Hindawi Publishing Corporation Abstract and Applied Analysis Volume 2013, Article ID 492847, 17 pages http://dx.doi.org/10.1155/2013/492847 Research Article Uniformly Random Attractor for the Three-Dimensional Stochastic Nonautonomous Camassa-Holm Equations Zhehao Huang and Zhengrong Liu Department of Mathematics, South China University of Technology, Guangzhou 510640, China Correspondence should be addressed to Zhengrong Liu; [email protected] Received 25 November 2012; Revised 3 July 2013; Accepted 17 July 2013 Academic Editor: Ziemowit Popowicz Copyright © 2013 Z. Huang and Z. Liu. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. We consider the uniformly random attractor for the three-dimensional stochastic nonautonomous Camassa-Holm equations in the periodic box [0, đ]3 in this paper. We associate with the concepts of uniform attractor and random attractor and produce the concept of uniformly random attractor for a process. Then we establish the existence of the uniformly random attractor in đˇ(đ´1/2 ) and đˇ(đ´) for the equations. â â đĸ = 0, 1. Introduction đĸ (đĨ, 0) = đĸ0 (đĨ) . The Camassa-Holm equation đĸđĄ â đĸđĨđĨđĄ + 3đĸđĸđĨ â 2đĸđĨ đĸđĨđĨ â đĸđĸđĨđĨđĨ = 0 models the unidirectional propagation of shallow water waves over a flat bottom [1â4]. It has been paid a large number of attentions due to its rich nonlinear phenomenology. It is completely integrable [1], and it has stable solutions [5]. It possesses the peakons đĸ = đ|đĨâđđĄ| which has been proved stable [6, 7]. It has been shown that (1) is locally well-posed for initial data đĸ0 â đģđ (R) (đ > 3/2) [8, 9]. There are a rich variety of global solutions and blow-up solutions obtained in [8â10]. The global existence of weak solutions, conservative solutions, and disispative solutions was investigated in [6, 11, 12]. Following the Camassa-Holm (1), some generalized types of the equation have been deeply considered by many authors, for instance [13â18]. The authors in [19] considered the threedimensional Camassa-Holm equations subject to periodic boundary conditions: đ 2 (đŧ đĸ â đŧ12 Îđĸ) â ]Î (đŧ02 đĸ â đŧ12 Îđĸ) â đĸ đđĄ 0 × (â × (đŧ02 đĸ â đŧ12 Îđĸ)) + 1 âđ = đ (đĨ) , đ0 (2) (1) They established the global regularity of solutions of the equation and provided the estimates for the Hausdorff and fractal dimensions of the global attractor. In [20] the authors analyzed the effects produced by stochastic perturbations in the deterministic version of the three-dimensional Lagrangian averaged Navier-Stokes-đŧ model: đ (đĸ â đŧÎđĸ) + ] (đ´đĸ â đŧÎ (đ´đĸ)) đđĄ + (đĸ â â) (đĸ â đŧÎđĸ) â đŧâđĸâ â Îđĸ + âđ = đš (đĄ, đĸ) + đē (đĄ, đĸ) đĖ (đĄ) , â â đĸ = 0, đĸ = 0, (3) in đˇ × (0, +â) , đ´đĸ = 0, on đđˇ × (0, +â) , đĸ (0) = đĸ0 , that is, the persistence of exponential stability as well as possible stabilization effects produced by the noise. 2 Abstract and Applied Analysis In [21] the authors proved the existence of the pullback and forward attractors for three-dimensional Lagrangian averaged Navier-Stokes-đŧ model with delay: đ (đĸ â đŧÎđĸ) + ] (đ´đĸ â đŧÎ (đ´đĸ)) đđĄ = đ (đĄ) + đš (đĄ, đĸđĄ ) , đĸ = 0, đĸ (đĄ) = đ (đĄ â đ) , (4) on đđˇ × (đ, +â) , in (đ â â, đ) , In [22] the author investigated the existence of finite dimensional uniform attractor for three-dimensional nonautonomous Camassa-Holm equations with periodic boundary conditions: đ 2 (đŧ đĸ â đŧ12 Îđĸ) â ]Î (đŧ02 đĸ â đŧ12 Îđĸ) đđĄ 0 â đĸ × (â × (đŧ02 đĸ â đŧ12 Îđĸ)) + 1 âđ = đ (đĨ, đĄ) , đ0 (5) â â đĸ = 0, đĸ (đĨ, đ) = đĸđ (đĨ) . In [23, 24] the author studied the existence of uniform attractor and convergence of the attractor as đ â 0+ for a nonautonomous three-dimensional Lagrangian averaged Navier-Stokes-đŧ model with singularly oscillating external force: đ (đĸ â đŧÎđĸ) + ] (đ´đĸ â đŧÎ (đ´đĸ)) đđĄ + (đĸ â â) (đĸ â đŧÎđĸ) â đŧâđĸâ â Îđĸ + âđ = đđ , đĸ = 0, in đˇ × (đ, +â) , đ´đĸ = 0, (8) â â đĸ = 0, đĸ (đĨ, đ) = đĸđ (đĨ) , đĸ (đ) = đĸ0 . â â đĸ = 0, 1 âđ đ0 = đ (đĨ, đĄ) + đđđĄ , in đˇ × (đ, +â) , đ´đĸ = 0, đ 2 (đŧ đĸ â đŧ12 Îđĸ) â ]Î (đŧ02 đĸ â đŧ12 Îđĸ) đđĄ 0 â đĸ × (â × (đŧ02 đĸ â đŧ12 Îđĸ)) + + (đĸ â â) (đĸ â đŧÎđĸ) â đŧâđĸâ â Îđĸ + âđ â â đĸ = 0, stochastic nonautonomous Camassa-Holm equation in the periodic box [0, đ]3 : (6) on đđˇ × (đ, +â) , đĸ (đ) = đĸđ , where đđ (đĨ, đĻ, đ§, đĄ) {đ (đĨ, đĻ, đ§, đĄ) + 1 đ1 (đĨ, đĻ, đ§, đĄ) , đ â (0, 1] , đ â [0, 1) , ={ 0 đđ đ = 0. {đ0 (đĨ, đĻ, đ§, đĄ) , (7) Motivated by all their works, we initial our work to investigate the equations perturbed by an additive noise. We consider the following viscous version of three-dimensional where đ/đ0 = đ/đ0 + đŧ02 |đĸ|2 â đŧ12 (đĸ â Îđĸ) is the modified pressure, while đ is the pressure, ] > 0 is the constant viscosity, and đ0 > 0 is a constant density. The function đ is a given body forcing, and đŧ0 > 0, đŧ1 âĨ 0 are scale parameters. đ(đĄ) are two-sided real-valued Wiener processes on a probability space which will be specified later. đ : Rđ â đŋ2 ([0, đ]3 )3 is a bounded linear operator. Also observing that at the limiting case đŧ0 = 1, đŧ1 = 0, we obtain the three-dimensional stochastic Navier-Stokes with periodic boundary conditions. Attractor is an important concept to describe the longtime behavior of solutions for a system in mathematical physics [25â27]. The notion of uniform attractor parallelling to that of the global autonomous systems has been systematically considered in [26]. In the approach presented in [27], to construct the uniform attractor, instead of the associated process {Uđ (đĄ, đ), đĄ âĨ đ, đ â R}, one should consider a family of processes {Uđ (đĄ, đ )}, đ â ÎŖ, in some Banach space đ¸ where the functional parameter đ0 (đ ), đ â R, is called the symbol and ÎŖ is the symbol space including đ0 (đ ). The approach implies that the structure of uniform attractor is described by the representation as a union of sections of all kernels of the family of processes. The kernel is the set of all complete trajectories of a process. While in the real world, a system is usually uncertain due to some external noise, which is random. The random effects are considered not only as compensations for the defects in some deterministic models but rather essential phenomena [28â32]. In order to capture the essential dynamics of random dynamical systems with wide fluctuations, the concept of pullback random attractor was introduced in [29, 33, 34], as an extension to stochastic systems of the theory of attractors for deterministic systems in [25, 27, 35â43]. A pullback random attractor A(đ) which can be constructed by a closed random absorbing set K(đ) for an asymptotically compact stochastic mapping S(đĄ, đ , đ) is given by A (đ) = â âS(đĄ, đ, đđâđĄ đ, K(đđâđĄ đ)), đ âĨđ đĄâĨđ (9) where đđĄ is the metric process on probability space. The existence of random attractors for stochastic dynamical systems has been investigated extensively by many authors [29, 33, 34, 44â49]. In our paper, we associate with the concepts of uniform attractor and random attractor together Abstract and Applied Analysis 3 and give the concept of uniformly random attractor. Then we consider (8) in an appropriate space and show that there is a uniformly (with respect to đ) random attractor A(đ) which all solutions approach as đĄ â â. To our best knowledge, the long-time dynamical behavior of the three-dimensional stochastic nonautonomous Camassa-Holm equations has not been discussed, and we believe that it is a significant work to obtain a uniformly (with respect to đ) random attractor for the system. The paper is organized as follows. In Section 2, we present the abstract results describing the uniformly random attractor and some relevant definitions. In Section 3, we give some functional settings which are foundations for us to obtain the existence of uniformly (with respect to đ) random attractor of (8). In Section 4, we convert (8) with an additive noise to deterministic equations with random parameters and define a process corresponding to the equations. In Section 5, we obtain the existence of uniformly (with respect to đ) random attractors for (8) on the basis of the above preparations. Definition 5. A family of processes Uđ (đĄ, đ, đ), đ â ÎŖ, acting in đ¸ is said to be (đ¸×ÎŖ, đ¸)-continuous, if, for P a.e. đ â Ί and fixed đĄ, đ, đĄ âĨ đ, the random mapping (đĸ, đ) ķŗ¨â Uđ (đĄ, đ, đ)đĸ is continuous from đ¸ × ÎŖ into đ¸. 