Basic Rules of Algebra for real numbers

Basic Rules of Algebra for real numbers
Assume π‘Žπ‘Ž, 𝑏𝑏, 𝑐𝑐, 𝑑𝑑 are real numbers and that π‘šπ‘š, 𝑛𝑛 are positive integers.
Commutativity
Note:
Associativity
Distributive law
Note:
π‘Žπ‘Ž + 𝑏𝑏 = 𝑏𝑏 + π‘Žπ‘Ž
π‘Žπ‘Ž βˆ™ 𝑏𝑏 = 𝑏𝑏 βˆ™ π‘Žπ‘Ž
π‘Žπ‘Ž βˆ™ π‘Žπ‘Ž = π‘Žπ‘Ž2
π‘Žπ‘Ž + π‘Žπ‘Ž = 2π‘Žπ‘Ž
π‘Žπ‘Ž + (𝑏𝑏 + 𝑐𝑐) = (π‘Žπ‘Ž + 𝑏𝑏) + 𝑐𝑐
π‘Žπ‘Ž βˆ™ (𝑏𝑏 βˆ™ 𝑐𝑐) = (π‘Žπ‘Ž βˆ™ 𝑏𝑏) βˆ™ 𝑐𝑐
π‘Žπ‘Ž(𝑏𝑏 + 𝑐𝑐) = π‘Žπ‘Žπ‘Žπ‘Ž + π‘Žπ‘Žπ‘Žπ‘Ž
(π‘Žπ‘Ž + 𝑏𝑏)(𝑐𝑐 + 𝑑𝑑) = (π‘Žπ‘Ž + 𝑏𝑏)𝑐𝑐 + (π‘Žπ‘Ž + 𝑏𝑏)𝑑𝑑 = π‘Žπ‘Žπ‘Žπ‘Ž + 𝑏𝑏𝑏𝑏 + π‘Žπ‘Žπ‘Žπ‘Ž + 𝑏𝑏𝑏𝑏
Factoring Special Polynomials:
Perfect Squares
π‘Žπ‘Ž2 βˆ’ 2π‘Žπ‘Žπ‘Žπ‘Ž + 𝑏𝑏 2 = (π‘Žπ‘Ž βˆ’ 𝑏𝑏)2
Difference of Squares
π‘Žπ‘Ž2 βˆ’ 𝑏𝑏 2 = (π‘Žπ‘Ž βˆ’ 𝑏𝑏)(π‘Žπ‘Ž + 𝑏𝑏)
Difference/Sum of Cubes π‘Žπ‘Ž3 βˆ’ 𝑏𝑏 3 = (π‘Žπ‘Ž βˆ’ 𝑏𝑏)(π‘Žπ‘Ž2 + π‘Žπ‘Žπ‘Žπ‘Ž + 𝑏𝑏 2 )
π‘Žπ‘Ž2 + 2π‘Žπ‘Žπ‘Žπ‘Ž + 𝑏𝑏 2 = (π‘Žπ‘Ž + 𝑏𝑏)2
π‘Žπ‘Ž3 + 𝑏𝑏 3 = (π‘Žπ‘Ž + 𝑏𝑏)(π‘Žπ‘Ž2 βˆ’ π‘Žπ‘Žπ‘Žπ‘Ž + 𝑏𝑏 2 )
Identities and Inverses
𝑛𝑛
𝑛𝑛
𝑛𝑛!
𝑛𝑛
(π‘Žπ‘Ž + 𝑏𝑏)𝑛𝑛 = Ξ£π‘Ÿπ‘Ÿ=0
οΏ½ οΏ½ π‘Žπ‘Žπ‘›π‘›βˆ’π‘Ÿπ‘Ÿ 𝑏𝑏 𝑛𝑛 where οΏ½ οΏ½ = (π‘›π‘›βˆ’π‘Ÿπ‘Ÿ)!π‘Ÿπ‘Ÿ! and π‘šπ‘š! = π‘šπ‘š(π‘šπ‘š βˆ’ 1) … 1 also 0! = 1
π‘Ÿπ‘Ÿ
π‘Ÿπ‘Ÿ
Fractions
π‘Žπ‘Ž + (βˆ’π‘Žπ‘Ž) = 0 = (βˆ’π‘Žπ‘Ž) + π‘Žπ‘Ž
π‘Žπ‘Ž βˆ™ οΏ½ οΏ½ = 1 = οΏ½ οΏ½ βˆ™ π‘Žπ‘Ž, π‘Žπ‘Ž β‰  0
π‘Žπ‘Ž
𝑏𝑏
π‘Žπ‘Ž
𝑏𝑏
Binomial Equation
π‘Žπ‘Ž + 0 = π‘Žπ‘Ž = 0 + π‘Žπ‘Ž
π‘Žπ‘Ž
𝑏𝑏
𝑐𝑐
𝑑𝑑
+ =
Exponents
+
π‘Žπ‘Žπ‘Žπ‘Ž
𝑐𝑐
+ =
𝑐𝑐
𝑏𝑏
π‘Žπ‘Ž+𝑐𝑐
𝑏𝑏
𝑐𝑐
𝑑𝑑
π‘Žπ‘Ž
𝑏𝑏
+ =
𝑏𝑏
𝑐𝑐
π‘Žπ‘Ž + =
π‘Žπ‘Ž
𝑏𝑏
π‘Žπ‘Žπ‘Žπ‘Ž
𝑏𝑏𝑏𝑏
βˆ’ = +
𝑏𝑏𝑏𝑏
𝑏𝑏𝑏𝑏
𝑏𝑏
𝑐𝑐
βˆ’π‘π‘
𝑑𝑑
π‘Žπ‘Ž0 = 1, π‘Žπ‘Ž β‰  0
