -3 1.202 1.204 1.206 1.208 1.210 1.212 1.214 Time (sec) Figure 3.39 Proposed Approach for Estimating Wave Velocity 109 Force at Load Cell (kN) John A. Bonita John A. Bonita Chapter 3: Experimental Testing Program 10 Force Measured at Load Cell 8 6 Load (kN) 4 2 0 2 4 6 Force Calculated From Measured Acceleration 8 10 200 220 240 260 280 300 320 340 360 380 400 Reading Number 10 Load Cell Amplitude 5 0 Accelerometer 5 10 0 50 100 150 200 250 300 Frequency (Hz) Figure 3.40 Representative Motion Generated by Counter Rotating Mass Vibrator 110 John A. Bonita Chapter 3: Experimental Testing Program 2 Accleration (cm/s ) 15000 10000 5000 0 -5000 -10000 -15000 0.80 0.85 0.90 0.95 1.00 0.95 1.00 0.95 1.00 Velocity (cm/s) Time (sec) 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 0.80 0.85 0.90 Displacement (cm) Time (sec) 0.6 0.5 0.4 0.3 0.2 0.1 0.0 -0.1 -0.2 -0.3 -0.4 -0.5 -0.6 0.80 0.85 0.90 Time (sec) Figure 3.41 Representative Acceleration, Velocity, and Displacement Measured During Penetration at the Accelerometer Location Using Rotary Turbine Vibrator 111 John A. Bonita Chapter 3: Experimental Testing Program 5 4 Force at Tip 3 Force (kN) 2 1 0 -1 -2 ∆t -3 -4 -5 0.80 Force at Load Cell 0.82 0.84 0.86 0.88 0.90 0.92 0.94 0.96 0.98 1.00 Time (sec) Figure 3.42 Comparison of Force Measured Through Load Cell to that Estimated at Tip Using Rotating Mass Vibrator 112
© Copyright 2026 Paperzz