J. Quant. Sptwrosc. Radiar.Transfer Vol. 48, No. 516, pp. 537466, 1992 Printed in GreatBritain 0022-4073/92 SS.00 + 0.00 Fkrmmon Press Ltd ENERGY LEVELS, INTENSITIES, AND LINEWIDTHS OF ATMOSPHERIC CARBON DIOXIDE BANDS L. S. ROTHMAN,t$ R. L. HAwruNs,t R. B. WA~~~ON,$and R. R. GAMACHE~ TPhillips Laboratory, Geophysics Directorate, Hanscom AFB, MA 01731, gvisidyne, Inc., 10 Corporate Place, Burlington, MA01803, and TUniversity of Massachusetts Lowell, tinter for Atmospheric Research, 450 Aiken Street, Lowell, MA 01854, U.S.A. (Received 9 July 1992) Ahatra&-Spectroscopic constants are given for eight isotopic variants of carbon dioxide which provide energy levels for transitions required for terrestrial atmospheric i.r. absorption. A new tabulation is also furnished with bands considered for the latest HITRAN molecular database. This list provides improved band intensities and Herman-Wallis coetRcients generated from recent high-resolution measurements and theoretical calculations. Rotationally-dependent air- and self-broadened halfwidths are provided from a survey of recent experiments. INTRODUCTION Carbon dioxide is one of the most important components of the HITRAN database. Although it is considered a trace gas in the terrestrial atmosphere, its strong opacity in the infrared (i.r.) has a major impact on the environment. Accurate knowledge of the spectroscopic properties of the carbon dioxide molecule is necessary for understanding the greenhouse effect, industrial combustion processes, space and aircraft vehicle exhausts, and planetary atmospheres. It is a prime factor in atmospheric remote sensing of temperature and constituent profiles. COz is often a contaminant in spectra. For long-path atmospheric transmission problems it has in fact been necessary that eight naturally-occurring isotopes be considered for the HITRAN database, the most of any molecular species contained on the compilation. Since the last publication of carbon dioxide energy-level and band parameters,’ significant improvements have been made for the three absorption line parameters: the transition frequency, intensity, and linewidth. The improvements in the line positions or transition frquencies have been brought about primarily through the use of Direct Numerical Diagonalization (DND) calcu1ationP to extrapolate from observed vibration-rotation transitions to transitions which have not been measured, but are of possible significance in the atmosphere, and a refined, global method of fitting the transitions. In addition, new observations by Benner et a1,4Esplin et al>’ and Blanquet et al* have been added to the fit. High-vibrational levels in the 4.3 pm region observed by Baill~,~ but not immediately relevant to the atmospheric transmission requirement of HITRAN, have also been added to the fit. As before, the goal of this effort has been to generate a self-consistent set of spectroscopic constants from which to calculate the many line transitions on the database. The greatest amelioration to the database has been in the intensities. This improvement has been made possible by the use of new measurements by Johns,lO*il Dana et a1,‘2-‘sBenner et al4 as well as calculations3 made with the DND technique. Herman-Wallis coefficients, where available, are used to describe deviations from rigid-rotor behavior. Pressure broadening of CO,, both by air and COz, was determined by fitting polynomials to a number of recent measurements’2*‘5-‘8 and calculations.‘9 In the discussions that follow, we use the vibrational quantum notation as defined in Ref. 20. $To whom all correspondenceshould be addressed. 