2. Abstract Results is said to be the random kernel section at time đĄ = đ , đ â R. In this section, we associate with the concepts of uniform attractor and random attractor and obtain the notion of uniformly random attractor. Let (đ¸, â â âđ¸ ) be a separable Hilbert space with the Borel đ-algebra B(đ¸), and let (Ί, F, P) be a probability space. Let đĩđĄ (đ) = âđâÎŖ âđ âĨđĄ Uđ (đ , đĄ, đđĄâđ đ)đĩ(đđĄâđ đ), where đĩ(đ) is a random set. Denote that đĩ(đ) is closure of the set đĩ(đ) and Rđ = {đĄ â R | đĄ âĨ đ}. Definition 1. (đđĄ )đĄâR is called a measurable flow on probability space (Ί, F) if đ : R × ÎŠ â Ί is (R × F, F)-measurable, đ0 is the identity on Ί, đđ +đĄ = đđĄ â đđ for all đ , đĄ â R, and đđĄ P = P for all đĄ â R. Definition 2. A random bounded set {đĩ(đ)}đâΊ of đ¸, is called tempered with respect to (đđĄ )đĄâR if for P a.e. đ â Ί, lim đâđŊđĄ đ (đĩ (đâđĄ đ)) = 0 âđŊ > 0, đĄââ (10) {U (đĄ, đ, đ)} đĸ (đ, đ) = đĸ (đĄ, đ) , âđĄ âĨ đ, đĄ, đ â R. Definition 3. A random set {K(đ)}đâΊ is called an absorbing set of a stochastic mapping S(đĄ, đ , đ) in đ¸ if for every random bounded set đĩ and P a.e. đ â Ί, there exists đĄđĩ (đ) > 0 such that S (đĄ, đ , đđ âđĄ đ) đĩ (đđ âđĄ (đ)) â K (đ) âđĄ âĨ đĄđĩ (đ) . (11) Let {U(đĄ, đ, đ)} = {U(đĄ, đ, đ), đĄ âĨ đ, đĄ, đ â R, đ â Ί} be a three-parameter family of mappings acting on đ¸: đĄ âĨ đ, đĄ, đ â R, đ â Ί. (12) Definition 4. A three-parameter family of random mappings {U(đĄ, đ, đ)} is said to be a process in đ¸ if it is (B(R+ ) × B(R+ ) × F × B(đ¸), B(đ¸))-measurable and for P a.e. đ â Ί it satisfies U (đĄ, đ , đđ âđ đ) â U (đ , đ, đ) = U (đĄ, đ, đ) , âđĄ âĨ đ âĨ đ, đ â R, U (đ, đ, đ) = đŧđ, đ â R. (13) (14) Definition 7. The random kernel N(đ) of the process {U(đĄ, đ, đ)} consists of all bounded complete trajectories of the process {U(đĄ, đ, đ)}: N (đ) = {đĸ (â , đ) | đĸ (â , đ) satisfies Definition 6 and âđĸ (đ , đ)âđ¸ ⤠đđĸ (đ) for đ â R} . (15) Definition 8. The random set N (đ , đ) = {đĸ (đ , đ) | đĸ (â , đ) â N (đ)} â đ¸ (16) Definition 9. A random set Wđ,ÎŖ (đĩ)(đ) = âđĄâĨđ đĩđĄ (đ) is called the uniformly (with respect to đ â ÎŖ) random (pullback) omega-limit set of đĩ(đ) which can be characterized as follows, analogously to that for semigroups, đĻ â Wđ,ÎŖ (đĩ) (đ) ââ there are sequences {đĨđ } â đĩ (đđâđĄđ đ) , {đđ } â ÎŖ, {đĄđ } â Rđ , such that đĄđ ķŗ¨â +â and Uđđ (đĄđ , đ, đđâđĄđ đ) đĨđ ķŗ¨â đĻ where đ(đĩ) = supđĨâđ¸ âđĨâđ¸ . U (đĄ, đ, đ) : đ¸ ķŗ¨â đ¸, Definition 6. A random curve đĸ(đ , đ), đ â R, is said to be a complete trajectory of the process {U(đĄ, đ, đ)} if for P a.e. đâΊ (đ ķŗ¨â â) . (17) Let đĩ(đ) â B(đ¸), and its Kuratowski measure of noncompactness đ (đĩ) is defined by đ (đĩ) = inf {đŋ > 0 | đĩ admits a finit covering by sets of diameter ⤠đŋ} . (18) Definition 10. A family of processes {Uđ (đĄ, đ, đ)}, đ â ÎŖ, is said to be uniformly (with respect to đ â ÎŖ) random (pullback) omega-limit compact if, for P a.e. đ â Ί and any đ â R, the set đĩđĄ (đ) is bounded for every đĄ and limđĄ â â đ (đĩđĄ (đ)) = 0. We now present a method to verify the uniformly (with respect to đ â ÎŖ) random (pullback) omega-limit compactness. Definition 11. A family of processes {Uđ (đĄ, đ, đ)}, đ â ÎŖ, is said to satisfy uniformly (with respect to đ â ÎŖ) condition 4 Abstract and Applied Analysis (C) if, for P a.e. đ â Ί and any fixed đ â R, tempered set đĩ(đ) â B(đ¸), đ > 0, there exist đĄ0 = đĄ(đ, đĩ, đ, đ) âĨ đ and a finite dimensional subspace đ¸1 of đ¸ such that Definition 13 (cf. [41]). A function đ â đŋ2loc (R; đ¸) is said to be normal if, for any đ > 0, there exists đŋ > 0 such that sup âĢ (i) Î (âđâÎŖ âđĄâĨđĄ0 Uđ (đĄ, đ, đđâđĄ đ)đĩ(đđâđĄ đ)) is bounded, and (ii) â(đŧ â Î )(âđâÎŖ âđĄâĨđĄ0 Uđ (đĄ, đ, đđâđĄ đ)đĨ)â ⤠đ, âđĨ â đĩ(đđâđĄ đ), where Î : đ¸ â đ¸1 is a bounded projector. Therefore, we have the following results. Theorem 12. Let ÎŖ be a metric space, and let đ(đĄ) be a continuous invariant semigroup đ(đĄ)ÎŖ = ÎŖ on ÎŖ. A family of processes {U(đĄ, đ, đ)}, đ â ÎŖ, acting in đ¸ is (đ¸ × ÎŖ, đ¸)continuous (weakly) and possesses the compact uniformly (with respect to đ â ÎŖ) random attractor AÎŖ (đ) satisfying AÎŖ (đ) = W0,ÎŖ (đĩ0 (đ)) = Wđ,ÎŖ (đĩ0 (đ)) = â Nđ (0, đ) , (19) âđ â R, đĄâR đĄ+đŋ đĄ ķĩŠ2 ķĩŠķĩŠ ķĩŠķĩŠđ(đ )ķĩŠķĩŠķĩŠđ¸ đđ ⤠đ. (24) We denote by đŋ2đ (R; đ¸) the set of all normal functions in Obviously, đŋ2đ (R; đ¸) â đŋ2đ (R; đ¸), and it is proved in [41] that đŋ2đ (R; đ¸) is a closed subset of đŋ2đ (R; đ¸). Let a fixed symbol đ0 (đ ) = đ0 (đ ) = đ0 (â , đ ) be normal functions in đŋ2loc (R; đ¸). That is, the family of translation {đ0 (đ + đ), đ â R} forms a normal function set in đŋ2loc ([đ1 , đ2 ]; đ¸), where [đ1 , đ2 ] is an arbitrary interval of the time axis R. Therefore, đŋ2loc (R; đ¸). ÎŖ (đ0 ) = ÎŖ (đ0 ) = {đ0 (đĨ, đ + đ) | đ â R}đŋ2 loc (R;đ¸) . (25) After integrating (8), one can easily see that đ (đŧ2 đĸ â đŧ12 Îđĸ) đđĨ = âĢ 3 đđđĨ + âĢ 3 đđđĄ đđĨ. âĢ đđĄ [0,đ]3 0 [0,đ] [0,đ] (26) đâÎŖ if it (i) has a bounded uniformly (with respect to đ â ÎŖ) random absorbing set đĩ0 (đ), and (ii) satisfies uniformly (with respect to đ â ÎŖ) condition (C). Moreover, if đ¸ is a uniformly convex Banach space, then the converse is true. 3. Functional Setting We consider the probability space (Ί, F, P) where đ Ί = {đ = (đ1 , đ2 , . . . , đđ ) â đļ (R, Rđ ) : đ (0) = 0} . (20) F is the Borel đ-algebra induced by the compact-open topology of Ί and P the corresponding Wiener measure on (Ί, F). Then we will identify đ(đĄ) with đ đ (đĄ) = (đ¤1 (đĄ) , đ¤2 (đĄ) , . . . , đ¤đ (đĄ)) = đ (đĄ) for đĄ â R. (21) Define the time shift by đđĄ đ (â ) = đ (â + đĄ) â đ (đĄ) , đ â Ί, đĄ â R. (22) Then {đđĄ }đĄâR is a family of measure preserving transformations on probability space (Ί, F, P) in Definition 1. Next we define a symbol space ÎŖ(đ0 ) for (8). We assume that the function đ(â , đĄ) =: đ(đĄ) â đŋ2loc (R; đ¸) is translation bounded. That is, for đ(đ ) â đŋ2đ (R; đ¸), we have đĄ+1 ķĩŠķĩŠ ķĩŠķĩŠ2 ķĩŠ ķĩŠ2 ķĩŠķĩŠđķĩŠķĩŠđŋ2 = ķĩŠķĩŠķĩŠđķĩŠķĩŠķĩŠđŋ2 (R;đ¸) = sup âĢ đ đ đĄ đĄâR ķĩŠ2 ķĩŠķĩŠ ķĩŠķĩŠđ(đ )ķĩŠķĩŠķĩŠđ¸ đđ < â. (23) On the other hand, because of the spatial periodicity of solution, we have âĢ[0,đ]3 ÎđĸđđĨ = 0. Then we have đ đŧ2 đĸđđĨ = âĢ 3 đđđĨ + âĢ 3 đđđĄ đđĨ. âĢ đđĄ [0,đ]3 0 [0,đ] [0,đ] (27) That is, the mean of solution is invariant provided that the means of the forcing term and the perturbing term are zero. In this paper, we will consider the forcing term, perturbing term and initial values with spatial means that are zero. That is, we assume âĢ[0,đ]3 đđđĨ = 0, âĢ[0,đ]3 đđđĄ đđĨ = 0, and âĢ[0,đ]3 đĸđ đđĨ = 0. Next we introduce some essential functional spaces. (i) We denote by V = {đ : đ a vector-valued trigonometric polynomial defined on [0, đ]3 , such that â â đ = 0 and âĢ[0,đ]3 đ(đĨ)đđĨ = 0}, and we let đģ and đ be the closure of V in đŋ2 ([0, đ]3 )3 and in đģ1 ([0, đ]3 )3 , respectively. We can observe that đģâĨ , the orthogonal complement of đģ in đŋ2 ([0, đ]3 )3 , is {âđ : đ â đģ1 ([0, đ]3 )} (cf. [38, 41]). (ii) We denote by đ : đŋ2 ([0, đ]3 )3 â đģ the đŋ2 orthogonal projection, usually referred to as Helmholtz-Leray projector, and by đ´ = âđÎ the Stokes operator with domain đˇ(đ´) = đģ2 ([0, đ]3 )3 â đ. Note that, in the case of periodic boundary condition, đ´ = âÎ|đˇ(đ´) is a self-adjoint positive operator with compact inverse. Hence, the space đģ has an orthogonal basis {đđ }â đ of eigenfunctions of đ´, that is, đ´đđ = đ đ đđ , with 0 < đ1 ⤠đ2 ⤠â â â ⤠đđ ⤠â â â , đ đ â +â, as đ â â. (28) In fact, these eigenvalues have the form |đ|2 4đ/đŋ2 with đ â Z3 /{0}. Abstract and Applied Analysis 5 (iii) We denote by (â , â ) the đŋ2 ([0, đ]3 )3 inner product and by â â â2 the corresponding đŋ2 ([0, đ]3 )3 norm. By virtue of PoincareĖ inequality one can show that there is a constant đ > 0, such that đâđ´đĸâ2 ⤠âđĸâđģ2 ⤠đâ1 âđ´đĸâ2 for every đĸ â đˇ (đ´) , ķĩŠ ķĩŠ ķĩŠ ķĩŠ đķĩŠķĩŠķĩŠķĩŠđ´1/2 đĸķĩŠķĩŠķĩŠķĩŠ2 ⤠âđĸâđģ1 ⤠đâ1 ķĩŠķĩŠķĩŠķĩŠđ´1/2 đĸķĩŠķĩŠķĩŠķĩŠ2 (29) for every đĸ â đ. Moreover, one can show that đ = đˇ(đ´1/2 ) (cf. [38, 42]). We denote by đķ¸ the dual of đ. Hereafter đ will denote a generic scale invariant positive constant which is independent of the physical parameters in the equation. (iv) Following the notation for the Navier-Stokes equations we denote yhat đĩ(đĸ, V) = đ[(đĸ â â)V], and we set đĩ(V)đĸ = đĩ(đĸ, V) for every đĸ, V â đ. That is, for every fixed V â đ, đĩ(V) is a linear operator acting on đĸ. Note that (đĩ (đĸ, V) , đ¤) = â (đĩ (đĸ, đ¤) , V) for every đĸ, V, đ¤ â đ. (30) Ė V) = âđ(đĸ × (â × V)) for every đĸ, V â We also denote that đĩ(đĸ, đ. Using the identity and in particular â¨đĩĖ (đĸ, V) , đĸâŠđķ¸ âĄ 0 for every đĸ, V â đ. Furthermore, one has ķĩ¨ķĩ¨ ķĩ¨ķĩ¨ ķĩ¨ ⤠đâđĸâ2 ķĩŠķĩŠķĩŠķĩŠđ´1/2 VķĩŠķĩŠķĩŠķĩŠ ķĩŠķĩŠķĩŠķĩŠđ´1/2 đ¤ķĩŠķĩŠķĩŠķĩŠ1/2 âđ´đ¤â1/2 ķĩ¨ķĩ¨â¨đĩĖ (đĸ, V) , đ¤âŠ ķ¸ ķĩ¨ 2 ķĩ¨ķĩ¨ ķĩŠ ķĩŠ2 ķĩŠ ķĩŠ2 đˇ(đ´) ķĩ¨ķĩ¨ (37) for every đĸ â đģ, V â đ, and đ¤ â đˇ(đ´) and by symmetry one has ķĩ¨ķĩ¨ ķĩ¨ķĩ¨ ķĩ¨ķĩ¨â¨đĩĖ (đĸ, V) , đ¤âŠ ķĩ¨ķĩ¨ ⤠đķĩŠķĩŠķĩŠķĩŠđ´1/2 đĸķĩŠķĩŠķĩŠķĩŠ1/2 âđ´đĸâ1/2 ķĩŠķĩŠķĩŠķĩŠđ´1/2 VķĩŠķĩŠķĩŠķĩŠ âđ¤â2 2 ķĩŠ ķĩ¨ķĩ¨ ķĩŠ ķĩŠ2 ķĩŠ2 đˇ(đ´)ķ¸ ķĩ¨ķĩ¨ (38) for every đĸ â đˇ(đ´), V â đ, and đ¤ â đģ. Also ķĩ¨ķĩ¨ ķĩ¨ķĩ¨ ķĩ¨ķĩ¨â¨đĩĖ (đĸ, V) , đ¤âŠ ķĩ¨ķĩ¨ ķĩ¨ķĩ¨ đˇ(đ´)ķ¸ ķĩ¨ķĩ¨ ķĩŠķĩŠ 1/2 ķĩŠķĩŠ1/2 ķĩŠđ´ đĸķĩŠķĩŠ âVâ2 âđ´đ¤â2 ⤠đ (âđĸâ1/2 2 ķĩŠ ķĩŠ ķĩŠ2 for every đĸ â đ, V â đģ, and đ¤ â đˇ(đ´). In addition, ķĩ¨ķĩ¨ ķĩ¨ķĩ¨ ķĩ¨ķĩ¨â¨đĩĖ (đĸ, V) , đ¤âŠ ķĩ¨ķĩ¨ ķĩ¨ķĩ¨ đˇ(đ´)ķ¸ ķĩ¨ķĩ¨ ķĩŠ ķĩŠķĩŠ 1/2 ķĩŠķĩŠ ķĩŠ1/2 ķĩŠđ´ đ¤ķĩŠķĩŠ â¤ đ (ķĩŠķĩŠķĩŠķĩŠđ´1/2 đĸķĩŠķĩŠķĩŠķĩŠ2 âđ´đĸâ1/2 2 âVâ2 ķĩŠ ķĩŠ ķĩŠ2 for every đĸ â đˇ(đ´), V â đģ, and đ¤ â đ. one can easily show that (đĩĖ (đĸ, V) , đ¤) = (đĩ (đĸ, V) , đ¤) â (đĩ (đ¤, V) , đĸ) = (đĩ (V) đĸ â đĩâ (V) đĸ, đ¤) (32) for every đĸ, V, đ¤ â đ, where đĩâ (V) denotes the adjoint operator of the linear operator đĩ(V) defined above. As a result we have đĩĖ (đĸ, V) = (đĩ (V) â đĩâ (V)) đĸ (40) ķĩŠķĩŠ 1/2 ķĩŠķĩŠ1/2 ķĩŠđ´ đ¤ķĩŠķĩŠ ) +âVâ2 âđ´đĸâ2 âđ¤â1/2 2 ķĩŠ ķĩŠ ķĩŠ2 (31) đ=1 (39) ķĩŠ ķĩŠķĩŠ ķĩŠ1/2 +âVâ2 ķĩŠķĩŠķĩŠķĩŠđ´1/2 đĸķĩŠķĩŠķĩŠķĩŠ2 ķĩŠķĩŠķĩŠķĩŠđ´1/2 đ¤ķĩŠķĩŠķĩŠķĩŠ2 âđ´đ¤â1/2 2 ) 3 (đ â â) đ + âđđ âđđ = âđ × (â × đ) + â (đ â đ) , (36) for every đĸ, V â đ. (33) The next lemma will present some properties of the Ė bilinear operator đĩ. Lemma 14 (cf. [19]). The operator đĩĖ can be extended continuously from đ × đ with values in đķ¸ , and it satisfies ķĩ¨ ķĩŠķĩŠ 1/2 ķĩŠķĩŠ1/2 ķĩŠķĩŠ 1/2 ķĩŠķĩŠ ķĩŠķĩŠ 1/2 ķĩŠķĩŠ ķĩ¨ķĩ¨ Ė ķĩŠđ´ đĸķĩŠķĩŠ ķĩŠķĩŠđ´ VķĩŠķĩŠ ķĩŠķĩŠđ´ đ¤ķĩŠķĩŠ , ķĩ¨ķĩ¨â¨đĩ (đĸ, V) , đ¤âŠ ķ¸ ķĩ¨ķĩ¨ķĩ¨ ⤠đâđĸâ1/2 2 ķĩŠ ķĩŠ ķĩŠ2 ķĩŠ ķĩŠ2 ķĩŠ ķĩŠ2 ķĩ¨ đķĩ¨ ķĩŠ ķĩ¨ķĩ¨ Ė ķĩ¨ ķĩŠķĩŠ 1/2 ķĩŠķĩŠ1/2 ķĩŠķĩŠ ķĩŠ ķĩ¨ķĩ¨â¨đĩ (đĸ, V) , đ¤âŠ ķ¸ ķĩ¨ķĩ¨ķĩ¨ ⤠đķĩŠķĩŠķĩŠđ´1/2 đĸķĩŠķĩŠķĩŠ ķĩŠķĩŠķĩŠđ´1/2 VķĩŠķĩŠķĩŠ âđ¤â1/2 ķĩŠđ´ đ¤ķĩŠķĩŠ 2 ķĩŠ ķĩŠ ķĩ¨ ķĩŠ ķĩŠ2 ķĩŠ ķĩŠ2 ķĩŠ2 đķĩ¨ (34) We now apply the result in Section 2 to the stochastic nonautonomous Camassa-Holm equations. To associate a family of processes Uđ (đĄ, đ , đ) with the stochastic equations over (ÎŖ, đ(đĄ)) and (Ί, F, P, (đđĄ )đĄâR ), we need to convert the stochastic equations with a random additive term into deterministic equations with a random parameter. First we define the bounded linear operator đ in (8) as follows: đ đđĨ = âđĨđ âđ , đ=1 đ đĨ = (đĨ1 , đĨ2 , . . . , đĨđ ) â Rđ , (41) where âđ â đˇ(đ´), đ = 1, 2, . . . , đ. Given đ = 1, 2, . . . , đ, consider the Ornstein-Uhlenbeck equation: đđĻđ + đđĻđ đđĄ = đđ¤đ (đĄ) . (42) One can easily check that a solution to (42) is given by for every đĸ, V, đ¤ â đ. Moreover, â¨đĩĖ (đĸ, V) , đ¤âŠđķ¸ = ââ¨đĩĖ (đ¤, V) , đĸâŠđķ¸ , 4. Stochastic Nonautonomous Camassa-Holm Equations for every đĸ, V, đ¤ â đ (35) đĻđ (đĄ) = đĻđ (đđĄ đđ ) = âđ âĢ 0 ââ đđđ (đđĄ đđ ) (đ) đđ, đĄ â R. (43) 6 Abstract and Applied Analysis It is known that the random variable |đĻđ (đđ )| is tempered and that đĻđ (đđĄ đđ ) is P a.e is continuous. Now we put đ§(đđĄ đ) = (đŧ02 + đŧ12 đ´)â1 âđ đ=1 âđ đĻđ (đđĄ đđ ). By (42) we have đ (đŧ02 đ§ (đđĄ đ) + đŧ12 đ´đ§ (đđĄ đ)) + đ (đŧ02 đ§ (đđĄ đ) đđĄ + đŧ12 đ´đ§ (đđĄ đ)) đđĄ By a Galerkin method as in [19], it can be proved that if đ(đĨ, đĄ) â đŋ2loc ((0, đ); đģ) and Vđ â đ, for P a.e. đ â Ί, (48) has a unique solution satisfying for any đ > đ V (đĄ, đ, Vđ ) â đļ ([đ, đ) ; đ) â đŋ2 ([đ, đ) ; đˇ (đ´)) , đV â đŋ2 ([đ, đ) ; đģ) đđĄ (44) đ = ââđ đđ¤đ (đĄ) . and such that, for almost all đĄ â [đ, đ) and for any đ¤ â đˇ(đ´), đ=1 Employing Cauchy-Schwarzâs inequality, we get ⨠ķĩŠ2 ķĩŠ ķĩŠ2 ķĩŠ 1/2 ķĩŠ2 ķĩŠķĩŠ ķĩŠķĩŠđ§ (đđĄ đ)ķĩŠķĩŠķĩŠ2 + ķĩŠķĩŠķĩŠķĩŠđ´ đ§ (đđĄ đ)ķĩŠķĩŠķĩŠķĩŠ2 + ķĩŠķĩŠķĩŠđ´đ§ (đđĄ đ)ķĩŠķĩŠķĩŠ2 đ ķĩ¨ ķĩ¨2 ⤠đ âķĩ¨ķĩ¨ķĩ¨ķĩ¨đĻđ (đđĄ đđ )ķĩ¨ķĩ¨ķĩ¨ķĩ¨ , (45) đ=1 To show that (8) corresponds to a process {Uđ (đĄ, đ, đ)}, we let V = đĸ â đ§(đđĄ đ), where đĸ is a solution of (8). Then for V(đĄ, đ), we have đ 2 (đŧ V + đŧ12 đ´V) đđĄ 0 â (V + đ§ (đđĄ đ)) × (â × (đŧ02 V + đŧ12 đ´V + đŧ02 đ§ (đđĄ đ) + đŧ12 đ´đ§ (đđĄ đ))) 1 âđ đ0 = đ (đĨ, đĄ) + đđŧ02 đ§ (đđĄ đ) + đđŧ12 đ´đ§ (đđĄ đ) (46) (47) We apply đ to (46) and use the notation in Section 3 to obtain the equivalent system of equations đ 2 (đŧ V + đŧ12 đ´V) đđĄ 0 + ]đ´ (đŧ02 V + đŧ12 đ´V + đŧ02 đ§ (đđĄ đ) + đŧ12 đ´đ§ (đđĄ đ)) + đĩĖ (V + đ§ (đđĄ đ) , đŧ02 V + đŧ12 đ´V (48) +đŧ02 đ§ (đđĄ đ) + đŧ12 đ´đ§ (đđĄ đ)) = đđ (đĨ, đĄ) + đđŧ02 đ§ (đđĄ đ) + đđŧ12 đ´đ§ (đđĄ đ) satisfying the initial condition V (đĨ, đ, đ) = Vđ (đĨ, đ) . +đŧ02 đ§ (đđĄ đ) + đŧ12 đ´đ§ (đđĄ đ)) , đ¤âŠđˇ(đ´)ķ¸ + â¨đĩĖ (V + đ§ (đđĄ đ) , đŧ02 V + (51) đŧ12 đ´V +đŧ02 đ§(đđĄ đ) + đŧ12 đ´đ§(đđĄ đ)) , đ¤âŠđˇ(đ´)ķ¸ Now for any đ(đĨ, đĄ) â ÎŖ(đ0 ), (48) with đ instead of đ0 possesses a corresponding process {Uđ (đĄ, đ, đ)} acting on đ. It is analogous to the proof in [27] to prove that, for P a.e đ â Ί, the family {Uđ (đĄ, đ, đ) | đ â ÎŖ(đ0 )} of processes is (đ × ÎŖ(đ0 ); đ)-continuous. Let is solution of (48) satisfying (52) ķĩŠķĩŠ ķĩŠ ķĩŠķĩŠVđ (đĨ, đĄ, đ)ķĩŠķĩŠķĩŠ â¤ đđ (đ) âđĄ â R} ķĩŠ ķĩŠđģ defined in the periodic box [0, đ] , satisfying V (đĨ, đ, đ) = Vđ (đĨ, đ) = đĸđ (đĨ) â đ§ (đđ đ) â đģ. + ] â¨đ´ (đŧ02 V + đŧ12 đ´V Nđ (đ) = {Vđ (đĨ, đĄ, đ) for đĄ â R | Vđ (đĨ, đĄ, đ) 3 â â V = 0, đ 2 (đŧ V + đŧ12 đ´V) , đ¤âŠ đđĄ 0 đˇ(đ´)ķ¸ = (đđ (đĨ, đĄ) + đđŧ02 đ§ (đđĄ đ) + đđŧ12 đ´đ§ (đđĄ đ) , đ¤) . + ]đ´ (đŧ02 V + đŧ12 đ´V + đŧ02 đ§ (đđĄ đ) + đŧ12 đ´đ§ (đđĄ đ)) + (50) (49) be the so-called kernel of the process {Uđ (đĄ, đ, đ)}. 5. Uniformly Random Attractor for Stochastic Nonautonomous Camassa-Holm Equation In [19], the authors have shown that the semigroup corresponding to the autonomous system possesses a global attractor. In [21â24], the authors have proved that the deterministic version of nonautonomous system has a uniform attractor. The main objective of this section is to obtain the existence of uniformly (with respect to đ â ÎŖ(đ0 )) random attractor for the stochastic nonautonomous Camassa-Holm equations in đ and đˇ(đ´). Lemma 15. Let {đĩ(đ)}đâΊ be tempered and Vđ (đ) â đĩ(đ). Then the process {Uđ (đĄ, đ, đ)} corresponding to (48) possesses a uniformly (with respect to đ â ÎŖ(đ0 )) random absorbing set K0 (đ) in đ. Abstract and Applied Analysis 7 đ ķĩ¨ ķĩ¨2 + đ âķĩ¨ķĩ¨ķĩ¨ķĩ¨đĻđ (đđĄ đđ )ķĩ¨ķĩ¨ķĩ¨ķĩ¨ Proof. Letting đ¤ = V in (51), we have đ=1 1 đ ķĩŠ ķĩŠ ķĩŠ2 ķĩŠ2 (đŧ02 âVâ22 + đŧ12 ķĩŠķĩŠķĩŠķĩŠđ´1/2 VķĩŠķĩŠķĩŠķĩŠ2 ) + ] (đŧ02 ķĩŠķĩŠķĩŠķĩŠđ´1/2 VķĩŠķĩŠķĩŠķĩŠ2 + đŧ12 âđ´Vâ22 ) 2 đđĄ ⤠đ = â] ( âđ´âđ đĻđ (đđĄ đđ ) , V) đ ]đŧ12 ķĩ¨ ķĩŠ ķĩ¨ ķĩŠ2 âđ´Vâ22 + đ â ķĩ¨ķĩ¨ķĩ¨ķĩ¨đĻđ (đđĄ đđ )ķĩ¨ķĩ¨ķĩ¨ķĩ¨ (đŧ02 âVâ22 + đŧ12 ķĩŠķĩŠķĩŠķĩŠđ´1/2 VķĩŠķĩŠķĩŠķĩŠ2 ) 2 đ=1 đ ķĩ¨ ķĩŠ ķĩ¨2 ķĩŠ2 + đ âķĩ¨ķĩ¨ķĩ¨ķĩ¨đĻđ (đđĄ đđ )ķĩ¨ķĩ¨ķĩ¨ķĩ¨ (đŧ02 âVâ22 + đŧ12 ķĩŠķĩŠķĩŠķĩŠđ´1/2 VķĩŠķĩŠķĩŠķĩŠ2 ) đ=1 đ â (đĩĖ (V + đ§ (đđĄ đ) , đŧ02 V + đŧ12 đ´V + ââđ đĻđ (đđĄ đđ )) , V) đ=1 đ=1 đ ķĩ¨ ķĩ¨2 + đ âķĩ¨ķĩ¨ķĩ¨ķĩ¨đĻđ (đđĄ đđ )ķĩ¨ķĩ¨ķĩ¨ķĩ¨ . đ=1 đ + (đđ (đĨ, đĄ) , V) + ( âđâđ đĻđ (đđĄ đđ ) , V) . (54) đ=1 (53) Now we estimate the second term of (53) on the right-hand side. Applying Lemma 14 we have ķĩ¨ķĩ¨ ķĩ¨ķĩ¨ đ ķĩ¨ķĩ¨ ķĩ¨ ķĩ¨ķĩ¨(đĩĖ (V + đ§ (đ đ) , đŧ2 V + đŧ2 đ´V + â â đĻ (đ đ )) , V)ķĩ¨ķĩ¨ķĩ¨ ķĩ¨ķĩ¨ đĄ đ đ đĄ đ 0 1 ķĩ¨ķĩ¨ķĩ¨ ķĩ¨ķĩ¨ ķĩ¨ķĩ¨ đ=1 ķĩ¨ ķĩ¨ķĩ¨ ķĩ¨ķĩ¨ đ ķĩ¨ķĩ¨ ķĩ¨ķĩ¨ = ķĩ¨ķĩ¨ķĩ¨ķĩ¨(đĩĖ (đ§ (đđĄ đ) , đŧ02 V + đŧ12 đ´V + â âđ đĻđ (đđĄ đđ )) , V)ķĩ¨ķĩ¨ķĩ¨ķĩ¨ ķĩ¨ķĩ¨ ķĩ¨ķĩ¨ đ=1 ķĩ¨ ķĩ¨ ķĩŠ ķĩŠ1/2 ķĩŠ ķĩŠ1/2 ⤠đķĩŠķĩŠķĩŠķĩŠđ´1/2 đ§(đđĄ đ)ķĩŠķĩŠķĩŠķĩŠ2 ķĩŠķĩŠķĩŠđ´đ§(đđĄ đ)ķĩŠķĩŠķĩŠ2 ķĩŠķĩŠ ķĩŠķĩŠ đ ķĩŠķĩŠ 2 ķĩŠķĩŠ ķĩŠ ķĩŠ 2 ķĩŠ × ķĩŠķĩŠķĩŠđŧ0 V + đŧ1 đ´V + ââđ đĻđ (đđĄ đđ )ķĩŠķĩŠķĩŠķĩŠ ķĩŠķĩŠķĩŠķĩŠđ´1/2 VķĩŠķĩŠķĩŠķĩŠ2 ķĩŠķĩŠ ķĩŠķĩŠ đ=1 ķĩŠ ķĩŠ2 ķĩŠķĩŠ ķĩŠķĩŠ đ ķĩŠķĩŠ ķĩŠķĩŠ ķĩŠķĩŠ ķĩŠķĩŠķĩŠķĩŠ 2 2 + đķĩŠķĩŠđ´đ§ (đđĄ đ)ķĩŠķĩŠ2 ķĩŠķĩŠđŧ0 V + đŧ1 đ´V + ââđ đĻđ (đđĄ đđ )ķĩŠķĩŠķĩŠķĩŠ ķĩŠķĩŠ ķĩŠķĩŠ đ=1 ķĩŠ ķĩŠ2 ķĩŠķĩŠ 1/2 ķĩŠķĩŠ1/2 ķĩŠđ´ VķĩŠķĩŠ × âVâ1/2 2 ķĩŠ ķĩŠ ķĩŠ2 ķĩŠ ķĩŠ ķĩŠ2 ķĩŠ ķĩŠķĩŠ â¤ đķĩŠķĩŠķĩŠķĩŠđ´1/2 đ§(đđĄ đ)ķĩŠķĩŠķĩŠķĩŠ2 âVâ22 + đķĩŠķĩŠķĩŠđ´đ§(đđĄ đ)ķĩŠķĩŠķĩŠ2 ķĩŠķĩŠķĩŠķĩŠđ´1/2 VķĩŠķĩŠķĩŠķĩŠ2 By PoincareĖâs inequality, we have ķĩ¨ķĩ¨ đ ķĩ¨ķĩ¨ đ ķĩ¨ķĩ¨ ķĩ¨ķĩ¨ ]đŧ2 ķĩŠ ķĩ¨ ķĩŠ2 ķĩ¨2 ķĩ¨ ķĩ¨ ] ķĩ¨ķĩ¨( âđ´âđ đĻđ (đđĄ đđ ) , V)ķĩ¨ķĩ¨ķĩ¨ķĩ¨ ⤠0 ķĩŠķĩŠķĩŠķĩŠđ´1/2 VķĩŠķĩŠķĩŠķĩŠ2 + đ âķĩ¨ķĩ¨ķĩ¨ķĩ¨đĻđ (đđĄ đđ )ķĩ¨ķĩ¨ķĩ¨ķĩ¨ , 6 ķĩ¨ķĩ¨ đ=1 ķĩ¨ķĩ¨ đ=1 ķĩ¨ ķĩ¨ ]đŧ2 ķĩŠ 1/2 ķĩŠ2 ķĩŠ ķĩŠ2 ķĩ¨ ķĩŠ ķĩŠ ķĩ¨ķĩ¨ ķĩ¨ķĩ¨(đđ (đĨ, đĄ) , V)ķĩ¨ķĩ¨ķĩ¨ ⤠ķĩŠķĩŠķĩŠđķĩŠķĩŠķĩŠđķ¸ âVâ2 ⤠0 ķĩŠķĩŠķĩŠķĩŠđ´ VķĩŠķĩŠķĩŠķĩŠ2 + đķĩŠķĩŠķĩŠđķĩŠķĩŠķĩŠđķ¸ , 6 ķĩ¨ķĩ¨ đ ķĩ¨ķĩ¨ 2 đ ķĩ¨ķĩ¨ ķĩ¨ ķĩ¨ķĩ¨( â đâ đĻ (đ đ ) , V)ķĩ¨ķĩ¨ķĩ¨ ⤠]đŧ0 ķĩŠķĩŠķĩŠđ´1/2 VķĩŠķĩŠķĩŠ2 + đ â ķĩ¨ķĩ¨ķĩ¨đĻ (đ đ )ķĩ¨ķĩ¨ķĩ¨2 . ķĩ¨ķĩ¨ ķĩ¨ķĩ¨ ķĩŠķĩŠ ķĩ¨ķĩ¨ đ đĄ đ ķĩ¨ķĩ¨ ķĩŠķĩŠ2 đ đ đĄ đ 6 ķĩ¨ķĩ¨ đ=1 ķĩ¨ķĩ¨ đ=1 ķĩ¨ ķĩ¨ (55) Associating with the above inequalities and employing PoincareĖâs inequality, we have đ ķĩŠ ķĩŠ2 (đŧ02 âVâ22 + đŧ12 ķĩŠķĩŠķĩŠķĩŠđ´1/2 VķĩŠķĩŠķĩŠķĩŠ2 ) đđĄ ķĩŠ ķĩŠ2 + ]đ 1 (đŧ02 âVâ22 + đŧ12 ķĩŠķĩŠķĩŠķĩŠđ´1/2 VķĩŠķĩŠķĩŠķĩŠ2 ) đ ķĩ¨ ķĩŠ ķĩ¨ ķĩŠ2 ⤠đ â ķĩ¨ķĩ¨ķĩ¨ķĩ¨đĻđ (đđĄ đđ )ķĩ¨ķĩ¨ķĩ¨ķĩ¨ (đŧ02 âVâ22 + đŧ12 ķĩŠķĩŠķĩŠķĩŠđ´1/2 VķĩŠķĩŠķĩŠķĩŠ2 ) đ=1 đ ķĩ¨ ķĩŠ ķĩ¨2 ķĩŠ2 + đ âķĩ¨ķĩ¨ķĩ¨ķĩ¨đĻđ (đđĄ đđ )ķĩ¨ķĩ¨ķĩ¨ķĩ¨ (đŧ02 âVâ22 + đŧ12 ķĩŠķĩŠķĩŠķĩŠđ´1/2 VķĩŠķĩŠķĩŠķĩŠ2 ) ]đŧ2 + 1 âđ´Vâ22 4 ķĩŠ ķĩŠķĩŠ ķĩŠ2 ķĩŠķĩŠ + đķĩŠķĩŠķĩŠķĩŠđ´1/2 đ§(đđĄ đ)ķĩŠķĩŠķĩŠķĩŠ2 ķĩŠķĩŠķĩŠđ´đ§(đđĄ đ)ķĩŠķĩŠķĩŠ2 ķĩŠķĩŠķĩŠķĩŠđ´1/2 VķĩŠķĩŠķĩŠķĩŠ2 ķĩŠ ķĩŠķĩŠ ķĩŠ + đķĩŠķĩŠķĩŠķĩŠđ´1/2 đ§(đđĄ đ)ķĩŠķĩŠķĩŠķĩŠ2 ķĩŠķĩŠķĩŠđ´đ§(đđĄ đ)ķĩŠķĩŠķĩŠ2 đ=1 đ ķĩ¨ ķĩ¨2 ķĩŠ ķĩŠ2 + đ âķĩ¨ķĩ¨ķĩ¨ķĩ¨đĻđ (đđĄ đđ )ķĩ¨ķĩ¨ķĩ¨ķĩ¨ + đķĩŠķĩŠķĩŠđķĩŠķĩŠķĩŠđķ¸ . đ=1 (56) đ ķĩ¨ ķĩ¨2 ķĩŠ ķĩŠ2 + đ â ķĩ¨ķĩ¨ķĩ¨ķĩ¨đĻđ (đđĄ đđ )ķĩ¨ķĩ¨ķĩ¨ķĩ¨ ķĩŠķĩŠķĩŠķĩŠđ´1/2 VķĩŠķĩŠķĩŠķĩŠ2 đ=1 ]đŧ2 ķĩŠ ķĩŠ + đķĩŠķĩŠķĩŠđ´đ§ (đđĄ đ)ķĩŠķĩŠķĩŠ2 âVâ22 + 1 âđ´Vâ22 4 ķĩŠ2 ķĩŠ ķĩŠ2 ķĩŠ ķĩŠ2 ķĩŠ + đķĩŠķĩŠķĩŠđ´đ§(đđĄ đ)ķĩŠķĩŠķĩŠ2 âVâ22 + đķĩŠķĩŠķĩŠđ´đ§(đđĄ đ)ķĩŠķĩŠķĩŠ2 ķĩŠķĩŠķĩŠķĩŠđ´1/2 VķĩŠķĩŠķĩŠķĩŠ2 đ ķĩ¨ ķĩ¨2 ķĩŠ ķĩŠ2 ķĩŠ ķĩŠ2 + đķĩŠķĩŠķĩŠđ´đ§(đđĄ đ)ķĩŠķĩŠķĩŠ2 + đ âķĩ¨ķĩ¨ķĩ¨ķĩ¨đĻđ (đđĄ đđ )ķĩ¨ķĩ¨ķĩ¨ķĩ¨ ķĩŠķĩŠķĩŠķĩŠđ´1/2 VķĩŠķĩŠķĩŠķĩŠ2 đ=1 Applying Gronwallâs lemma, we have ķĩŠ ķĩŠ2 đŧ02 âV (đĄ, đ)â22 + đŧ12 ķĩŠķĩŠķĩŠķĩŠđ´1/2 V (đĄ, đ)ķĩŠķĩŠķĩŠķĩŠ2 ķĩŠ2 ķĩŠ ķĩŠ2 ķĩŠ â¤ đđŊ1 (đ,đĄ,đ) (đŧ02 ķĩŠķĩŠķĩŠVđ (đ)ķĩŠķĩŠķĩŠ2 + đŧ12 ķĩŠķĩŠķĩŠķĩŠđ´1/2 Vđ (đ)ķĩŠķĩŠķĩŠķĩŠ2 ) đ đĄ ķĩ¨ ķĩ¨2 ķĩŠ ķĩŠ2 + âĢ (đ âķĩ¨ķĩ¨ķĩ¨ķĩ¨đĻđ (đđ đđ )ķĩ¨ķĩ¨ķĩ¨ķĩ¨ + đķĩŠķĩŠķĩŠđ (đ )ķĩŠķĩŠķĩŠđķ¸ ) đđŊ1 (đ ,đĄ,đ) đđ , đ đ=1 (57) 8 Abstract and Applied Analysis is convergent. For any đĄ > đ, there exists đž â N such that âđž < đ â đĄ, and we have where đ đĄ ķĩ¨ ķĩ¨ đŊ1 (đ, đĄ, đ) = â ]đ 1 đĄ + ]đ 1 đ + đ â âĢ ķĩ¨ķĩ¨ķĩ¨ķĩ¨đĻđ (đđ đđ )ķĩ¨ķĩ¨ķĩ¨ķĩ¨ đđ đ đ=1 đ đĄ ķĩ¨ ķĩ¨2 + đ â âĢ ķĩ¨ķĩ¨ķĩ¨ķĩ¨đĻđ (đđ đđ )ķĩ¨ķĩ¨ķĩ¨ķĩ¨ đđ . đ âĢ (58) 0 đâđĄ ķĩŠ2 đŊ (đ ,0,đ) ķĩŠķĩŠ đđ ķĩŠķĩŠđ (đ + đĄ)ķĩŠķĩŠķĩŠđķ¸ đ 1 =âĢ đ=1 đâđĄ Replacing đ by đâđĄ đ in (57) and (58), we have ķĩŠ ķĩŠ2 đŧ02 ķĩŠķĩŠķĩŠV (đĄ, đâđĄ đ)ķĩŠķĩŠķĩŠ2 + +âĢ Then by piecewise integration, we have 0 ķĩŠ ķĩŠ2 âĢ ķĩŠķĩŠķĩŠđ0 (đ + đĄ + đ)ķĩŠķĩŠķĩŠđķ¸ đđŊ1 (đ ,0,đ) đđ âđž ķĩ¨ ķĩ¨2 ķĩŠ ķĩŠ2 (đ âķĩ¨ķĩ¨ķĩ¨ķĩ¨đĻđ (đđ đđ )ķĩ¨ķĩ¨ķĩ¨ķĩ¨ + đķĩŠķĩŠķĩŠđ (đ + đĄ)ķĩŠķĩŠķĩŠđķ¸ ) đđŊ1 (đ ,0,đ) đđ . đž đ=1 Note that are stationary and ergodic (cf. [24]), then it follows from ergodic theorem that 1 0 ķĩ¨ķĩ¨ ķĩ¨ ķĩ¨ ķĩ¨ âĢ ķĩ¨ķĩ¨đĻ (đđ đđ )ķĩ¨ķĩ¨ķĩ¨ķĩ¨ đđ = đ¸ (ķĩ¨ķĩ¨ķĩ¨ķĩ¨đĻđ (đđ )ķĩ¨ķĩ¨ķĩ¨ķĩ¨) . đĄ â â đĄ âđĄ ķĩ¨ đ By differential mean value theorem, for each 1 ⤠đ ⤠đž, there exists đ đ â [âđ + đ â 1, âđ + đ], such that (60) đž âđ+đ ââĢ đ=1 âđ+đâ1 lim 1 0 ķĩ¨ķĩ¨ đ ķĩ¨2 ķĩ¨ ķĩ¨2 âĢ ķĩ¨ķĩ¨đĻ (đđ đđ )ķĩ¨ķĩ¨ķĩ¨ķĩ¨ đđ = đ¸ (ķĩ¨ķĩ¨ķĩ¨ķĩ¨đĻđ (đđ )ķĩ¨ķĩ¨ķĩ¨ķĩ¨ ) = . đĄ â â đĄ âđĄ ķĩ¨ đ đ đ đŊ (đ , 0, đ) 1 0ķĩ¨ ķĩ¨ lim 1 = lim (]đ 1 + đ â âĢ ķĩ¨ķĩ¨ķĩ¨ķĩ¨đĻđ (đđ đđ )ķĩ¨ķĩ¨ķĩ¨ķĩ¨ đđ đ â ââ đ â ââ đ đ đ đ=1 đ 1 0ķĩ¨ ķĩ¨2 +đ â âĢ ķĩ¨ķĩ¨ķĩ¨ķĩ¨đĻđ (đđ đđ )ķĩ¨ķĩ¨ķĩ¨ķĩ¨ đđ) đ=1 đ đ đ đ â ). âđ đ Since {|đĻđ (đđ )|}đđ=1 0 (63) ââ đ=1 đĄ+1 đĄ ķĩŠķĩŠ ķĩŠ2 ķĩŠķĩŠđ0 (đ )ķĩŠķĩŠķĩŠđķ¸ đđ < đđ0 . (68) đŊ1 (đ đ ,0,đ) is convergent. It is easy to check that the series ââ đ=1 đ Associating with (65)â(68), for any đĄ > đ, we have 0 ķĩŠ2 đŊ (đ ,0,đ) ķĩŠķĩŠ đđ ⤠đ2 (đ) , ķĩŠķĩŠđ(đ + đĄ)ķĩŠķĩŠķĩŠđķ¸ đ 1 đâđĄ âĢ (69) â đ2 (đ) = đđ0 âđđŊ1 (đ đ ,0,đ) . đ=1 (70) âĢ 0 đâđĄ đ ķĩ¨ ķĩ¨2 ķĩŠ ķĩŠ2 (đ âķĩ¨ķĩ¨ķĩ¨ķĩ¨đĻđ (đđ đđ )ķĩ¨ķĩ¨ķĩ¨ķĩ¨ + đķĩŠķĩŠķĩŠđ (đ + đĄ)ķĩŠķĩŠķĩŠđķ¸ ) đđŊ1 (đ ,0,đ) đđ ⤠đ3 (đ) , đ=1 (71) as đ ķŗ¨â ââ. đ ķĩ¨ ķĩ¨2 âķĩ¨ķĩ¨ķĩ¨ķĩ¨đĻđ (đđ đđ )ķĩ¨ķĩ¨ķĩ¨ķĩ¨ đđŊ1 (đ ,0,đ) đđ ķĩŠķĩŠ ķĩŠķĩŠđ0 (đ + đĄ + Therefore (64) and (69) imply that, for đĄ > đ, the second term on the right-hand side of (59) can be bounded by where đ3 (đ) = đđ1 (đ) + đđ2 (đ). For Vđ (đ) â đĩ(đ) being tempered, there exists đ1 (đ) > 0 such that, when đĄ âĨ đ2 (đ), are tempered, the integral đ1 (đ) = âĢ âđ+đâ1 ķĩŠ2 đ)ķĩŠķĩŠķĩŠđķ¸ đđ . where đ đŊ1 (đ , 0, đ) 1 0ķĩ¨ ķĩ¨ = ]đ 1 + đ â âĢ ķĩ¨ķĩ¨ķĩ¨ķĩ¨đĻđ (đđ đđ )ķĩ¨ķĩ¨ķĩ¨ķĩ¨ đđ đ đ đ đ=1 đŊ1 (đ , 0, đ) ķŗ¨â ââ, đ=1 đĄâR So for P a.e. đ â Ί, there are đ0 (đ) > 0 and đ0 > 0 such that, for đ âĨ đ1 (đ) and đ âĨ đ0 , 1 0ķĩ¨ ķĩ¨2 +đ â âĢ ķĩ¨ķĩ¨ķĩ¨ķĩ¨đĻđ (đđ đđ )ķĩ¨ķĩ¨ķĩ¨ķĩ¨ đđ < 0, đ=1 đ đ âđ+đ sup âĢ (62) đ (67) đž By the property of normal function, there exists đđ0 , which just depends on đ0 , such that Employing (61), we have = (]đ 1 â ķĩŠ2 đŊ (đ ,0,đ) ķĩŠķĩŠ đđ ķĩŠķĩŠđ0 (đ + đĄ + đ)ķĩŠķĩŠķĩŠđķ¸ đ 1 = â đđŊ1 (đ đ ,0,đ) âĢ (61) lim (66) đ=1 On the other hand, we have đ 1 0 ķĩ¨ķĩ¨ ķĩ¨ ķĩ¨ ķĩ¨ , âĢ ķĩ¨ķĩ¨ķĩ¨đĻđ (đđ đđ )ķĩ¨ķĩ¨ķĩ¨ķĩ¨ đđ = đ¸ (ķĩ¨ķĩ¨ķĩ¨ķĩ¨đĻđ (đđ )ķĩ¨ķĩ¨ķĩ¨ķĩ¨) = đĄ â â đĄ âđĄ âđ âđ+đ ķĩŠķĩŠ ķĩŠ2 đŊ (đ ,0,đ) = ââĢ đđ . ķĩŠķĩŠđ0 (đ + đĄ + đ)ķĩŠķĩŠķĩŠđķ¸ đ 1 âđ+đâ1 (59) {|đĻđ (đđĄ đđ )|}đđ=1 lim (65) 0 đ đâđĄ ķĩŠķĩŠ ķĩŠ2 đŊ (đ ,0,đ) đđ ķĩŠķĩŠđ0 (đ + đĄ + đ)ķĩŠķĩŠķĩŠđķ¸ đ 1 ķĩŠ ķĩŠ2 ⤠âĢ ķĩŠķĩŠķĩŠđ0 (đ + đĄ + đ)ķĩŠķĩŠķĩŠđķ¸ đđŊ1 (đ ,0,đ) đđ . âđž ķĩŠ ķĩŠ2 đŧ12 ķĩŠķĩŠķĩŠķĩŠđ´1/2 V(đĄ, đâđĄ đ)ķĩŠķĩŠķĩŠķĩŠ2 ķĩŠ ķĩŠ2 ķĩŠ ķĩŠ2 ⤠đđŊ1 (đâđĄ,0,đ) (đŧ02 ķĩŠķĩŠķĩŠVđ (đâđĄ đ)ķĩŠķĩŠķĩŠ2 + đŧ12 ķĩŠķĩŠķĩŠķĩŠđ´1/2 Vđ (đâđĄ đ)ķĩŠķĩŠķĩŠķĩŠ2 ) 0 0 (64) ķĩŠ ķĩŠ2 ķĩŠ ķĩŠ2 đđŊ1 (đâđĄ,0,đ) (đŧ02 ķĩŠķĩŠķĩŠVđ (đâđĄ đ)ķĩŠķĩŠķĩŠ2 + đŧ12 ķĩŠķĩŠķĩŠķĩŠđ´1/2 Vđ (đâđĄ đ)ķĩŠķĩŠķĩŠķĩŠ2 ) < đ3 (đ) . (72) Abstract and Applied Analysis 9 Letting đ3 (đ) = max{đ1 (đ), đ2 (đ)} and đ4 (đ) = 2đ3 (đ), when đĄ âĨ đ3 (đ), we have ķĩŠ ķĩŠ2 ķĩŠ ķĩŠ2 đŧ02 ķĩŠķĩŠķĩŠV(đĄ, đâđĄ đ)ķĩŠķĩŠķĩŠ2 + đŧ12 ķĩŠķĩŠķĩŠķĩŠđ´1/2 V(đĄ, đâđĄ đ)ķĩŠķĩŠķĩŠķĩŠ2 ⤠đ4 (đ) , đ + đâ âĢ đ=1 đĄ đ + đâ âĢ đĄ+1 đ=1 đĄ We define (76) (74) In conclusion, K1 (đ) is a uniformly random absorbing set for {U(đĄ, đ, đ)} in đ, which complete the proof. Lemma 16. Let {đĩ(đ)}đâΊ be tempered and Vđ (đ) â đĩ(đ). Then the process {Uđ (đĄ, đ, đ)} corresponding to (48) possesses a uniformly (with respect to đ â ÎŖ(đ0 )) random absorbing set K2 (đ) in đˇ(đ´). As the previous consideration in Lemma 15, for đ â [đĄ, đĄ + 1) where đĄ âĨ đ2 (đ), we have ķĩŠ ķĩŠ2 ķĩŠ ķĩŠ2 đŧ02 ķĩŠķĩŠķĩŠV(đ , đâđĄâ1 đ)ķĩŠķĩŠķĩŠ2 + đŧ12 ķĩŠķĩŠķĩŠķĩŠđ´1/2 V (đ , đâđĄâ1 đ)ķĩŠķĩŠķĩŠķĩŠ2 ⤠đ5 (đ) , ķĩŠ ķĩŠ2 đŧ02 âV (đĄ + 1, đ)â22 + đŧ12 ķĩŠķĩŠķĩŠķĩŠđ´1/2 V (đĄ + 1, đ)ķĩŠķĩŠķĩŠķĩŠ2 + ]âĢ âĢ đĄ+1 đĄ ķĩŠ ķĩŠ2 ķĩŠ ķĩŠ2 (đŧ02 ķĩŠķĩŠķĩŠķĩŠđ´1/2 V (đ , đâđĄâ1 đ)ķĩŠķĩŠķĩŠķĩŠ2 + đŧ12 ķĩŠķĩŠķĩŠđ´V (đ , đâđĄâ1 đ)ķĩŠķĩŠķĩŠ2 ) đđ ⤠đ6 (đ) , (78) where đ 0 ķĩ¨ ķĩ¨ đ6 (đ) = đđ5 (đ) â âĢ ķĩ¨ķĩ¨ķĩ¨ķĩ¨đĻđ (đđ đđ )ķĩ¨ķĩ¨ķĩ¨ķĩ¨ đđ â1 ķĩŠ2 ķĩŠ (đŧ02 ķĩŠķĩŠķĩŠķĩŠđ´1/2 V (đ , đ)ķĩŠķĩŠķĩŠķĩŠ2 + đŧ12 âđ´V (đ , đ)â22 ) đđ đĄ đ=1 đ 0 ķĩ¨ ķĩ¨2 + đđ5 (đ) â âĢ ķĩ¨ķĩ¨ķĩ¨ķĩ¨đĻđ (đđ đđ )ķĩ¨ķĩ¨ķĩ¨ķĩ¨ đđ â1 ķĩŠ ķĩŠ2 ⤠(đŧ02 âV (đĄ, đ)â22 + đŧ12 ķĩŠķĩŠķĩŠķĩŠđ´1/2 V (đĄ, đ)ķĩŠķĩŠķĩŠķĩŠ2 ) đ + đâ âĢ đĄ+1 đ=1 đĄ × đ + đâ âĢ đĄ+1 đ=1 đĄ + ķĩŠ ķĩŠ2 đŧ12 ķĩŠķĩŠķĩŠķĩŠđ´1/2 V (đ , đ)ķĩŠķĩŠķĩŠķĩŠ2 ) đđ đ đĄ+1 đ=1 đĄ ķĩ¨ķĩ¨ ķĩ¨2 ķĩ¨ķĩ¨đĻđ (đđ đđ )ķĩ¨ķĩ¨ķĩ¨ đđ . ķĩ¨ ķĩ¨ Replacing đ by đâđĄâ1 đ in (75), we have ]âĢ đĄ+1 đĄ đ ķĩŠ ķĩŠ2 ķĩŠ ķĩŠ2 (đŧ02 ķĩŠķĩŠķĩŠķĩŠđ´1/2 V (đ , đâđĄâ1 đ)ķĩŠķĩŠķĩŠķĩŠ2 + đŧ12 ķĩŠķĩŠķĩŠđ´V (đ , đâđĄâ1 đ)ķĩŠķĩŠķĩŠ2 ) đđ ⤠đâ âĢ đĄ+1 đ=1 đĄ (79) đ 0 ķĩ¨ ķĩ¨2 + đ â âĢ ķĩ¨ķĩ¨ķĩ¨ķĩ¨đĻđ (đđ đđ )ķĩ¨ķĩ¨ķĩ¨ķĩ¨ đđ + đ5 (đ) . â1 đ=1 (75) Now we let đ¤ = đ´V in (51), and we have 1 đ ķĩŠ ķĩŠ2 (đŧ02 ķĩŠķĩŠķĩŠķĩŠđ´1/2 VķĩŠķĩŠķĩŠķĩŠ2 + đŧ12 âđ´Vâ22 ) 2 đđĄ ķĩ¨ķĩ¨ ķĩ¨2 ķĩ¨ķĩ¨đĻđ (đđ đđ )ķĩ¨ķĩ¨ķĩ¨ ķĩ¨ ķĩ¨ ķĩŠ2 ķĩŠ × (đŧ02 âV (đ , đ)â22 + đŧ12 ķĩŠķĩŠķĩŠķĩŠđ´1/2 V (đ , đ)ķĩŠķĩŠķĩŠķĩŠ2 ) đđ + đâ âĢ đ=1 ķĩ¨ķĩ¨ ķĩ¨ ķĩ¨ķĩ¨đĻđ (đđ đđ )ķĩ¨ķĩ¨ķĩ¨ ķĩ¨ ķĩ¨ (đŧ02 âV (đ , đ)â22 (77) where đ5 (đ) = đ]đ 1 đ4 (đ). Associating (76) with (77), we have Proof. Integrating (56) into [đĄ, đĄ+1] where đĄ âĨ đ3 (đ), we have đĄ+1 ķĩ¨ķĩ¨ ķĩ¨2 ķĩ¨ķĩ¨đĻđ (đđ âđĄâ1 đđ )ķĩ¨ķĩ¨ķĩ¨ đđ ķĩ¨ ķĩ¨ ķĩŠ ķĩŠ2 ķĩŠ ķĩŠ2 + (đŧ02 ķĩŠķĩŠķĩŠV (đĄ, đâđĄâ1 đ)ķĩŠķĩŠķĩŠ2 + đŧ12 ķĩŠķĩŠķĩŠķĩŠđ´1/2 V (đĄ, đâđĄâ1 đ)ķĩŠķĩŠķĩŠķĩŠ2 ) . K1 (đ) = {V (đ) â đ | đŧ02 âV(đ)â22 ķĩŠ ķĩŠ2 +đŧ12 