=
=
π‘Žπ‘Ž βˆ™ 1 = π‘Žπ‘Ž = 1 βˆ™ π‘Žπ‘Ž
π‘Žπ‘Žπ‘Žπ‘Ž+𝑏𝑏𝑏𝑏
𝑏𝑏𝑏𝑏
π‘Žπ‘Ž
𝑏𝑏
π‘Žπ‘Žπ‘Žπ‘Ž+𝑏𝑏
𝑐𝑐
1
π‘Žπ‘Ž
𝑐𝑐
𝑑𝑑
βˆ™οΏ½ οΏ½=
π‘Žπ‘Žπ‘Žπ‘Ž
𝑏𝑏𝑏𝑏
𝑐𝑐
𝑏𝑏
π‘Žπ‘Žπ‘Žπ‘Ž
𝑏𝑏2
𝑐𝑐
𝑑𝑑
π‘Žπ‘Ž 𝑑𝑑
𝑏𝑏 𝑐𝑐
βˆ™οΏ½ οΏ½=
𝑏𝑏
𝑐𝑐
1
π‘Žπ‘Ž
π‘Žπ‘Ž
1
𝑏𝑏
𝑐𝑐
π‘Žπ‘Ž βˆ™ οΏ½ οΏ½ = βˆ™ οΏ½ οΏ½ =
π‘Žπ‘Žπ‘Žπ‘Žβˆ’π‘π‘π‘π‘
𝑏𝑏𝑏𝑏
π‘Žπ‘Ž
𝑏𝑏
÷ = βˆ™ =
0π‘Žπ‘Ž = 0, π‘Žπ‘Ž β‰  0
1
π‘Žπ‘Ž
οΏ½οΏ½
βˆ™ οΏ½οΏ½οΏ½
π‘Žπ‘Ž βˆ™ …��
βˆ™ π‘Žπ‘Ž = π‘Žπ‘Žπ‘šπ‘š
π‘Žπ‘Žπ‘Žπ‘Ž
𝑏𝑏𝑏𝑏
π‘Žπ‘Žπ‘Žπ‘Ž
𝑐𝑐
π‘šπ‘š
π‘Žπ‘Žπ‘šπ‘š = βˆšπ‘Žπ‘Ž
π‘šπ‘š times
π‘Žπ‘Žπ‘π‘ is well defined when π‘Žπ‘Ž and 𝑏𝑏 are not both 0
(in other words 00 is not well defined for the purposes of 1st and 2nd year math courses)
1
2
π‘Žπ‘Žπ‘π‘ is a complex number if π‘Žπ‘Ž < 0 and 𝑏𝑏 = π‘šπ‘š οΏ½ 𝑛𝑛 οΏ½
(in other words the even root of a negative number is not a real number)
π‘Žπ‘Žπ‘π‘ βˆ™ π‘Žπ‘Žπ‘π‘ = π‘Žπ‘Žπ‘π‘+𝑐𝑐
(π‘Žπ‘Žπ‘Žπ‘Ž)𝑐𝑐 = π‘Žπ‘Žπ‘π‘ βˆ™ 𝑏𝑏 𝑐𝑐
Logarithms
π‘Žπ‘Žπ‘π‘ + π‘Žπ‘Žπ‘π‘ = 2π‘Žπ‘Žπ‘π‘
If π‘Žπ‘Ž = 𝑏𝑏 𝑐𝑐 then 𝑐𝑐 = log 𝑏𝑏 π‘Žπ‘Ž =
log 𝑏𝑏 𝑏𝑏 𝑐𝑐 = 𝑐𝑐
log 𝑏𝑏 (π‘Žπ‘Žπ‘Žπ‘Ž) = log 𝑏𝑏 π‘Žπ‘Ž + log 𝑏𝑏 𝑐𝑐
log 𝑏𝑏 (π‘Žπ‘Ž + π‘Žπ‘Ž) = log 𝑏𝑏 (2π‘Žπ‘Ž)
π‘Žπ‘Ž 𝑏𝑏
π‘Žπ‘Ž 𝑐𝑐
= π‘Žπ‘Žπ‘π‘βˆ’π‘π‘
π‘Žπ‘Ž 𝑐𝑐
𝑏𝑏
οΏ½ οΏ½ =
π‘Žπ‘Ž 𝑐𝑐
𝑏𝑏𝑐𝑐
𝑐𝑐
οΏ½π‘Žπ‘Žπ‘π‘ οΏ½ = π‘Žπ‘Žπ‘π‘π‘π‘
π‘Žπ‘Ž βˆ’π‘π‘
𝑏𝑏
οΏ½ οΏ½
=
π‘Žπ‘Ž βˆ’π‘π‘
π‘π‘βˆ’π‘π‘
=
𝑏𝑏𝑐𝑐
π‘Žπ‘Ž 𝑐𝑐
𝑏𝑏 𝑐𝑐
π‘Žπ‘Ž
=οΏ½ οΏ½
but π‘Žπ‘Žπ‘π‘ + π‘Žπ‘Žπ‘π‘ and π‘Žπ‘Žπ‘π‘ + 𝑐𝑐 𝑏𝑏 cannot be simplified
ln π‘Žπ‘Ž
, 𝑏𝑏
ln 𝑏𝑏
> 0 and 𝑏𝑏 β‰  1.
log 𝑏𝑏 (π‘Žπ‘Žπ‘π‘ ) = 𝑐𝑐 log 𝑏𝑏 π‘Žπ‘Ž
π‘Žπ‘Ž
𝑐𝑐
log 𝑏𝑏 οΏ½ οΏ½ = log 𝑏𝑏 π‘Žπ‘Ž βˆ’ log 𝑏𝑏 𝑐𝑐
but log 𝑏𝑏 (π‘Žπ‘Ž + 𝑐𝑐) cannot be simplified