537 538 L. S. ROTHMAN et al LINE POSITIONS The least -squares fitting procedure Carbon dioxide line positions v were calculated from the upper and lower state rovibrational energies: v = E’(u ‘) J’) - E”(U”, J”) (1) where a single prime denotes the upper state, double primes the lower, E is the energy of the state, v its vibrational mode, and J the rotational quantum number. The energies, in turn, have been calculated using effective spectroscopic constants: E(v, J) = G, + B,J(J + 1) - D,[J(J + l)]‘+ H,[(J(J -t l)]‘. (2) Wherever possible, the spectroscopic constants G, B, D, and H for a given vibrational state were determined by weighted linear least-squares fitting of observed line positions involving that state. This section describes the fitting procedure used. For each isotopic species of carbon dioxide, for example r2Cr602(626 in the HITRAN short-hand notation), spectroscopic constants for all vibrational levels were fit simultaneously. Conceptually, this is a straightforward application of linear least-squares. However, the large amount of data involved (almost 20,000 experimentally observed line positions for 626) and the large number of free parameters (almost 500, again for 626) make the practical application less straightforward. Least-squares fitting was performed using the Givens rotation algorithm.2’ The implementation was based on a modification of the algorithm described by Gentleman.22 The Givens algorithm is about 40% slower and proportionately more subject to accumulated roundoff error than more common algorithms, but is particularly suited to large, sparse problems such as this one. It processes the data one observation at a time, so that computer memory requirements are independent of the number of observations. Also, the fact that only a small number of the spectroscopic constants are involved in any one observation can be used to reduce the amount of computation required, by properly ordering the observations and the constants. Thus the sparseness of this particular problem can be used to improve the speed and roundoff characteristics of the Givens algorithm. The presence of roundoff error was examined by fitting the 626 data twice. In one fit, the bands were ordered for maximum efficiency, in the other fit the data were only partially ordered, such that twice as much computation was required. The resulting spectroscopic constants were printed out to 10 significant digits and compared. Not a single digit differed between the two fits. This result indicates that roundoff error was negligible, and that the implementation is more than adequate for problems of this size. Corrections to the data Comparison to DND calculated line positions indicated that a number of lines in the 30001 t 01101 and 11112 c 01101 bands of the 636 isotope had been incorrectly assignedt3 due to an avoided crossing between the 30001 level and 11112e sublevel. The lines originally assigned to P27 and higher, and R25 and higher, of the 30001 t 0110 1 band were reassigned to the 11112e t 01101 subband, and vice-versa. The Q-branch lines of the 22202 + 01101 band of the 626 isotope4 gave extremely large residuals in the initial fit. It was found that reducing the J values assigned to these lines by 2 quanta (e.g. QlS was reassigned to Q 13, etc.) gave residuals commensurate with those in the P- and R-branches. There appears to be a typographical error in the position of the P 14fline of the 12202 + 01101 band of the 628 isotope in the paper by Rinsland and Benner.” The value published there, 2055.60013 cm-‘, was replaced by the value published in Rinsland et al?’ 2055.62648 cm-‘. The line positions measured by Guelachvili et a1,2a-2*and measurements by Esplin et al’-’ which were calibrated against Guelachvili’s, were recalibrated against the rest of the observational database. A calibration factor was applied to the affected measurements and varied to give the best global fit. A value not significantly different from that suggested by Brown and Toth2’ was obtained in this way. 539 Spectroscopic constants for isotopic variants of CO, Levels without connection to the ground state