ķĩŠķĩŠķĩŠķĩŠđ´1/2 V(đ)ķĩŠķĩŠķĩŠķĩŠ2 ⤠đ4 (đ)} . ķĩ¨ķĩ¨ ķĩ¨2 ķĩ¨ķĩ¨đĻđ (đđ âđĄâ1 đđ )ķĩ¨ķĩ¨ķĩ¨ (đŧ02 ķĩŠķĩŠķĩŠķĩŠV (đ , đâđĄâ1 đ)ķĩŠķĩŠķĩŠķĩŠ22 ķĩ¨ ķĩ¨ ķĩŠ ķĩŠ2 +đŧ12 ķĩŠķĩŠķĩŠķĩŠđ´1/2 V (đ , đâđĄâ1 đ)ķĩŠķĩŠķĩŠķĩŠ2 ) đđ (73) âđĄ âĨ đ3 (đ) , đ â ÎŖ (đ0 ) . đĄ+1 ķĩ¨ķĩ¨ ķĩ¨ ķĩ¨ķĩ¨đĻđ (đđ âđĄâ1 đđ )ķĩ¨ķĩ¨ķĩ¨ (đŧ02 ķĩŠķĩŠķĩŠķĩŠV (đ , đâđĄâ1 đ)ķĩŠķĩŠķĩŠķĩŠ22 ķĩ¨ ķĩ¨ ķĩŠ ķĩŠ2 +đŧ12 ķĩŠķĩŠķĩŠķĩŠđ´1/2 V (đ , đâđĄâ1 đ)ķĩŠķĩŠķĩŠķĩŠ2 ) đđ ķĩŠ ķĩŠ2 + ] (đŧ02 âđ´Vâ22 + đŧ12 ķĩŠķĩŠķĩŠķĩŠđ´3/2 VķĩŠķĩŠķĩŠķĩŠ2 ) đ = â] ( â đ´âđ đĻđ (đđĄ đđ ) , đ´V) đ=1 â (đĩĖ (V + đ§ (đđĄ đ) , đŧ02 V + đŧ12 đ´V đ + ââđ đĻđ (đđĄ đđ )) , đ´V) đ=1 đ + (đđ (đĨ, đĄ) , đ´V) + (âđâđ đĻđ (đđĄ đđ ) , đ´V) . đ=1 (80) 10 Abstract and Applied Analysis Employing Lemma 14, the bilinear term in (80) can be bounded by Associating with all the above inequalities, we have đ ķĩŠ ķĩŠ2 (đŧ2 ķĩŠķĩŠķĩŠđ´1/2 VķĩŠķĩŠķĩŠķĩŠ2 + đŧ12 âđ´Vâ22 ) đđĄ 0 ķĩŠ đ (đĩĖ (V + đ§ (đđĄ đ) , đŧ02 V + đŧ12 đ´V + â âđ đĻđ (đđĄ đđ )) , đ´V) ķĩŠ ķĩŠ2 2 ⤠đ(đŧ02 âVâ22 + đŧ12 ķĩŠķĩŠķĩŠķĩŠđ´1/2 VķĩŠķĩŠķĩŠķĩŠ2 ) đ=1 2 ķĩŠ ķĩŠ2 + đ(đŧ02 ķĩŠķĩŠķĩŠķĩŠđ´1/2 VķĩŠķĩŠķĩŠķĩŠ2 + đŧ12 âđ´Vâ22 ) ķĩŠ1/2 ķĩŠ ķĩŠ ķĩŠ1/2 ⤠đ (ķĩŠķĩŠķĩŠķĩŠđ´1/2 V + đ´1/2 đ§ (đđĄ đ)ķĩŠķĩŠķĩŠķĩŠ2 ķĩŠķĩŠķĩŠđ´V + đ´đ§(đđĄ đ)ķĩŠķĩŠķĩŠ2 đ ķĩ¨ ķĩ¨2 + đ â ķĩ¨ķĩ¨ķĩ¨ķĩ¨đĻđ (đđĄ đđ )ķĩ¨ķĩ¨ķĩ¨ķĩ¨ ķĩŠķĩŠ ķĩŠķĩŠ đ ķĩŠķĩŠ 2 ķĩŠķĩŠ ķĩŠ ķĩŠ 2 ķĩŠ ×ķĩŠķĩŠķĩŠđŧ0 V + đŧ1 đ´V + ââđ đĻđ (đđĄ đđ )ķĩŠķĩŠķĩŠķĩŠ ķĩŠķĩŠķĩŠķĩŠđ´3/2 VķĩŠķĩŠķĩŠķĩŠ2 ) ķĩŠķĩŠ ķĩŠķĩŠ đ=1 ķĩŠ ķĩŠ2 đ=1 đ ķĩ¨ ķĩ¨4 + đ â ķĩ¨ķĩ¨ķĩ¨ķĩ¨đĻđ (đđĄ đđ )ķĩ¨ķĩ¨ķĩ¨ķĩ¨ ķĩŠķĩŠ ķĩŠķĩŠ đ ķĩŠķĩŠ ķĩŠķĩŠ ķĩŠķĩŠ ķĩŠķĩŠķĩŠķĩŠ 2 2 + đ (ķĩŠķĩŠđ´V + đ´đ§ (đđĄ đ)ķĩŠķĩŠ2 ķĩŠķĩŠđŧ0 V + đŧ1 đ´V + ââđ đĻđ (đđĄ đđ )ķĩŠķĩŠķĩŠķĩŠ ķĩŠķĩŠ ķĩŠķĩŠ đ=1 ķĩŠ ķĩŠ2 đ=1 ķĩŠ ķĩŠ2 + đ (đŧ02 âVâ22 + đŧ12 ķĩŠķĩŠķĩŠķĩŠđ´1/2 VķĩŠķĩŠķĩŠķĩŠ2 ) ķĩŠ ķĩŠ2 × (đŧ02 ķĩŠķĩŠķĩŠķĩŠđ´1/2 VķĩŠķĩŠķĩŠķĩŠ2 + đŧ12 âđ´Vâ22 ) ķĩŠķĩŠ 3/2 ķĩŠķĩŠ1/2 ķĩŠđ´ VķĩŠķĩŠ ) ×âđ´Vâ1/2 2 ķĩŠ ķĩŠ ķĩŠ2 đ ķĩ¨ ķĩŠ ķĩ¨2 ķĩŠ2 + đ â ķĩ¨ķĩ¨ķĩ¨ķĩ¨đĻđ (đđĄ đđ )ķĩ¨ķĩ¨ķĩ¨ķĩ¨ (đŧ02 âVâ22 + đŧ12 ķĩŠķĩŠķĩŠķĩŠđ´1/2 VķĩŠķĩŠķĩŠķĩŠ2 ) 2 ķĩŠ ķĩŠ2 ]đŧ ⤠]đŧ12 ķĩŠķĩŠķĩŠķĩŠđ´3/2 VķĩŠķĩŠķĩŠķĩŠ2 + 0 âđ´Vâ22 4 + đ(đŧ02 âVâ22 + đ=1 ķĩŠ ķĩŠ2 + đķĩŠķĩŠķĩŠđķĩŠķĩŠķĩŠđķ¸ ķĩŠ ķĩŠ2 2 đŧ02 ķĩŠķĩŠķĩŠķĩŠđ´1/2 VķĩŠķĩŠķĩŠķĩŠ2 ) đ ķĩ¨ ķĩŠ ķĩ¨2 ķĩŠ2 + đ â ķĩ¨ķĩ¨ķĩ¨ķĩ¨đĻđ (đđĄ đđ )ķĩ¨ķĩ¨ķĩ¨ķĩ¨ (đŧ02 ķĩŠķĩŠķĩŠķĩŠđ´1/2 VķĩŠķĩŠķĩŠķĩŠ2 + đŧ12 âđ´Vâ22 ) . 2 ķĩŠ ķĩŠ2 + đ(đŧ02 ķĩŠķĩŠķĩŠķĩŠđ´1/2 VķĩŠķĩŠķĩŠķĩŠ2 + đŧ02 âđ´Vâ22 ) + đ (đŧ02 âVâ22 + ķĩŠ ķĩŠ ķĩŠ2 ķĩŠ2 đŧ02 ķĩŠķĩŠķĩŠķĩŠđ´1/2 VķĩŠķĩŠķĩŠķĩŠ2 ) (đŧ02 ķĩŠķĩŠķĩŠķĩŠđ´1/2 VķĩŠķĩŠķĩŠķĩŠ2 đ=1 (83) + đŧ02 âđ´Vâ22 ) Applying Gronwallâs lemma on [đ , đĄ + 1] where đ â (đĄ, đĄ + 1) and đĄ âĨ đ3 (đ), we have đ ķĩ¨ ķĩŠ ķĩ¨2 ķĩŠ2 + đ âķĩ¨ķĩ¨ķĩ¨ķĩ¨đĻđ (đđĄ đđ )ķĩ¨ķĩ¨ķĩ¨ķĩ¨ (đŧ02 âVâ22 + đŧ02 ķĩŠķĩŠķĩŠķĩŠđ´1/2 VķĩŠķĩŠķĩŠķĩŠ2 ) đ=1 ķĩŠ ķĩŠ2 đŧ02 ķĩŠķĩŠķĩŠķĩŠđ´1/2 V(đĄ + 1, đ)ķĩŠķĩŠķĩŠķĩŠ2 + đŧ12 âđ´V (đĄ + 1, đ)â22 đ ķĩ¨ ķĩŠ ķĩ¨2 ķĩŠ2 + đ âķĩ¨ķĩ¨ķĩ¨ķĩ¨đĻđ (đđĄ đđ )ķĩ¨ķĩ¨ķĩ¨ķĩ¨ (đŧ02 ķĩŠķĩŠķĩŠķĩŠđ´1/2 VķĩŠķĩŠķĩŠķĩŠ2 + đŧ02 âđ´Vâ22 ) ķĩŠ ķĩŠ2 ⤠(đŧ02 ķĩŠķĩŠķĩŠķĩŠđ´1/2 V (đ , đ)ķĩŠķĩŠķĩŠķĩŠ2 + đŧ12 âđ´V (đ , đ)â22 ) đđŊ2 (đ ,đĄ+1,đ) đ=1 đ ķĩ¨ ķĩ¨4 + đ âķĩ¨ķĩ¨ķĩ¨ķĩ¨đĻđ (đđĄ đđ )ķĩ¨ķĩ¨ķĩ¨ķĩ¨ . đ=1 + đâĢ (81) đ + đâĢ The other terms are bounded by ķĩ¨ķĩ¨ đ ķĩ¨ķĩ¨ đ ķĩ¨ķĩ¨ ķĩ¨ķĩ¨ ]đŧ2 ķĩ¨ ķĩ¨2 ķĩ¨ ķĩ¨ ] ķĩ¨ķĩ¨( âđ´âđ đĻđ (đđĄ đđ ) , đ´V)ķĩ¨ķĩ¨ķĩ¨ķĩ¨ ⤠0 âđ´Vâ22 + đ âķĩ¨ķĩ¨ķĩ¨ķĩ¨đĻđ (đđĄ đđ )ķĩ¨ķĩ¨ķĩ¨ķĩ¨ . 4 ķĩ¨ķĩ¨ đ=1 ķĩ¨ķĩ¨ đ=1 ķĩ¨ ķĩ¨ ]đŧ2 ķĩ¨ ķĩŠ ķĩŠ ķĩŠ ķĩŠ2 ķĩ¨ķĩ¨ 2 ķĩ¨ķĩ¨(đđ (đĨ, đĄ) , đ´V)ķĩ¨ķĩ¨ķĩ¨ ⤠ķĩŠķĩŠķĩŠđķĩŠķĩŠķĩŠđķ¸ âđ´Vâ2 ⤠0 âđ´Vâ2 + đķĩŠķĩŠķĩŠđķĩŠķĩŠķĩŠđķ¸ . 4 ķĩ¨ķĩ¨ķĩ¨ ]đŧ2 ķĩ¨ķĩ¨ķĩ¨ đ đ ķĩ¨ ķĩ¨ ķĩ¨ ķĩ¨2 đ ķĩ¨ķĩ¨ķĩ¨ķĩ¨( ââđ đĻđ (đđĄ đđ ) , đ´V)ķĩ¨ķĩ¨ķĩ¨ķĩ¨ ⤠0 âđ´Vâ22 + đ â ķĩ¨ķĩ¨ķĩ¨ķĩ¨đĻđ (đđĄ đđ )ķĩ¨ķĩ¨ķĩ¨ķĩ¨ . 4 ķĩ¨ķĩ¨ ķĩ¨ķĩ¨ đ=1 đ=1 ķĩ¨ ķĩ¨ (82) đĄ+1 đ ķĩ¨ ķĩ¨2 âķĩ¨ķĩ¨ķĩ¨ķĩ¨đĻđ (đđ đđ )ķĩ¨ķĩ¨ķĩ¨ķĩ¨ đđŊ2 (đ,đĄ+1,đ) đđ đ=1 đĄ+1 đ ķĩ¨ ķĩ¨4 âķĩ¨ķĩ¨ķĩ¨ķĩ¨đĻđ (đđ đđ )ķĩ¨ķĩ¨ķĩ¨ķĩ¨ đđŊ2 (đ,đĄ+1,đ) đđ đ đ=1 đĄ+1 ķĩŠ2 đŊ (đ,đĄ+1,đ) ķĩŠķĩŠ đđ ķĩŠķĩŠđ(đ)ķĩŠķĩŠķĩŠđķ¸ đ 2 + đâĢ đ + đâĢ đĄ+1 đ đ ķĩ¨ ķĩ¨2 âķĩ¨ķĩ¨ķĩ¨ķĩ¨đĻđ (đđ đđ )ķĩ¨ķĩ¨ķĩ¨ķĩ¨ đ=1 ķĩŠ ķĩŠ2 × (đŧ02 âV (đ, đ)â22 + đŧ12 ķĩŠķĩŠķĩŠķĩŠđ´1/2 V (đ, đ)ķĩŠķĩŠķĩŠķĩŠ2 ) đđŊ2 (đ,đĄ+1,đ) đđ + đâĢ đĄ+1 đ ķĩŠ ķĩŠ2 2 (đŧ02 âV (đ, đ)â22 + đŧ12 ķĩŠķĩŠķĩŠķĩŠđ´1/2 V (đ, đ)ķĩŠķĩŠķĩŠķĩŠ2 ) đđŊ2 (đ,đĄ+1,đ) đđ, (84) Abstract and Applied Analysis 11 Integrating (87) with respect to đ over (đĄ, đĄ+1) where đĄ âĨ đ3 (đ) and employing the property of normal function in (68), we have where đŊ2 (đ , đĄ, đ) = đâĢ đĄ (đŧ02 âV (đ, đ)â22 đ + ķĩŠ ķĩŠ2 ķĩŠ ķĩŠ2 đŧ02 ķĩŠķĩŠķĩŠķĩŠđ´1/2 V (đĄ + 1, đâđĄâ1 đ)ķĩŠķĩŠķĩŠķĩŠ2 + đŧ12 ķĩŠķĩŠķĩŠđ´V (đĄ + 1, đâđĄâ1 đ)ķĩŠķĩŠķĩŠ2 ķĩŠ ķĩŠ2 đŧ12 ķĩŠķĩŠķĩŠķĩŠđ´1/2 V (đ, đ)ķĩŠķĩŠķĩŠķĩŠ2 ) đđ đĄ ķĩŠ ķĩŠ2 + đ âĢ (đŧ02 ķĩŠķĩŠķĩŠķĩŠđ´1/2 V (đ, đ)ķĩŠķĩŠķĩŠķĩŠ2 + đŧ12 âđ´V (đ, đ)â22 ) đđ đ ⤠đ8 (đ) , (85) where đ8 (đ) = đ6 (đ) đđ7 (đ) + đđđ7 (đ) đ5 (đ)2 đĄ đ ķĩ¨ ķĩ¨2 + đ âĢ â ķĩ¨ķĩ¨ķĩ¨ķĩ¨đĻđ (đđ đđ )ķĩ¨ķĩ¨ķĩ¨ķĩ¨ đđ. đ 0 đ ķĩ¨ ķĩ¨2 + đđđ7 (đ) âĢ âķĩ¨ķĩ¨ķĩ¨ķĩ¨đĻđ (đđ đđ )ķĩ¨ķĩ¨ķĩ¨ķĩ¨ đđ â1 đ=1 đ=1 Replacing đ by đâđĄâ1 đ in (84) and (85), we have 0 đ ķĩ¨ ķĩ¨4 + đđđ7 (đ) âĢ âķĩ¨ķĩ¨ķĩ¨ķĩ¨đĻđ (đđ đđ )ķĩ¨ķĩ¨ķĩ¨ķĩ¨ đđ â1 đ=1 đŊ2 (đ, đĄ + 1, đâđĄâ1 đ) ⤠đâĢ đĄ+1 đĄ đĄ+1 0 đ ķĩ¨ ķĩ¨2 + đđđ7 (đ) đ5 (đ) âĢ â ķĩ¨ķĩ¨ķĩ¨ķĩ¨đĻđ (đđ đđ )ķĩ¨ķĩ¨ķĩ¨ķĩ¨ đđ. â1 ķĩŠ ķĩŠ2 + đŧ12 ķĩŠķĩŠķĩŠđ´V(đ, đâđĄâ1 đ)ķĩŠķĩŠķĩŠ2 ) đđ đ + đâ âĢ đ=1 ķĩŠ ķĩŠ2 (đŧ02 ķĩŠķĩŠķĩŠķĩŠđ´1/2 V (đ, đâđĄâ1 đ)ķĩŠķĩŠķĩŠķĩŠ2 đĄ đĄ+1 đ=1 đĄ We define (86) ķĩ¨ķĩ¨ ķĩ¨2 ķĩ¨ķĩ¨đĻđ (đđâđĄâ1 đđ )ķĩ¨ķĩ¨ķĩ¨ đđ ķĩ¨ ķĩ¨ So much for that we have proved the existence of bounded uniformly (with respect to đ â ÎŖ(đ0 )) random absorbing sets in đ and đˇ(đ´). Next we derive the existence of uniformly (with respect to đ â ÎŖ(đ0 )) random attractors in đ and đˇ(đ´). ķŗĩģ = đ7 (đ) . And then ķĩŠ ķĩŠ2 ķĩŠ2 ķĩŠ đŧ02 ķĩŠķĩŠķĩŠķĩŠđ´1/2 V (đĄ + 1, đâđĄâ1 đ)ķĩŠķĩŠķĩŠķĩŠ2 + đŧ12 ķĩŠķĩŠķĩŠđ´V(đĄ + 1, đâđĄâ1 đ)ķĩŠķĩŠķĩŠ2 ķĩŠ ķĩŠ2 ķĩŠ2 ķĩŠ â¤ (đŧ02 ķĩŠķĩŠķĩŠķĩŠđ´1/2 V(đ , đâđĄâ1 đ)ķĩŠķĩŠķĩŠķĩŠ2 + đŧ12 ķĩŠķĩŠķĩŠđ´V (đ , đâđĄâ1 đ)ķĩŠķĩŠķĩŠ2 ) đđ7 (đ) + đđ đ7 (đ) đ5 (đ) + đđ 0 đ ķĩ¨ ķĩ¨2 âĢ â ķĩ¨ķĩ¨ķĩ¨ķĩ¨đĻđ (đđ đđ )ķĩ¨ķĩ¨ķĩ¨ķĩ¨ đđ â1 đĄ A1 (đ) = AÎŖ(đ0 ) (đ) = W0,ÎŖ(đ0 ) (K1 ) = â Nđ (0, đ) , (91) đ=1 where K1 (đ) is the uniformly (with respect to đ â ÎŖ(đ0 )) random absorbing set in đ and Nđ (đ) is the kernel of the process {Uđ (đĄ, đ, đ)}. Furthermore, the kernel Nđ (đ) is nonempty for all đ â ÎŖ(đ0 ). đ=1 đĄ+1 Theorem 17. If đ0 (đĨ, đ ) is a normal function in đŋ2loc (R, đķ¸ ), then the process {Uđ0 (đĄ, đ, đ)} corresponding to (48) possess a compact uniformly (with respect to đ â R) random attractor A1 (đ) in đ which coincides with the uniformly (with respect to đ â ÎŖ(đ0 )) random attractor AÎŖ(đ0 ) of the family of processes {Uđ (đĄ, đ, đ)}, đ â ÎŖ(đ0 ) : đâÎŖ(đ0 ) 0 đ ķĩ¨ ķĩ¨4 + đđđ7 (đ) âĢ âķĩ¨ķĩ¨ķĩ¨ķĩ¨đĻđ (đđ đđ )ķĩ¨ķĩ¨ķĩ¨ķĩ¨ đđ â1 + đđđ7 (đ) âĢ (90) In conclusion, K2 (đ) is a uniformly random absorbing set for {U(đĄ, đ, đ)} in đˇ(đ´), which complete the proof. đ=1 2 ķĩŠ ķĩŠ2 K2 (đ) = {V (đ) â đˇ (đ´) | đŧ02 ķĩŠķĩŠķĩŠķĩŠđ´1/2 V(đ)ķĩŠķĩŠķĩŠķĩŠ2 +đŧ12 âđ´V(đ)â22 ⤠đ8 (đ)} . đ 0 ķĩ¨ ķĩ¨2 ⤠đđ5 (đ) + đđ6 (đ) + đ â âĢ ķĩ¨ķĩ¨ķĩ¨ķĩ¨đĻđ (đđ đđ )ķĩ¨ķĩ¨ķĩ¨ķĩ¨ đđ â1 đ7 (đ) (89) + đđđ7 (đ) đđ0 ķĩŠ ķĩŠ2 (đŧ02 ķĩŠķĩŠķĩŠV (đ, đâđĄâ1 đ)ķĩŠķĩŠķĩŠ2 ķĩŠ ķĩŠ2 + đŧ12 ķĩŠķĩŠķĩŠķĩŠđ´1/2 V (đ, đâđĄâ1 đ)ķĩŠķĩŠķĩŠķĩŠ2 ) đđ + đâĢ (88) âđĄ âĨ đ3 (đ) , đ â ÎŖ (đ0 ) , ķĩŠ2 ķĩŠķĩŠ ķĩŠķĩŠđ(đ)ķĩŠķĩŠķĩŠđķ¸ đđ Proof. We only have to verify condition(C). As the previous section, for fixed đ, let đģ1 be the subspace spanned by {đđ }đ đ=1 and đģ2 the orthogonal complement of đģ1 in đģ. We write đ 0 ķĩ¨ ķĩ¨2 + đđđ7 (đ) đ5 (đ) âĢ â ķĩ¨ķĩ¨ķĩ¨ķĩ¨đĻđ (đđ đđ )ķĩ¨ķĩ¨ķĩ¨ķĩ¨ đđ. â1 đ=1 (87) V = V1 + V 2 , V1 â đģ1 , V2 â đģ2 for any V â đģ. (92) 12 Abstract and Applied Analysis đ đ ķĩ¨ ķĩ¨ ķĩ¨2 ķĩ¨4 + đ â ķĩ¨ķĩ¨ķĩ¨ķĩ¨đĻđ (đđ đđ )ķĩ¨ķĩ¨ķĩ¨ķĩ¨ + đ âķĩ¨ķĩ¨ķĩ¨ķĩ¨đĻđ (đđ đđ )ķĩ¨ķĩ¨ķĩ¨ķĩ¨ The proof of boundary of V1 is similar to the proof in Lemma 15. We need to estimate V2 , where V = V1 + V2 is a solution of (48). Letting đ¤ = V2 in (51), we have đ=1 đ ķĩ¨ ķĩŠ ķĩ¨2 ķĩŠ2 + đ â ķĩ¨ķĩ¨ķĩ¨ķĩ¨đĻđ (đđ đđ )ķĩ¨ķĩ¨ķĩ¨ķĩ¨ (đŧ02 âVâ22 + đŧ12 ķĩŠķĩŠķĩŠķĩŠđ´1/2 VķĩŠķĩŠķĩŠķĩŠ2 ) 1 đ ķĩŠ ķĩŠ2 ķĩŠ ķĩŠ2 ķĩŠ ķĩŠ2 ķĩŠ ķĩŠ2 (đŧ2 ķĩŠķĩŠV ķĩŠķĩŠ + đŧ12 ķĩŠķĩŠķĩŠķĩŠđ´1/2 V2 ķĩŠķĩŠķĩŠķĩŠ2 ) + ] (đŧ02 ķĩŠķĩŠķĩŠķĩŠđ´1/2 V2 ķĩŠķĩŠķĩŠķĩŠ2 + đŧ12 ķĩŠķĩŠķĩŠđ´V2 ķĩŠķĩŠķĩŠ2 ) 2 đđĄ 0 ķĩŠ 2 ķĩŠ2 đ=1 đ ķĩ¨ ķĩŠ ķĩ¨2 ķĩŠ2 + đ â ķĩ¨ķĩ¨ķĩ¨ķĩ¨đĻđ (đđ đđ )ķĩ¨ķĩ¨ķĩ¨ķĩ¨ (đŧ02 ķĩŠķĩŠķĩŠķĩŠđ´1/2 VķĩŠķĩŠķĩŠķĩŠ2 + đŧ12 âđ´Vâ22 ) . đ = â] ( â đ´âđ đĻđ (đđĄ đđ ) , V2 ) đ=1 đ=1 (94) â (đĩĖ (V + đ§ (đđĄ đ) , đŧ02 V + đŧ12 đ´V By PoincareĖâs