Basic Rules of Algebra for real numbers Assume ππ, ππ, ππ, ππ are real numbers and that ππ, ππ are positive integers. Commutativity Note: Associativity Distributive law Note: ππ + ππ = ππ + ππ ππ β ππ = ππ β ππ ππ β ππ = ππ2 ππ + ππ = 2ππ ππ + (ππ + ππ) = (ππ + ππ) + ππ ππ β (ππ β ππ) = (ππ β ππ) β ππ ππ(ππ + ππ) = ππππ + ππππ (ππ + ππ)(ππ + ππ) = (ππ + ππ)ππ + (ππ + ππ)ππ = ππππ + ππππ + ππππ + ππππ Factoring Special Polynomials: Perfect Squares ππ2 β 2ππππ + ππ 2 = (ππ β ππ)2 Difference of Squares ππ2 β ππ 2 = (ππ β ππ)(ππ + ππ) Difference/Sum of Cubes ππ3 β ππ 3 = (ππ β ππ)(ππ2 + ππππ + ππ 2 ) ππ2 + 2ππππ + ππ 2 = (ππ + ππ)2 ππ3 + ππ 3 = (ππ + ππ)(ππ2 β ππππ + ππ 2 ) Identities and Inverses ππ ππ ππ! ππ (ππ + ππ)ππ = Ξ£ππ=0 οΏ½ οΏ½ ππππβππ ππ ππ where οΏ½ οΏ½ = (ππβππ)!ππ! and ππ! = ππ(ππ β 1) β¦ 1 also 0! = 1 ππ ππ Fractions ππ + (βππ) = 0 = (βππ) + ππ ππ β οΏ½ οΏ½ = 1 = οΏ½ οΏ½ β ππ, ππ β 0 ππ ππ ππ ππ Binomial Equation ππ + 0 = ππ = 0 + ππ ππ ππ ππ ππ + = Exponents + ππππ ππ + = ππ ππ ππ+ππ ππ ππ ππ ππ ππ + = ππ ππ ππ + = ππ ππ ππππ ππππ β = + ππππ ππππ ππ ππ βππ ππ ππ0 = 1, ππ β 0 = = ππ β 1 = ππ = 1 β ππ ππππ+ππππ ππππ ππ ππ ππππ+ππ ππ 1 ππ ππ ππ βοΏ½ οΏ½= ππππ ππππ ππ ππ ππππ ππ2 ππ ππ ππ ππ ππ ππ βοΏ½ οΏ½= ππ ππ 1 ππ ππ 1 ππ ππ ππ β οΏ½ οΏ½ = β οΏ½ οΏ½ = ππππβππππ ππππ ππ ππ ÷ = β = 0ππ = 0, ππ β 0 1 ππ οΏ½οΏ½ β οΏ½οΏ½οΏ½ ππ β β¦οΏ½οΏ½ β ππ = ππππ ππππ ππππ ππππ ππ ππ ππππ = βππ ππ times ππππ is well defined when ππ and ππ are not both 0 (in other words 00 is not well defined for the purposes of 1st and 2nd year math courses) 1 2 ππππ is a complex number if ππ < 0 and ππ = ππ οΏ½ ππ οΏ½ (in other words the even root of a negative number is not a real number) ππππ β ππππ = ππππ+ππ (ππππ)ππ = ππππ β ππ ππ Logarithms ππππ + ππππ = 2ππππ If ππ = ππ ππ then ππ = log ππ ππ = log ππ ππ ππ = ππ log ππ (ππππ) = log ππ ππ + log ππ ππ log ππ (ππ + ππ) = log ππ (2ππ) ππ ππ ππ ππ = ππππβππ ππ ππ ππ οΏ½ οΏ½ = ππ ππ ππππ ππ οΏ½ππππ οΏ½ = ππππππ ππ βππ ππ οΏ½ οΏ½ = ππ βππ ππβππ = ππππ ππ ππ ππ ππ ππ =οΏ½ οΏ½ but ππππ + ππππ and ππππ + ππ ππ cannot be simplified ln ππ , ππ ln ππ > 0 and ππ β 1. log ππ (ππππ ) = ππ log ππ ππ ππ ππ log ππ οΏ½ οΏ½ = log ππ ππ β log ππ ππ but log ππ (ππ + ππ) cannot be simplified
© Copyright 2026 Paperzz