The observation-by-observation nature of the Givens algorithm permits the fit to be easily updated by adding new observations. This ability was used to address several problems in the data used. In some of the isotopic species, there were bands in the database which had no connection to the ground state. Therefore, only the band center, the difference between term values G, for the upper and lower state, could be determined for these bands; absolute values for G, could not. Values for the lower state G: were obtained from the literature and added as pseudo-observations, effectively fixing the lower-level G: to its literature value, and obtaining the upper-level G: relative to it. Levels treated in this way are denoted by a “C” in the comment field in Table 1. Extrapolation in J and v For many levels, observations do not extend to high enough rotational quantum number J to determine H,. Extrapolation to values of J greater than the highest observed is inaccurate when H is not known. The ability to extrapolate was tested by fitting observations of the 10001 + 00001, 01111 c 01101, and 00011 t 00001 bands of 626 over a restricted set of J values, and comparing the fit both to the observed high-J line positions, and to DND calculated line positions up to J = 180. (The highest laboratory-observed J values are J = 108 for 10001, J = 140 for 00001, J = 116 for 01111, J = 122 for 01101, and J = 141 for 00011. The test fits were performed using only lines with J up to 20, or up to 30, 40, 50 etc.) When the fit was restricted to lines of such low J that H could not be determined, as indicated by the estimated standard deviation of H being larger than the retrieved value of H, the extrapolated line positions were less accurate than DND calculated positions. But when lines of sufficiently high J to determine H were used, the extrapolated line positions were as accurate as, or more accurate than, DND calculated line positions. This typically required measurements to J = 70 or larger. Since it appeared that, for these well-measured levels, DND provides a better extrapolation than the fit itself when H cannot be determined, an attempt was made to determine H for poorlymeasured levels by calculating the energy at J = 180 using DND constants, and using this DND energy as a pseudo-observation. In most cases, this process caused the fit to the observed line positions to be significantly worse. In these cases the DND energy was not used, and H was not fit (effectively, it was fixed to zero). The levels where the single DND energy was retained to determine H are denoted by a “t” in the comment field (last column) in Table 1. Note that the pseudo-observation is an energy, not a line position, so that only the indicated level is directly affected. In addition to this use of DND energies to extrapolate measured levels with insufficiently high J, DND spectroscopic constants were used for levels which have not been measured at all. These pure DND levels are indicated by the symbol lXj in the last column. BAND New INTENSITIES AND HERMAN-WALLIS FACTORS measurements New measurements since the 1986 edition of HITRANM have improved the intensities of several bands. Of particular significance is the band at 720.805 cm-‘. This major side band to the v2 fundamental has had its total band intensity altered several times throughout the history of HITRAN. Recent measurements by Johns and Auwera,” which have been corroborated by others (Dana,3’ Huet et a1,32and Varanasi and Chudamani33), have increased the intensity of this band by 6% from the previous value. The band is one of the key channels for remote sensing experiments proposed for satellite monitoring. The nearby band at 721.584 cm-’ for the 636 isotope has changed even more. Previously it was based simply on the isotopic ratio related to the same transition of the principal isotope (the 1973 calculated value).” We calculated a 40% reduction via DND, which was later confirmed by the observations of Johns and Auwera.” Another band in the long wavelength region used for remote sensing is at 791.447 cm-‘. New measurements”.