inequality, note that ķĩ¨ķĩ¨ ķĩ¨ķĩ¨ đ ķĩ¨ķĩ¨ ķĩ¨ķĩ¨ ķĩ¨ ] ķĩ¨ķĩ¨ķĩ¨( âđ´âđ đĻđ (đđ đđ ) , V2 )ķĩ¨ķĩ¨ķĩ¨ķĩ¨ ķĩ¨ķĩ¨ ķĩ¨ķĩ¨ đ=1 ķĩ¨ ķĩ¨ đ + ââđ đĻđ (đđĄ đđ )) , V2 ) đ=1 ⤠đ + (đđ (đĨ, đĄ) , V2 ) + đ ( ââđ đĻđ (đđĄ đđ ) , V2 ) . đ=1 (93) Employing Lemma 14, the second term on the right-hand side of (93) can be bounded by ķĩ¨ķĩ¨ ķĩ¨ķĩ¨ ķĩ¨ķĩ¨ Ė 2 2 ķĩ¨ķĩ¨ķĩ¨(đĩ (V + đ§ (đđĄ đ) , đŧ0 V + đŧ1 đ´V ķĩ¨ķĩ¨ ķĩ¨ ķĩ¨ķĩ¨ ķĩ¨ķĩ¨ + ââđ đĻđ (đđĄ đđ )) , V2 )ķĩ¨ķĩ¨ķĩ¨ķĩ¨ ķĩ¨ķĩ¨ đ=1 ķĩ¨ ķĩŠ1/2 ķĩŠ ķĩŠ ķĩŠ1/2 × ķĩŠķĩŠķĩŠķĩŠđ´1/2 V2 ķĩŠķĩŠķĩŠķĩŠ2 ķĩŠķĩŠķĩŠđ´V2 ķĩŠķĩŠķĩŠ2 ķĩŠ2 V2 ķĩŠķĩŠķĩŠķĩŠ2 + × ķĩŠ ķĩŠ2 (đŧ02 ķĩŠķĩŠķĩŠķĩŠđ´1/2 VķĩŠķĩŠķĩŠķĩŠ2 + đ(đŧ02 âVâ22 + ķĩŠ ķĩŠ2 đ(đŧ02 ķĩŠķĩŠķĩŠķĩŠđ´1/2 VķĩŠķĩŠķĩŠķĩŠ2 + + đ ķĩŠ ķĩŠ2 ķĩŠ ķĩŠ2 (đŧ02 ķĩŠķĩŠķĩŠV2 ķĩŠķĩŠķĩŠ2 + đŧ12 ķĩŠķĩŠķĩŠķĩŠđ´1/2 V2 ķĩŠķĩŠķĩŠķĩŠ2 ) đđĄ ķĩŠ ķĩŠ2 ķĩŠ ķĩŠ2 + ]đ đ+1 (đŧ02 ķĩŠķĩŠķĩŠV2 ķĩŠķĩŠķĩŠ2 + đŧ12 ķĩŠķĩŠķĩŠķĩŠđ´1/2 V2 ķĩŠķĩŠķĩŠķĩŠ2 ) ķĩŠ ķĩŠ2 ⤠đķĩŠķĩŠķĩŠđķĩŠķĩŠķĩŠđķ¸ + đē (đĄ, đ) , where đē (đĄ, đ) ķĩŠ ķĩŠ2 2 = đ(đŧ02 âVâ22 + đŧ12 ķĩŠķĩŠķĩŠķĩŠđ´1/2 VķĩŠķĩŠķĩŠķĩŠ2 ) đ ķĩ¨ ķĩ¨2 + đ â ķĩ¨ķĩ¨ķĩ¨ķĩ¨đĻđ (đđĄ đđ )ķĩ¨ķĩ¨ķĩ¨ķĩ¨ đ=1 ķĩŠ ķĩŠ2 + đ (đŧ02 âVâ22 + đŧ12 ķĩŠķĩŠķĩŠķĩŠđ´1/2 VķĩŠķĩŠķĩŠķĩŠ2 ) đŧ12 âđ´Vâ22 ) ķĩŠ ķĩŠ2 × (đŧ02 ķĩŠķĩŠķĩŠķĩŠđ´1/2 VķĩŠķĩŠķĩŠķĩŠ2 + đŧ12 âđ´Vâ22 ) ķĩŠ ķĩŠ2 2 đŧ12 ķĩŠķĩŠķĩŠķĩŠđ´1/2 VķĩŠķĩŠķĩŠķĩŠ2 ) + đŧ12 âđ´Vâ22 ) đ ]đŧ02 ķĩŠķĩŠ 1/2 ķĩŠķĩŠ2 ķĩ¨ ķĩ¨2 ķĩŠķĩŠđ´ V2 ķĩŠķĩŠ + đ â ķĩ¨ķĩ¨ķĩ¨đĻđ (đđ đđ )ķĩ¨ķĩ¨ķĩ¨ . ķĩŠ ķĩŠ ķĩ¨ ķĩ¨ 2 8 đ=1 2 ķĩŠ ķĩŠ2 + đ(đŧ02 ķĩŠķĩŠķĩŠķĩŠđ´1/2 VķĩŠķĩŠķĩŠķĩŠ2 + đŧ12 âđ´Vâ22 ) ]đŧ12 ķĩŠķĩŠ ķĩŠ2 ķĩŠđ´V ķĩŠķĩŠ 2 ķĩŠ 2 ķĩŠ2 ķĩŠ ķĩŠ2 + đ (đŧ02 âVâ22 + đŧ12 ķĩŠķĩŠķĩŠķĩŠđ´1/2 VķĩŠķĩŠķĩŠķĩŠ2 ) 1/2 ķĩŠđ´ 8 ķĩŠ (95) Associating with (93)â(95) and applying PoincareĖ inequality, we have ķĩŠ1/2 ķĩŠ ķĩŠ1/2 ķĩŠ â¤ đķĩŠķĩŠķĩŠV + đ§ (đđĄ đ)ķĩŠķĩŠķĩŠ2 ķĩŠķĩŠķĩŠķĩŠđ´1/2 V + đ´1/2 đ§ (đđĄ đ)ķĩŠķĩŠķĩŠķĩŠ2 ķĩŠķĩŠ ķĩŠķĩŠķĩŠ đ ķĩŠķĩŠ ķĩŠ ķĩŠ ķĩŠ × ķĩŠķĩŠķĩŠķĩŠđŧ02 V + đŧ12 đ´V + â âđ đĻđ (đđĄ đđ )ķĩŠķĩŠķĩŠķĩŠ ķĩŠķĩŠķĩŠđ´V2 ķĩŠķĩŠķĩŠ2 ķĩŠķĩŠ ķĩŠ ķĩŠķĩŠ2 đ=1 ķĩŠ ķĩŠ ķĩŠ + đķĩŠķĩŠķĩŠķĩŠđ´1/2 V + đ´1/2 đ§ (đđĄ đ)ķĩŠķĩŠķĩŠķĩŠ2 ķĩŠķĩŠ ķĩŠķĩŠ đ ķĩŠķĩŠ ķĩŠķĩŠ × ķĩŠķĩŠķĩŠķĩŠđŧ02 V + đŧ12 đ´V + â âđ đĻđ (đđĄ đđ )ķĩŠķĩŠķĩŠķĩŠ ķĩŠķĩŠ ķĩŠķĩŠ đ=1 ķĩŠ ķĩŠ2 ]đŧ02 ķĩŠķĩŠ ķĩŠ đ ]đŧ02 ķĩŠķĩŠ 1/2 ķĩŠķĩŠ2 ķĩ¨ ķĩ¨2 ķĩŠķĩŠđ´ V2 ķĩŠķĩŠ + đ âķĩ¨ķĩ¨ķĩ¨đĻđ (đđĄ đđ )ķĩ¨ķĩ¨ķĩ¨ , ķĩŠ2 ķĩ¨ ķĩ¨ 8 ķĩŠ đ=1 2 ķĩ¨ ķĩŠ ķĩŠ ķĩŠ ķĩŠ ]đŧ ķĩŠ 1/2 ķĩŠ2 ķĩŠ ķĩŠ2 ķĩ¨ķĩ¨ ķĩ¨ķĩ¨(đđ, V2 )ķĩ¨ķĩ¨ķĩ¨ ⤠ķĩŠķĩŠķĩŠđķĩŠķĩŠķĩŠđķ¸ ķĩŠķĩŠķĩŠV2 ķĩŠķĩŠķĩŠ â¤ 0 ķĩŠķĩŠķĩŠķĩŠđ´ V2 ķĩŠķĩŠķĩŠķĩŠ2 + đķĩŠķĩŠķĩŠđķĩŠķĩŠķĩŠđķ¸ , 8 ķĩ¨ķĩ¨ ķĩ¨ķĩ¨ đ ķĩ¨ķĩ¨ ķĩ¨ķĩ¨ ķĩ¨ ķĩ¨ đ ķĩ¨ķĩ¨( ââđ đĻđ (đđĄ đđ ) , V2 )ķĩ¨ķĩ¨ķĩ¨ķĩ¨ ķĩ¨ķĩ¨ ķĩ¨ķĩ¨ đ=1 ķĩ¨ ķĩ¨ ⤠đ ⤠đ=1 2 đ ķĩ¨ ķĩ¨4 + đ â ķĩ¨ķĩ¨ķĩ¨ķĩ¨đĻđ (đđĄ đđ )ķĩ¨ķĩ¨ķĩ¨ķĩ¨ đ=1 (96) Abstract and Applied Analysis 13 đ ķĩ¨ ķĩŠ ķĩ¨2 ķĩŠ2 + đ âķĩ¨ķĩ¨ķĩ¨ķĩ¨đĻđ (đđĄ đđ )ķĩ¨ķĩ¨ķĩ¨ķĩ¨ (đŧ02 âVâ22 + đŧ12 ķĩŠķĩŠķĩŠķĩŠđ´1/2 VķĩŠķĩŠķĩŠķĩŠ2 ) Replacing đ by đâđĄâ2 đ in (84), we have đ=1 ķĩŠ ķĩŠ2 ķĩŠ ķĩŠ2 đŧ02 ķĩŠķĩŠķĩŠķĩŠđ´1/2 V(đĄ + 1, đâđĄâ2 đ)ķĩŠķĩŠķĩŠķĩŠ2 + đŧ12 ķĩŠķĩŠķĩŠđ´V(đĄ + 1, đâđĄâ2 đ)ķĩŠķĩŠķĩŠ2 đ ķĩ¨ ķĩŠ ķĩ¨2 ķĩŠ2 + đ âķĩ¨ķĩ¨ķĩ¨ķĩ¨đĻđ (đđĄ đđ )ķĩ¨ķĩ¨ķĩ¨ķĩ¨ (đŧ02 ķĩŠķĩŠķĩŠķĩŠđ´1/2 VķĩŠķĩŠķĩŠķĩŠ2 + đŧ12 âđ´Vâ22 ) . đ=1 (97) Applying Gronwall Lemma on [đĄ, đĄ + 1] where đĄ âĨ đ3 (đ), we have ķĩŠ ķĩŠ2 ķĩŠ ķĩŠ2 đŧ02 ķĩŠķĩŠķĩŠV2 (đĄ + 1, đ)ķĩŠķĩŠķĩŠ2 + đŧ12 ķĩŠķĩŠķĩŠķĩŠđ´1/2 V2 (đĄ + 1, đ)ķĩŠķĩŠķĩŠķĩŠ2 ķĩŠ2 ķĩŠ ķĩŠ2 ķĩŠ â¤ đâ]đ đ+1 (đŧ02 ķĩŠķĩŠķĩŠV2 (đĄ, đ)ķĩŠķĩŠķĩŠ2 + đŧ12 ķĩŠķĩŠķĩŠķĩŠđ´1/2 V2 (đĄ, đ)ķĩŠķĩŠķĩŠķĩŠ2 ) (98) đĄ+1 + âĢ đē (đ , đ) đâ]đ đ+1 đđ đĄ đĄ+1 + đâĢ đĄ đĄ + đâĢ â]đ đ+1 đē (đ , đâđĄâ1 đ) đ đĄ+1 đĄ đĄ+1 đ ķĩ¨ ķĩ¨2 âķĩ¨ķĩ¨ķĩ¨ķĩ¨đĻđ (đđâđĄâ2 đđ )ķĩ¨ķĩ¨ķĩ¨ķĩ¨ đđŊ2 (đ,đĄ+1,đâđĄâ2 đ) đđ đĄ + đâĢ đ=1 đĄ+1 đ ķĩ¨ ķĩ¨4 âķĩ¨ķĩ¨ķĩ¨ķĩ¨đĻđ (đđâđĄâ2 đđ )ķĩ¨ķĩ¨ķĩ¨ķĩ¨ đđŊ2 (đ,đĄ+1,đâđĄâ2 đ) đđ đĄ đ=1 đĄ+1 đ ķĩ¨ ķĩ¨2 âķĩ¨ķĩ¨ķĩ¨ķĩ¨đĻđ (đđâđĄâ2 đđ )ķĩ¨ķĩ¨ķĩ¨ķĩ¨ đ=1 ķĩŠ ķĩŠ2 × (đŧ02 ķĩŠķĩŠķĩŠV(đ, đâđĄâ2 đ)ķĩŠķĩŠķĩŠ2 ķĩŠ ķĩŠ2 + đŧ12 ķĩŠķĩŠķĩŠķĩŠđ´1/2 V(đ, đâđĄâ2 đ)ķĩŠķĩŠķĩŠķĩŠ2 ) đđŊ2 (đ,đĄ+1,đâđĄâ2 đ) đđ + đâĢ ķĩŠ ķĩŠ2 (đŧ02 ķĩŠķĩŠķĩŠV2 (đĄ, đâđĄâ1 đ)ķĩŠķĩŠķĩŠ2 đĄ+1 đĄ ķĩŠ ķĩŠ2 +đŧ12 ķĩŠķĩŠķĩŠķĩŠđ´1/2 V2 (đĄ, đâđĄâ1 đ)ķĩŠķĩŠķĩŠķĩŠ2 ) +âĢ + đâĢ đĄ Replacing đ by đâđĄâ1 đ in (98), we have ķĩŠ ķĩŠ2 đŧ02 ķĩŠķĩŠķĩŠV2 (đĄ + 1, đâđĄâ1 đ)ķĩŠķĩŠķĩŠ2 ķĩŠ ķĩŠ2 + đŧ12 ķĩŠķĩŠķĩŠķĩŠđ´1/2 V2 (đĄ + 1, đâđĄâ1 đ)ķĩŠķĩŠķĩŠķĩŠ2 đĄ+1 ķĩŠ ķĩŠ2 +đŧ12 ķĩŠķĩŠķĩŠđ´V(đ , đâđĄâ2 đ)ķĩŠķĩŠķĩŠ2 ) đđŊ2 (đ ,đĄ+1,đâđĄâ2 đ) + đâĢ ķĩŠ2 â]đ ķĩŠķĩŠ ķĩŠķĩŠđ(đ )ķĩŠķĩŠķĩŠđķ¸ đ đ+1 đđ . ⤠đâ]đ đ+1 ķĩŠ ķĩŠ2 ⤠(đŧ02 ķĩŠķĩŠķĩŠķĩŠđ´1/2 V(đ , đâđĄâ2 đ)ķĩŠķĩŠķĩŠķĩŠ2 ķĩŠ ķĩŠ2 (đŧ02 ķĩŠķĩŠķĩŠV(đ, đâđĄâ2 đ)ķĩŠķĩŠķĩŠ2 ķĩŠ ķĩŠ2 2 +đŧ12 ķĩŠķĩŠķĩŠķĩŠđ´1/2 V(đ, đâđĄâ2 đ)ķĩŠķĩŠķĩŠķĩŠ2 ) đđŊ2 (đ,đĄ+1,đâđĄâ2 đ) đđ (99) + đâĢ đđ đĄ+1 đĄ ķĩŠ2 â]đ ķĩŠķĩŠ ķĩŠķĩŠđ(đ )ķĩŠķĩŠķĩŠđķ¸ đ đ+1 đđ . ķĩŠ2 đŊ (đ,đĄ+1,đâđĄâ2 đ) ķĩŠķĩŠ đđ. ķĩŠķĩŠđ(đ)ķĩŠķĩŠķĩŠđķ¸ đ 2 (103) Analogously to the previous estimates, we have Now we need to estimate the second term on the right-hand side of (99). As the previous consideration in Lemma 15, for đ â [đĄ, đĄ + 1) where đĄ âĨ đ3 (đ), we have ķĩŠ ķĩŠ2 ķĩŠ ķĩŠ2 (100) đŧ02 ķĩŠķĩŠķĩŠV(đ , đâđĄâ2 )ķĩŠķĩŠķĩŠ2 + đŧ12 ķĩŠķĩŠķĩŠķĩŠđ´1/2 V (đ , đâđĄâ2 )ķĩŠķĩŠķĩŠķĩŠ2 ⤠đ9 (đ) , đŊ2 (đ, đĄ + 1, đâđĄâ2 đ) đĄ+1 ⤠đâĢ đĄ ķĩŠ ķĩŠ2 (đŧ02 ķĩŠķĩŠķĩŠV (đ, đâđĄâ2 đ)ķĩŠķĩŠķĩŠ2 ķĩŠ ķĩŠ2 +đŧ12 ķĩŠķĩŠķĩŠķĩŠđ´1/2 V(đ, đâđĄâ2 đ)ķĩŠķĩŠķĩŠķĩŠ2 ) đđ where đ9 (đ) = đ2]đ 1 đ4 (đ). As the previous consideration in Lemma 16, we have âĢ đĄ+1 đĄ ķĩŠ ķĩŠ2 (đŧ02 ķĩŠķĩŠķĩŠķĩŠđ´1/2 V(đ , đâđĄâ2 đ)ķĩŠķĩŠķĩŠķĩŠ2 ķĩŠ ķĩŠ2 +đŧ12 ķĩŠķĩŠķĩŠđ´V(đ , đâđĄâ2 đ)ķĩŠķĩŠķĩŠ2 ) đđ ⤠đ10 (đ) , + đâĢ đĄ+1 đĄ (101) đ 0 đ10 (đ) = đđ9 (đ) â âĢ đ=1 â2 đ + đâ âĢ ķĩ¨ķĩ¨ ķĩ¨ ķĩ¨ķĩ¨đĻđ (đđ đđ )ķĩ¨ķĩ¨ķĩ¨ đđ ķĩ¨ ķĩ¨ đĄ+1 đ=1 đĄ ķĩ¨ķĩ¨ ķĩ¨2 ķĩ¨ķĩ¨đĻđ (đđâđĄâ2 đđ )ķĩ¨ķĩ¨ķĩ¨ đđ ķĩ¨ ķĩ¨ ⤠đ11 (đ) , 0 ķĩ¨ ķĩ¨2 + đđ9 (đ) â âĢ ķĩ¨ķĩ¨ķĩ¨ķĩ¨đĻđ (đđ đđ )ķĩ¨ķĩ¨ķĩ¨ķĩ¨ đđ â2 đ=1 đ 0 ķĩ¨ ķĩ¨2 + đ â âĢ ķĩ¨ķĩ¨ķĩ¨ķĩ¨đĻđ (đđ đđ )ķĩ¨ķĩ¨ķĩ¨ķĩ¨ đđ + đ9 (đ) . â2 đ=1 (104) ķĩŠ ķĩŠ2 +đŧ12 ķĩŠķĩŠķĩŠđ´V (đ, đâđĄâ2 đ)ķĩŠķĩŠķĩŠ2 ) đđ where đ ķĩŠ ķĩŠ2 (đŧ02 ķĩŠķĩŠķĩŠķĩŠđ´1/2 V (đ, đâđĄâ2 đ)ķĩŠķĩŠķĩŠķĩŠ2 (102) where đ 0 ķĩ¨ ķĩ¨2 đ11 (đ) = đđ9 (đ) + đđ10 (đ) + đ â âĢ ķĩ¨ķĩ¨ķĩ¨ķĩ¨đĻđ (đđ đđ )ķĩ¨ķĩ¨ķĩ¨ķĩ¨ đđ. (105) â2 đ=1 14 Abstract and Applied Analysis Integrating (103) with respect to đ â (đĄ, đĄ+1) associating (100), (101), and (104) with (68), we have ķĩŠ ķĩŠ2 ķĩŠ ķĩŠ2 đŧ02 ķĩŠķĩŠķĩŠķĩŠđ´1/2 V(đĄ + 1, đâđĄâ2 đ)ķĩŠķĩŠķĩŠķĩŠ2 + đŧ12 ķĩŠķĩŠķĩŠđ´V(đĄ + 1, đâđĄâ2 đ)ķĩŠķĩŠķĩŠ2 ⤠đ12 (đ) đđ7 (đ) 0 đ ķĩ¨ ķĩ¨2 + đđđ7 (đ) âĢ âķĩ¨ķĩ¨ķĩ¨ķĩ¨đĻđ (đđ đđ )ķĩ¨ķĩ¨ķĩ¨ķĩ¨ đđ â1 đ=1 0 đ ķĩ¨ ķĩ¨4 + đđđ7 (đ) âĢ âķĩ¨ķĩ¨ķĩ¨ķĩ¨đĻđ (đđ đđ )ķĩ¨ķĩ¨ķĩ¨ķĩ¨ đđ + đđđ7 (đ) đđ0 â1 (106) ⤠đ12 (đ) , đ=1 + đđ5 (đ)2 đđ7 (đ) where 0 đ ķĩ¨ ķĩ¨2 + đđ5 (đ) đđ7 (đ) âĢ âķĩ¨ķĩ¨ķĩ¨ķĩ¨đĻđ (đđ đđ )ķĩ¨ķĩ¨ķĩ¨ķĩ¨ đđ â1 đ11 (đ) đ12 (đ) = đđ10 (đ) đ đ=1 đ 0 ķĩ¨ ķĩ¨2 + đđđ11 (đ) âĢ â ķĩ¨ķĩ¨ķĩ¨ķĩ¨đĻđ (đđ đđ )ķĩ¨ķĩ¨ķĩ¨ķĩ¨ đđ â1 ķŗĩģ = đ13 (đ) . đ=1 (108) đ 0 ķĩ¨ ķĩ¨4 + đđđ11 (đ) âĢ â ķĩ¨ķĩ¨ķĩ¨ķĩ¨đĻđ (đđ đđ )ķĩ¨ķĩ¨ķĩ¨ķĩ¨ đđ â1 đ=1 (107) Associating with the above inequalities, we have 0 đ ķĩ¨ ķĩ¨2 + đđ9 (đ) đđ11 (đ) âĢ â ķĩ¨ķĩ¨ķĩ¨ķĩ¨đĻđ (đđ đđ )ķĩ¨ķĩ¨ķĩ¨ķĩ¨ đđ â1 đĄ+1 âĢ đĄ đ=1 + đđ9 (đ)2 đđ11 (đ) + đđđ0 đđ11 (đ) . đ14 (đ) = đđ5 (đ)2 + đđ13 (đ)2 0 đ ķĩ¨ ķĩ¨2 + đ âĢ â ķĩ¨ķĩ¨ķĩ¨ķĩ¨đĻđ (đđ đđ )ķĩ¨ķĩ¨ķĩ¨ķĩ¨ đđ â1 đ=1 ķĩŠ ķĩŠ2 ķĩŠ ķĩŠ2 đŧ02 ķĩŠķĩŠķĩŠķĩŠđ´1/2 V (đ , đâđĄâ1 đ)ķĩŠķĩŠķĩŠķĩŠ2 + đŧ12 ķĩŠķĩŠķĩŠđ´V(đ , đâđĄâ1 đ)ķĩŠķĩŠķĩŠ2 + đđ5 (đ) đ13 (đ) ķĩŠ ķĩŠ2 (đŧ02 ķĩŠķĩŠķĩŠķĩŠđ´1/2 V(đĄ, đâđĄâ1 đ)ķĩŠķĩŠķĩŠķĩŠ2 0 đ ķĩ¨ ķĩ¨4 + đ âĢ â ķĩ¨ķĩ¨ķĩ¨ķĩ¨đĻđ (đđ đđ )ķĩ¨ķĩ¨ķĩ¨ķĩ¨ đđ â1 ķĩŠ ķĩŠ2 +đŧ12 ķĩŠķĩŠķĩŠđ´V(đĄ, đâđĄâ1 đ)ķĩŠķĩŠķĩŠ2 ) đđŊ2 (đĄ,đĄ+1,đâđĄâ1 đ) 0 đ ķĩ¨ ķĩ¨2 + đđ5 (đ) âĢ â ķĩ¨ķĩ¨ķĩ¨ķĩ¨đĻđ (đđ đđ )ķĩ¨ķĩ¨ķĩ¨ķĩ¨ đđ â1 ķĩ¨ ķĩ¨2 âķĩ¨ķĩ¨ķĩ¨ķĩ¨đĻđ (đđâđĄâ1 đđ )ķĩ¨ķĩ¨ķĩ¨ķĩ¨ đđŊ2 (đ,đĄ+1,đâđĄâ1 đ) đđ đĄ đ=1 đ=1 đĄ+1 đ đĄ đ=1 đĄ+1 đ ķĩ¨ ķĩ¨2 âķĩ¨ķĩ¨ķĩ¨ķĩ¨đĻđ (đđâđĄâ1 đđ )ķĩ¨ķĩ¨ķĩ¨ķĩ¨ + đâĢ đĄ đ=1 ķĩŠ ķĩŠ2 × (đŧ02 ķĩŠķĩŠķĩŠV (đ, đâđĄâ1 đ)ķĩŠķĩŠķĩŠ2 ķĩŠ ķĩŠ2 +đŧ12 ķĩŠķĩŠķĩŠķĩŠđ´1/2 V(đ, đâđĄâ1 đ)ķĩŠķĩŠķĩŠķĩŠ2 ) đđŊ2 (đ,đĄ+1,đâđĄâ1 đ) đđ đĄ+1 + đâĢ đĄ đĄ+1 đĄ đ=1 According to the property of {đ đ }â đ=1 mentioned in Section 3, for P a.e đ â Ί and âđ > 0, there exists đ such that for đâĨđ ķĩŠ ķĩŠ2 ķĩŠ ķĩŠ2 đâ]đ đ+1 (đŧ02 ķĩŠķĩŠķĩŠV2 (đĄ, đâđĄâ1 đ)ķĩŠķĩŠķĩŠ2 + đŧ12 ķĩŠķĩŠķĩŠķĩŠđ´1/2 V2 (đĄ, đâđĄâ1 đ)ķĩŠķĩŠķĩŠķĩŠ2 ) ⤠ķĩŠ ķĩŠ2 (đŧ02 ķĩŠķĩŠķĩŠV(đ, đâđĄâ1 đ)ķĩŠķĩŠķĩŠ2 ķĩŠ ķĩŠ2 2 +đŧ12 ķĩŠķĩŠķĩŠķĩŠđ´1/2 V(đ, đâđĄâ1 đ)ķĩŠķĩŠķĩŠķĩŠ2 ) đđŊ2 (đ,đĄ+1,đâđĄâ1 đ) đđ + đâĢ 0 đ ķĩ¨ ķĩ¨2 + đđ13 (đ) âĢ âķĩ¨ķĩ¨ķĩ¨ķĩ¨đĻđ (đđ đđ )ķĩ¨ķĩ¨ķĩ¨ķĩ¨ đđ . â1 ķĩ¨ ķĩ¨4 âķĩ¨ķĩ¨ķĩ¨ķĩ¨đĻđ (đđâđĄâ1 đđ )ķĩ¨ķĩ¨ķĩ¨ķĩ¨ đđŊ2 (đ,đĄ+1,đâđĄâ1 đ) đđ + đâĢ ķĩŠ2 đŊ (đ,đĄ+1,đâđĄâ1 đ) ķĩŠķĩŠ đđ ķĩŠķĩŠđ(đ)ķĩŠķĩŠķĩŠđķ¸ đ 2 (110) đ=1 đĄ+1 đ + đâĢ (109) where Replacing đ , đĄ + 1, and đ by đĄ, đ , and đâđĄâ1 đ, respectively, in (84) where đ â (đĄ, đĄ + 1) and đĄ âĨ đ3 (đ), we have ⤠đē (đ , đâđĄâ1 đ) đđ ⤠đ14 (đ) , âĢ đĄ+1 đĄ đ5 (đ) ⤠đđ5 (đ) , đ]đ đ+1 â]đ đ+1 đē (đ , đâđĄâ1 đ) đ đâĢ đĄ+1 đĄ đ (đ) đđ ⤠14]đ ⤠đđ14 (đ) , đ đ+1 đđđ ķĩŠ2 â]đ ķĩŠķĩŠ ķĩŠķĩŠđ(đ )ķĩŠķĩŠķĩŠđķ¸ đ đ+1 đđ ⤠]đ 0 ⤠đ. đ đ+1 (111) Abstract and Applied Analysis 15 Therefore, we deduce from (99) that, for P a.e. đ â Ί, + (đđ (đĨ, đĄ) , đ´V2 ) đ + đ ( ââđ đĻđ (đđĄ đđ ) , đ´V2 ) . ķĩŠ ķĩŠ2 ķĩŠ ķĩŠ2 đŧ02 ķĩŠķĩŠķĩŠV2 (đĄ, đâđĄ đ)ķĩŠķĩŠķĩŠ2 + đŧ12 ķĩŠķĩŠķĩŠķĩŠđ´1/2 V2 (đĄ, đâđĄ đ)ķĩŠķĩŠķĩŠķĩŠ2 ⤠đ + đđ5 (đ) + đđ14 (đ) , đ=1 (114) âđĄ âĨ đ3 (đ) , đ â ÎŖ (đ0 ) , (112) which indicates {Uđ (đĄ, đ, đ)}, đ â ÎŖ(đ0 ) satisfying uniform (with respect to đ â ÎŖ(đ0 )) condition(C) in đ. According to Theorem 12, the proof is completed. Applying Lemma 14, the second term on the right-hand side of (114) can be bounded by ķĩ¨ķĩ¨ ķĩ¨ķĩ¨ ķĩ¨ķĩ¨ Ė 2 2 ķĩ¨ķĩ¨(đĩ (V + đ§ (đđĄ đ) , đŧ0 V + đŧ1 đ´V ķĩ¨ķĩ¨ ķĩ¨ķĩ¨ ķĩ¨ķĩ¨ ķĩ¨ķĩ¨ + ââđ đĻđ (đđĄ đđ )) , đ´V2 )ķĩ¨ķĩ¨ķĩ¨ķĩ¨ ķĩ¨ķĩ¨ đ=1 ķĩ¨ In the following we prove the existence of uniformly random attractor for the families of processes {Uđ (đĄ, đ, đ)}, đ â ÎŖ(đ0 ) corresponding to (48) in đˇ(đ´). Theorem 18. If đ0 (đĨ, đ ) is a normal function in đŋ2loc (R, đķ¸ ), then the process {Uđ0 (đĄ, đ, đ)} corresponding to (48) possess a compact uniformly (with respect to đ â R) random attractor A2 (đ) in đˇ(đ´) which coincides with the uniformly (with respect to đ â ÎŖ(đ0 )) random attractor AÎŖ(đ0 ) of the family of processes {Uđ (đĄ, đ, đ)}, đ â ÎŖ(đ0 ) : đ ⤠ķĩŠ ķĩŠ2 × (đŧ02 ķĩŠķĩŠķĩŠķĩŠđ´1/2 VķĩŠķĩŠķĩŠķĩŠ2 + đŧ12 âđ´Vâ22 ) A2 (đ) = AÎŖ(đ0 ) (đ) = W0,ÎŖ(đ0 ) (K2 ) = â Nđ (0, đ) , đâÎŖ(đ0 ) ķĩŠ ķĩŠ2 2 + đ(đŧ02 âVâ22 + đŧ12 ķĩŠķĩŠķĩŠķĩŠđ´1/2 VķĩŠķĩŠķĩŠķĩŠ2 ) (113) where K2 (đ) is the uniformly (with respect to đ â ÎŖ(đ0 )) random absorbing set in đˇ(đ´) and Nđ (đ) is the kernel of the process {Uđ (đĄ, đ, đ)}. Furthermore, the kernel Nđ (đ) is nonempty for all đ â ÎŖ(đ0 ). 2 ķĩŠ ķĩŠ2 + đ(đŧ02 ķĩŠķĩŠķĩŠķĩŠđ´1/2 VķĩŠķĩŠķĩŠķĩŠ2 + đŧ12 âđ´Vâ22 ) đ đ ķĩ¨ ķĩ¨ ķĩ¨2 ķĩ¨4 + đ âķĩ¨ķĩ¨ķĩ¨ķĩ¨đĻđ (đđĄ đđ )ķĩ¨ķĩ¨ķĩ¨ķĩ¨ + đ â ķĩ¨ķĩ¨ķĩ¨ķĩ¨đĻđ (đđĄ đđ )ķĩ¨ķĩ¨ķĩ¨ķĩ¨ Proof. In Lemma 16, we have proved that the semigroup of processes {Uđ (đĄ, đ, đ)}, đ â ÎŖ(đ0 ), has a uniformly random absorbing set in đˇ(đ´). Now we testify that the semigroup of processes corresponding to (48) satisfies uniform (with respect to đ â ÎŖ(đ0 )) condition (C). Analogously to the proof in Lemma 16, we easily check that V1 is bounded in đˇ(đ´). Letting đ¤ = đ´V2 in (51), we have đ=1 đ = â] ( âđ´âđ đĻđ (đđĄ đđ ) , đ´V2 ) đ=1 â (đĩĖ (V + đ§ (đđĄ đ) , đŧ02 V + đŧ12 đ´V đ + ââđ đĻđ (đđĄ đđ )) , đ´V2 ) đ=1 đ=1 đ ķĩ¨ ķĩŠ ķĩ¨2 ķĩŠ2 2 + đ âķĩ¨ķĩ¨ķĩ¨ķĩ¨đĻđ (đđĄ đđ )ķĩ¨ķĩ¨ķĩ¨ķĩ¨ (đŧ02 âVâ22 + đŧ12 ķĩŠķĩŠķĩŠķĩŠđ´1/2 VķĩŠķĩŠķĩŠķĩŠ2 ) đ=1 đ 2 ķĩ¨ ķĩŠ ķĩ¨2 ķĩŠ2 + đ âķĩ¨ķĩ¨ķĩ¨ķĩ¨đĻđ (đđĄ đđ )ķĩ¨ķĩ¨ķĩ¨ķĩ¨ (đŧ02 ķĩŠķĩŠķĩŠķĩŠđ´1/2 VķĩŠķĩŠķĩŠķĩŠ2 + đŧ12 âđ´Vâ22 ) . đ=1 1 đ ķĩŠ ķĩŠ2 ķĩŠ ķĩŠ2 (đŧ02 ķĩŠķĩŠķĩŠķĩŠđ´1/2 V2 ķĩŠķĩŠķĩŠķĩŠ2 + đŧ12 ķĩŠķĩŠķĩŠđ´V2 ķĩŠķĩŠķĩŠ2 ) 2 đđĄ ķĩŠ ķĩŠ2 ķĩŠ ķĩŠ2 + ] (đŧ02 ķĩŠķĩŠķĩŠđ´V2 ķĩŠķĩŠķĩŠ2 + đŧ12 ķĩŠķĩŠķĩŠķĩŠđ´3/2 V2 ķĩŠķĩŠķĩŠķĩŠ2 ) 2 ]đŧ02 ķĩŠķĩŠ ķĩŠ2 ]đŧ ķĩŠ 3/2 ķĩŠ2 ķĩŠķĩŠđ´V2 ķĩŠķĩŠķĩŠ2 + 1 ķĩŠķĩŠķĩŠķĩŠđ´ V2 ķĩŠķĩŠķĩŠķĩŠ2 8 2 ķĩŠ ķĩŠ2 + đ (đŧ02 âVâ22 + đŧ12 ķĩŠķĩŠķĩŠķĩŠđ´1/2 VķĩŠķĩŠķĩŠķĩŠ2 ) (115) Note that ķĩ¨ķĩ¨ đ ķĩ¨ķĩ¨ đ ķĩ¨ķĩ¨ ķĩ¨ķĩ¨ ]đŧ2 ķĩŠ ķĩ¨ ķĩ¨2 ķĩŠ2 ķĩ¨ ķĩ¨ ] ķĩ¨ķĩ¨( â âđ đĻđ (đđĄ đj ) , đ´V2 )ķĩ¨ķĩ¨ķĩ¨ķĩ¨ ⤠0 ķĩŠķĩŠķĩŠđ´V2 ķĩŠķĩŠķĩŠ2 + đ âķĩ¨ķĩ¨ķĩ¨ķĩ¨đĻđ (đđĄ đđ )ķĩ¨ķĩ¨ķĩ¨ķĩ¨ , 8 ķĩ¨ķĩ¨ đ=1 ķĩ¨ķĩ¨ đ=1 ķĩ¨ ķĩ¨ ]đŧ2 ķĩŠ ķĩ¨ķĩ¨ ķĩŠ ķĩŠ2 ķĩŠ ķĩŠ 2 ķĩ¨ ķĩŠ ķĩŠ ķĩŠ ķĩ¨ķĩ¨(đđ (đĨ, đĄ) , đ´V2 )ķĩ¨ķĩ¨ķĩ¨ ⤠ķĩŠķĩŠķĩŠđķĩŠķĩŠķĩŠđķ¸ ķĩŠķĩŠķĩŠđ´V2 ķĩŠķĩŠķĩŠ2 ⤠0 ķĩŠķĩŠķĩŠđ´V2 ķĩŠķĩŠķĩŠ2 + đķĩŠķĩŠķĩŠđķĩŠķĩŠķĩŠđķ¸ , 8 ķĩ¨ķĩ¨ đ ķĩ¨ķĩ¨ đ ķĩ¨ķĩ¨ ķĩ¨ķĩ¨ ]đŧ2 ķĩŠ ķĩ¨ ķĩ¨2 ķĩŠ2 đ ķĩ¨ķĩ¨ķĩ¨ķĩ¨( ââđ đĻđ (đđĄ đđ ) , đ´V2 )ķĩ¨ķĩ¨ķĩ¨ķĩ¨ ⤠0 ķĩŠķĩŠķĩŠđ´V2 ķĩŠķĩŠķĩŠ2 + đ âķĩ¨ķĩ¨ķĩ¨ķĩ¨đĻđ (đđĄ đđ )ķĩ¨ķĩ¨ķĩ¨ķĩ¨ . 8 ķĩ¨ķĩ¨ đ=1 ķĩ¨ķĩ¨ đ=1 ķĩ¨ ķĩ¨ (116) 16 Abstract and Applied Analysis Associating with (114)â(116) and applying PoincareĖâs inequality, we have đ ķĩŠ ķĩŠ2 ķĩŠ ķĩŠ2 (đŧ2 ķĩŠķĩŠķĩŠđ´1/2 V2 ķĩŠķĩŠķĩŠķĩŠ2 + đŧ12 ķĩŠķĩŠķĩŠđ´V2 ķĩŠķĩŠķĩŠ2 ) đđĄ 0 ķĩŠ ķĩŠ ķĩŠ2 ķĩŠ ķĩŠ2 + ]đ đ+1 (đŧ02 ķĩŠķĩŠķĩŠķĩŠđ´1/2 V2 ķĩŠķĩŠķĩŠķĩŠ2 + đŧ12 ķĩŠķĩŠķĩŠđ´V2 ķĩŠķĩŠķĩŠ2 ) (117) Applying Gronwallâs lemma over đ â [đĄ, đĄ+1] where đĄ âĨ đ2 (đ), we have ķĩŠ ķĩŠ2 ķĩŠ ķĩŠ2 đŧ02 ķĩŠķĩŠķĩŠķĩŠđ´1/2 V2 (đĄ + 1, đ)ķĩŠķĩŠķĩŠķĩŠ2 + đŧ12 ķĩŠķĩŠķĩŠđ´V2 (đĄ + 1, đ)ķĩŠķĩŠķĩŠ2 +âĢ đĄ+1 đĄ đē (đ , đ) đâ]đ đ+1 đđ + đ âĢ đĄ+1 đĄ (118) ķĩŠ ķĩŠ2 đŧ02 ķĩŠķĩŠķĩŠķĩŠđ´1/2 V2 (đĄ + 1, đâtâ1 đ)ķĩŠķĩŠķĩŠķĩŠ2 References ķĩŠ ķĩŠ2 + đŧ12 ķĩŠķĩŠķĩŠđ´V2 (đĄ + 1, đâđĄâ1 đ)ķĩŠķĩŠķĩŠ2 ķĩŠ ķĩŠ2 ⤠(đŧ02 ķĩŠķĩŠķĩŠķĩŠđ´1/2 V2 (đĄ, đâđĄâ1 đ)ķĩŠķĩŠķĩŠķĩŠ2 đĄ+1 đĄ + đâĢ đĄ (119) đē (đ , đâđĄâ1 đ) đâ]đ đ+1 đđ đĄ+1 ķĩŠķĩŠ ķĩŠķĩŠ2 â]đ đ+1 đđ . ķĩŠķĩŠđķĩŠķĩŠđķ¸ đ Analogously to the consideration in Theorem 17, for P a.e. đ â Ί and âđ > 0, there exists đ such that, for đ > đ, ķĩŠ ķĩŠ2 ķĩŠ2 ķĩŠ đâ]đ đ+1 (đŧ02 ķĩŠķĩŠķĩŠķĩŠđ´1/2 V2 (đĄ, đâđĄâ1 đ)ķĩŠķĩŠķĩŠķĩŠ2 + đŧ12 ķĩŠķĩŠķĩŠđ´V2 (đĄ, đâđĄâ1 đ)ķĩŠķĩŠķĩŠ2 ) ⤠âĢ đĄ+1 đĄ đ12 (đ) ⤠đđ12 (đ) , đ]đ đ+1 đē (đ , đâđĄâ1 đ) đâ]đ đ+1 đđ ⤠đâĢ đĄ+1 đĄ đ14 (đ) ⤠đđ14 (đ) , đ]đ đ+1 đđđ ķĩŠ2 â]đ ķĩŠķĩŠ ķĩŠķĩŠđ(đ )ķĩŠķĩŠķĩŠđķ¸ đ đ+1 đđ ⤠]đ 0 ⤠đ. đ đ+1 (120) Therefore, we deduce from (119) that, for P a.e đ â Ί, ķĩŠ ķĩŠ2 ķĩŠ ķĩŠ2 đŧ02 ķĩŠķĩŠķĩŠķĩŠđ´1/2 V2 (đĄ + 1, đâđĄâ1 đ)ķĩŠķĩŠķĩŠķĩŠ2 + đŧ12 ķĩŠķĩŠķĩŠđ´V2 (đĄ + 1, đâđĄâ1 đ)ķĩŠķĩŠķĩŠ2 ⤠đ + đđ12 (đ) + đđ14 (đ) , generates a process corresponding to (8). Note that the two processes are equivalent by (122). It is easy to check that Vđ (đĄ, đ, đ) has a uniformly (with respect to đ â ÎŖ) random attractor provided Uđ (đĄ, đ, đ) possesses a uniformly (with respect to đ â ÎŖ) random attractor. As a result Theorem 17 and Theorem 18 imply that (8) has a uniformly (with respect to đ â ÎŖ(đ0 )) random attractor in đ and đˇ(đ´). The authors would like to thank the reviewers for the valuable suggestions and comments. The work is supported by the National Natural Science Foundation (no. 11171115). Replacing đ by đâđĄâ1 đ in (118), we have +âĢ (122) Acknowledgments ķĩŠķĩŠ ķĩŠķĩŠ2 â]đ đ+1 đđ . ķĩŠķĩŠđķĩŠķĩŠđķ¸ đ ķĩŠ ķĩŠ2 +đŧ12 ķĩŠķĩŠķĩŠđ´V2 (đĄ, đâđĄâ1 đ)ķĩŠķĩŠķĩŠ2 ) đâ]đ đ+1 Now we introduce a homeomorphism ÎĻ(đđĄ đ)đĸ = đĸ + đ§(đđĄ đ), đĸ â đ¸, whose inverse homeomorphism ÎĻâ1 (đđĄ đ)đĸ = đĸ â đ§(đđĄ đ). Then the transformation Vđ (đĄ, đ, đ) = ÎĻ (đđĄ đ) â Uđ (đĄ, đ, đ) â ÎĻâ1 (đđ đ) ķĩŠ ķĩŠ2 ⤠đē (đĄ, đ) + đķĩŠķĩŠķĩŠđķĩŠķĩŠķĩŠđķ¸ . ķĩŠ2 ķĩŠ ķĩŠ2 ķĩŠ â¤ (đŧ02 ķĩŠķĩŠķĩŠķĩŠđ´1/2 V2 (đĄ, đ)ķĩŠķĩŠķĩŠķĩŠ2 + đŧ12 ķĩŠķĩŠķĩŠđ´V2 (đĄ, đ)ķĩŠķĩŠķĩŠ2 ) đâ]đ đ+1 which indicates {Uđ (đĄ, đ, đ)}, đ â ÎŖ(đ0 ) satisfying uniform (with respect to đ â ÎŖ(đ0 )) condition (C) in đˇ(đ´). According to Theorem 12, the proof is completed. âđĄ âĨ đ3 (đ) , đ â ÎŖ (đ0 ) . (121) [1] R. Camassa and D. D. Holm, âAn integrable shallow water equation with peaked solitons,â Physical Review Letters, vol. 71, no. 11, pp. 1661â1664, 1993. [2] R. Camassa, D. D. Holm, and J. M. Hyman, âAn new integrable shallow water equation,â Advances in Applied Mechanics, vol. 31, pp. 1â33, 1994. [3] H. R. Dullin, G. A. Gottwald, and D. D. Holm, âOn asymptotically equivalent shallow water wave equations,â Physica D, vol. 190, no. 1-2, pp. 1â14, 2004. [4] H. R. Dullin, G. A. Gottwald, and D. D. Holm, âCamassa-Holm, Korteweg-de Vries-5 and other asymptotically equivalent equations for shallow water waves,â Fluid Dynamics Research, vol. 33, no. 1-2, pp. 73â95, 2003. [5] A. Constantin and W. A. Strauss, âStability of the CamassaHolm solitons,â Journal of Nonlinear Science, vol. 12, no. 4, pp. 415â422, 2002. [6] A. Bressan and A. Constantin, âGlobal conservative solutions of the Camassa-Holm equation,â Archive for Rational Mechanics and Analysis, vol. 183, no. 2, pp. 215â239, 2007. [7] A. Constantin and W. A. Strauss, âStability of peakons,â Communications on Pure and Applied Mathematics, vol. 53, no. 5, pp. 603â610, 2000. [8] A. Constantin and J. Escher, âGlobal existence and blow-up for a shallow water equation,â Annali della Scuola Normale Superiore di Pisa, vol. 26, no. 2, pp. 303â328, 1998. [9] G. RodrÄąĖguez-Blanco, âOn the Cauchy problem for the Camassa-Holm equation,â Nonlinear Analysis, vol. 46, no. 3, pp. 309â327, 2001. [10] A. Constantin and J. Escher, âWave