‘* show a 15% decrease from the previous band intensity in HITRAN and also, as with the bands discussed above, yield values for the Herman-Wallis factors. 540 L. S. R~THMANet al Other regions of the spectrum have also had new measurements: the laser bands,15 the 2.7 pm doublets,‘O the 319,overtone band,35 and two bands in the Fermi tetrad%*” around 2.2pm. The observations of Refs. 35-37 have had a major impact on the dipole-moment determination used in DND, and hence on many of the band intensities in Table 2. Table 1. Spectroscopic constants for CO, levels considered for the HITRAN database. 3owl 311018 31101f mm? 0220le D2201 f 10001 111020 11102f D33Ole Q3301 f 1llOle 1llOlf DO011 20003 12202e 122025 20002 044Ole 044Olf 122Ole 12201f 20001 Olllle Ollllf 211030 21103f 13302e 133021 21102e 21102f 055018 05501 f 13301e 13301f 211010 21101f 10012 02211e 02211f 10011 30004 22203e 222031 14402e 14402f 30003 222020 O.OOWO 667.37996 I 1265.40634 1335.13161 I 1366.16432 1932.47013 I 2003.24615 I 2076.65566 1 2349.14291 2546.36707 2565.02213 1 2671.14315 2671.71459 I 2760.72473 " 2797.13591 3004.01227 I 3161.46399 II 3240.62276 I 3339.35602 " 3340.52762 I 3442.21534 " 3500.67217 I 3612.64060 3659.27229 I 3714.76193 37Q2.6a36 3622.01177 " 3698.31366 I 22202f 3942.64327 4007.Bl460 I Q6601e D86olf 4009.67664 I 4664.274&I< 0.3QO2166Q 0.3QO63QOO 0.39125465 oaO46223 0.39166676 0.39166676 0.3QO16666 0.3QO74498 0.39169032 0.39237634 0.39237634 0.39040962 0.3Q1333Bo 0.36714135 0.3B110912 0.39194333 0.39194333 0.36956202 0.39306lQ3 0.39306193 0.39154766 0.39154766 0.3BO60563 0.3675@50 0.366lBO27 0.39102314 0.3Q235111 0.39265624 0.39265624 0.3QOO3563 0.39117476 0.39377734 0.39377734 0.39221531 0.3Q221531 0.39038703 0.39171524 0.36750292 OS663604 0.38883804 0.36706302 0.39176146 0.3Q235OOQ 0.39235009 0.36336242 0.39336242 0.36958904 0.3Ql436B6 0.39143698 0.38446573 OS446573 1.33336 1.35295 1.36066 1.57098 1.37452 1.36022 1.14919 1.49447 1.56357 1.4OoOB 1.4OOOB 1.25653 1.21099 1.32998 1.61217 1.3BQ54 1.53364 1.34939 1.42346 1.42346 1.41703 1.26224 0.97386 1.34766 1.35761 1.63934 1.75698 1.50006 1.50006 1.37969 1.38936 1.44701 1.44701 1.36530 1.36530 1.17465 1.06365 1.57367 1.36021 1.37396 1.14163 2.06599 1.36150 1.70097 1.52154 1.52164 1.67149 1.43977 1.41453 1.47606 1.47606 OsQQll 0.077 O.OQB 0.149 2.173 -3.605 0.146 1.646 1.005 1.163 -1.562 -1.179 0.906 0.451 ODD6 5.043 -6.769 1.302 5.394 -1.195 -1.195 -5.QBl 1.013 4.277 0.149 0.172 2.216 1.633 -1.665 -0.727 2.000 2.792 -1.062 -1.062 -2.730 -1.065 2.641 -0.001 1.981 -3.407 0.173 1.630 0. 0. 0. -0966 -0966 0. -6.919 1901 0. 0. 2.327 140 1lB 122 106 110 111 106 103 104 101 100 109 104 141 92 98 97 QO 96 96 98 95 92 116 113 B3 66 69 62 79 64 65 65 91 92 63 62 105 106 106 107 46 46 47 60 60 54 62 71 77 77 w22 I 12 12 I 9I 9 12 " 7 I 13 I 5 6 4 I 7 4 I 6 I 6 6 I 3 I 4 " 6 " 2 I 5 I 5 I 5 3 I 5 1 1 I 9t 2 I 9z 1 2 I 2 Ai [continued. . .] Spectroscopic constants for isotopic variants of CO, Table l-continued rc ITk < V 144olf !22Ole ?2201f SO001 11112e 11112f 133110 >331lf 111110 Illllf 311040 31104f 233Q3e 233031 15!502e 1!5502f 311030 31103f 30021 233020 233021 377010 D7701 f 311020 31102f 155010 15501f La013 122120 12212f 233Ole 23301f 311010 31101f 044110 044llf 20012 12211s 12211f 20011 322038 322031 011218 01121f 21113e 21113f 40002 13312e 13312f 05511e 055llf u I 1197.36118 I 1225.ow61 1247.70488 " t314.91373 " 13Qo.62656 I 4416.149 " 4467.1164 I 6557.59598 I 4591.11673 I 4873.32546 4676.79054 I 4879.15606 I 4753.45330 I 4601.36463 I 4653.62341 4687.98501 I 48QO.OQ6 I 4938.3535 I 4970.92029 I 4Q77.63500 5061.77018 . 