breaking for nonlinear nonlocal shallow water equations,â Acta Mathematica, vol. 181, no. 2, pp. 229â243, 1998. [11] Z. Xin and P. Zhang, âOn the weak solutions to a shallow water equation,â Communications on Pure and Applied Mathematics, vol. 53, no. 11, pp. 1411â1433, 2000. Abstract and Applied Analysis [12] A. Bressan and A. Constantin, âGlobal dissipative solutions of the Camassa-Holm equation,â Analysis and Applications, vol. 5, no. 1, pp. 1â27, 2007. [13] Y. Long, Z. Li, and W. Rui, âNew travelling wave solutions for a nonlinearly dispersive wave equation of Camassa-Holm equation type,â Applied Mathematics and Computation, vol. 217, no. 4, pp. 1315â1320, 2010. [14] E. A. Olson, âWell posedness for a higher order modified Camassa-Holm equation,â Journal of Differential Equations, vol. 246, no. 10, pp. 4154â4172, 2009. [15] L. Tian, C. Shen, and D. Ding, âOptimal control of the viscous Camassa-Holm equation,â Nonlinear Analysis, vol. 10, no. 1, pp. 519â530, 2009. [16] D. Henry, âInfinite propagation speed for a two component Camassa-Holm equation,â Discrete and Continuous Dynamical Systems B, vol. 12, no. 3, pp. 597â606, 2009. [17] J. Escher, O. Lechtenfeld, and Z. Yin, âWell-posedness and blowup phenomena for the 2-component Camassa-Holm equation,â Discrete and Continuous Dynamical Systems A, vol. 19, no. 3, pp. 493â513, 2007. [18] J. B. Li and Y. S. Li, âBifurcations of travelling wave solutions for a two-component Camassa-Holm equation,â Acta Mathematica Sinica, vol. 24, no. 8, pp. 1319â1330, 2008. [19] C. Foias, D. D. Holm, and E. S. Titi, âThe three dimensional viscous Camassa-Holm equations, and their relation to the Navier-Stokes equations and turbulence theory,â Journal of Dynamics and Differential Equations, vol. 14, no. 1, pp. 1â35, 2002. [20] T. Caraballo, A. M. MaĖrquez-DuraĖn, and J. Real, âThe asymptotic behaviour of a stochastic 3D LANS-đŧ model,â Applied Mathematics and Optimization, vol. 53, no. 2, pp. 141â161, 2006. [21] T. Caraballo, A. M. MaĖrquez-DuraĖn, and J. Real, âPullback and forward attractors for a 3D LANS-đŧ model with delay,â Discrete and Continuous Dynamical Systems A, vol. 15, no. 2, pp. 559â578, 2006. [22] D. Wu, âFinite dimensional uniform attractors for the nonautonomous Camassa-Holm equations,â Abstract and Applied Analysis, vol. 2009, Article ID 952657, 15 pages, 2009. [23] T. Tachim Medjo, âAveraging of a 3D Lagrangian averaged Navier-Stokes-đŧ model with oscillating external forces,â Communications on Pure and Applied Analysis, vol. 10, no. 4, pp. 1281â1305, 2011. [24] T. Tachim Medjo, âA non-autonomous 3D Lagrangian averaged Navier-Stokes-đŧ model with oscillating external force and its global attractor,â Communications on Pure and Applied Analysis, vol. 10, no. 2, pp. 415â433, 2011. [25] A. V. Babin and M. I. Vishik, Attractors of Evolution Equations, North-Holland, Amsterdam, The Netherlands, 1992. [26] A. Haraux, SysteĖmes Dynamiques Dissipatifs et Applications, Masson, Paris, France, 1991. [27] V. V. Chepyzhov and M. I. Vishik, Attractors for Equations of Mathematical Physics, American Mathematical Society, Providence, RI, USA, 2002. [28] L. Arnold, Random Dynamical Systems, Springer, Berlin, Germany, 1998. [29] H. Crauel and F. Flandoli, âAttractors for random dynamical systems,â Probability Theory and Related Fields, vol. 100, no. 3, pp. 365â393, 1994. [30] I. Chueshov, Monotone Random Systems Theory and Applications, Springer, Berlin, Germany, 2002. 17 [31] G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions, Cambridge University Press, Cambridge, UK, 1992. [32] B. Øksendal, Stochastic Differential Equations, Springer, Berlin, Germany, 2000. [33] H. Crauel, A. Debussche, and F. Flandoli, âRandom attractors,â Journal of Dynamics and Differential Equations, vol. 9, no. 2, pp. 307â341, 1997. [34] F. Flandoli and B. Schmalfuss, âRandom attractors for the 3D stochastic Navier-Stokes equation with multiplicative white noise,â Stochastics and Stochastics Reports, vol. 59, no. 1-2, pp. 21â45, 1996. [35] J. K. Hale, Asymptotic Behavior of Dissipative Systems, American Mathematical Society, Providence, RI, USA, 1988. [36] J. C. Robinson, Infinite-Dimensional Dynamical Systems, Cambridge University Press, Cambridge, UK, 2001. [37] G. R. Sell and Y. You, Dynamics of Evolutionary Equations, Springer, New York, NY, USA, 2002. [38] R. Teman, Infinite-Dimensional Dynamical Systems in Machanics and Physics, Springer, New York, NY, USA, 1998. [39] A. O. C˧elebi, V. K. Kalantarov, and M. Polat, âAttractors for the generalized Benjamin-Bona-Mahony equation,â Journal of Differential Equations, vol. 157, no. 2, pp. 439â451, 1999. [40] F. Morillas and J. Valero, âAttractors for reaction-diffusion equations in Rđ with continuous nonlinearity,â Asymptotic Analysis, vol. 44, no. 1-2, pp. 111â130, 2005. [41] S. Lu, H. Wu, and C. Zhong, âAttractors for nonautonomous 2D Navier-Stokes equations with normal external forces,â Discrete and Continuous Dynamical Systems A, vol. 13, no. 3, pp. 701â719, 2005. [42] O. Ladyzhenskaya, Attractors for Semigroups and Evolution Equations, Cambridge University Press, Cambridge, UK, 1991. [43] P. W. Bates, K. Lu, and B. Wang, âAttractors for lattice dynamical systems,â International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, vol. 11, no. 1, pp. 143â153, 2001. [44] P. W. Bates, H. Lisei, and K. Lu, âAttractors for stochastic lattice dynamical systems,â Stochastics and Dynamics, vol. 6, no. 1, pp. 1â21, 2006. [45] P. W. Bates, K. Lu, and B. Wang, âRandom attractors for stochastic reaction-diffusion equations on unbounded domains,â Journal of Differential Equations, vol. 246, no. 2, pp. 845â869, 2009. [46] B. Wang, âRandom attractors for the stochastic BenjaminBona-Mahony equation on unbounded domains,â Journal of Differential Equations, vol. 246, no. 6, pp. 2506â2537, 2009. [47] X. Han, W. Shen, and S. Zhou, âRandom attractors for stochastic lattice dynamical systems in weighted spaces,â Journal of Differential Equations, vol. 250, no. 3, pp. 1235â1266, 2011. [48] Z. Wang, S. Zhou, and A. Gu, âRandom attractor of the stochastic strongly damped wave equation,â Communications in Nonlinear Science and Numerical Simulation, vol. 17, no. 4, pp. 1649â1658, 2012. [49] Z. Wang, S. Zhou, and A. Gu, âRandom attractor for a stochastic damped wave equation with multiplicative noise on unbounded domains,â Nonlinear Analysis, vol. 12, no. 6, pp. 3468â3482, 2011. Advances in Operations Research Hindawi Publishing Corporation http://www.hindawi.com Volume 2014 Advances in Decision Sciences Hindawi Publishing Corporation http://www.hindawi.com Volume 2014 Journal of Applied Mathematics Algebra Hindawi Publishing Corporation http://www.hindawi.com Hindawi Publishing Corporation http://www.hindawi.com Volume 2014 Journal of Probability and Statistics Volume 2014 The Scientific World Journal Hindawi Publishing Corporation http://www.hindawi.com Hindawi Publishing Corporation http://www.hindawi.com Volume 2014 International Journal of Differential Equations Hindawi Publishing Corporation http://www.hindawi.com Volume 2014 Volume 2014 Submit your manuscripts at http://www.hindawi.com International Journal of Advances in Combinatorics Hindawi Publishing Corporation http://www.hindawi.com Mathematical Physics Hindawi Publishing Corporation http://www.hindawi.com Volume 2014 Journal of Complex Analysis Hindawi Publishing Corporation http://www.hindawi.com Volume 2014 International Journal of Mathematics and Mathematical Sciences Mathematical Problems in Engineering Journal of Mathematics Hindawi Publishing Corporation http://www.hindawi.com Volume 2014 Hindawi Publishing Corporation http://www.hindawi.com Volume 2014 Volume 2014 Hindawi Publishing Corporation http://www.hindawi.com Volume 2014 Discrete Mathematics Journal of Volume 2014 Hindawi Publishing Corporation http://www.hindawi.com Discrete Dynamics in Nature and Society Journal of Function Spaces Hindawi Publishing Corporation http://www.hindawi.com Abstract and Applied Analysis Volume 2014 Hindawi Publishing Corporation http://www.hindawi.com Volume 2014 Hindawi Publishing Corporation http://www.hindawi.com Volume 2014 International Journal of Journal of Stochastic Analysis Optimization Hindawi Publishing Corporation http://www.hindawi.com Hindawi Publishing Corporation http://www.hindawi.com Volume 2014 Volume 2014
© Copyright 2026 Paperzz