5099.66050 5197.1473 5245.2605 I 5315.71327 I 5475.07444 1 5475.56500 5531.30325 I 5627.3314 I ,=.764QO ).3Q287278 j.39159424 MQ15Q424 L3QOQ8326 NW76212 M8670505 MsQ37642 Mm37642 L38736478 Ml6823509 K3Q136003 ).3Q310013 mQ3O3155 MQ3O2753 MQ405725 3.3Q4o5725 3.36QQ26Ql xiQ121157 M64m6O5 mQ21Q216 3.3Q21Q216 mQ513421 3.39513421 3.36Q71170 3.39119284 D.39352184 mQ352184 D.38819761 3.386Q4150 D.386Q4150 D.3Q2182QO DS218200 D.3QO12318 0.39217818 D.3QOl1400 0.39011400 D.366533QQ 0.36652520 0.36052520 0.38749948 0.39014077 0.39157517 0.39152343 0.38454736 0.36512822 0.38815515 0.38943597 0.3QOoQ3w 0.38971557 0.38971557 0.39065398 0.3QO64848 0.3670f311 1.36161 I.62725 I.18580 ).67819 1.48514 1.56314 1.36853 1.36653 1.24083 l.2OQ6O I.772 Is6104 I.59639 1.57380 1.54628 I.59626 1.55056 1.42980 1.32645 1.45716 1.45716 1.45354 1.46354 l.z?212 1.12884 1.39491 1.39491 1.61675 1.31111 1.42134 1.61000 1.61000 0.26294 0.94746 1.4062Q 1.40629 1.36836 1.37447 1.26483 0.98452 2.01648 1.5%76 1.57437 1.34194 1.35306 1.61 1.75365 0.6Q5OO 1.46991 1.48991 1.42634 1.40609 1.31657 -3239 0. 0. -5.057 4.360 1.266 -1.349 -1.005 0.849 0.362 0. 3.149 -2.004 -1.749 -0.947 -0.947 4.011 0. 0.066 -3.684 -0.098 0. 0. 4.413 -0202 -9.509 -9.509 5.612 0. 0. 0. 0. -34.432 -2.130 -0.675 -0.875 9.598 -4.565 1.179 3.801 10.152 -2.747 3.022 0. 0. 0. 1.223 0. -1.531 -0.653 0.103 -0.759 76 60 65 52 66 97 86 89 84 91 0 0 0 . 60 60 51 24 98 45 46 62 62 43 0 59 59 85 61 44 0 . 86 86 75 67 66 79 0 0 I 85 Q2 0 57 0 72 79 r ?r . 3 . 1 4 . t 2 I 4 I 1 0 0 I 1 I 1 " 4 1 I 1 . 1 0 1 . t I 4 1 . * 0 I *r 0 I q q *9t 1 I 6 2 . 4 0 0 I 3 I 1 a II rd. L. S. ROTHMANet al 542 Table I-conrinued 0, 5730.80511 I 0.38Q24791 5789.57598 0.38740648 I 0.3886205Q 591521219 0.38452%8 0.38560887 5968.51212 I 0.3858Osw 0.383Q3wl Bof6.6QOO6 6075.Q8035 0.38880584 6103.8% 0.38QM235 I 0.38939768 0.3QO46QOo 6178.7013 I omO44888 6178.8922 0.38Q28314 I 0.3Q158614 6227.91708 0.3867lOQ7 0.3Q179878 8284.0882 I 0.39179882 8288.5325 0.38861273 I 0.38846264 8347.85148 0.3864S4% 0.3QOO4831 6387.8675 I 0.39270574 8398.1110 0.39002331 I 0.39027095 8474.534 0.388@364 I 0.38884M4 0.387973% 8503.OaOQO 65a7.85879 0.38481838 I 0.38572340 8801.71318 0.38837502 I 0.38637502 8879.70588 0.38431555 It 0.38513542 8688.177 0.38%4452 I OJQO25487 8736.7841 0.39014120 " OJIQO14728 (E883.55646 o.v4 I 0.38839872 0.38Q23044 6944.7345 I 0.38928798 0.38089334 8972.57734 0.38874989 7023.67530 I 0.38811818 0.39101708 7064.8805 I 0.39100320 7133.824 0.38528576 7154.8273 0.38872910 I 0.38841145 7186.0220 0.38570429 I 1.32457 1.32457 1.13098 1.08749 1.57608 1.34912 1.36906 1.13905 2.12821 2.% 1.58 1.54147 1.49278 0.045QO O.Qmel 1.71434 1.83005 1.82880 1.58610 1.38597 OS8129 0.15822 OS4065 1.44739 2.47711 1.488 1.25 0.71684 1.47088 1.86881 1.383Ql 1.38391 1.23015 1.191% 1.75 1.91 1.s7846 1.58667 1.41194 1.51749 1.24837 1.42639 1.32399 1.20482 1.15475 1.72862 1.69113 1.72 1.78931 0.79298 1.11545 1.23539 o,oo =T= @T!l?-= 0. 0. 2.383 0.819 1.810 -2.429 0.2% 2.312 15255 0. 0. 0.232 -1.553 41.247 -1.508 Q.Q88 11.037 11.037 2.030 1.837 5.809 23.424 -0.748 2.971 88.381 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. -l.Q% -0.534 0. 0. -6.244 0.776 0.128 5.539 1.717 -8288 -8.088 0. 12.418 -25.940 -10.058 -4.972 0. 66 87 58 59 76 78 77 70 59 0 I 1 ” t t ;I 2 (1 t 2 3 2 0 I 1 " 0 " 0 I 0 I 83 0 1) 1 0 I 0 I 0 " 83 0 I 1 0 " 0 I 0 . 0 I 1 57 63 62 88 80 53 58 0 I 1 1 I c c II II I a I I a II I II I ! 0 I 44 41 0 " 91 48 39 0 II 0 0 I 0 h 0 8 "II 5 1 t "t 0 m I 1: 0 e I e 0 m * 1; [continued. . .] 543 Spectroscopicconstantsfor isotopicvariantsof CO, Table l-continued . ?259.7463 1263.978 m?.6?1? I) 1338.1573 I 7377.6240 7460.527 7505.2335 . 7593.695 7602.51399 I 7615.5901 I 7694.3684 I 7734.446 7743.6727 I 7697.57300 I 7QOl.47QOO I 7920.836 6055.9391 I 8081.8348 I 6192.55067 6232.88409 I 8250.632 I 8293.95124 6425.005 I 6676.716 6803270 I 8831.482 8863.67909 I 6944.140 " 6965.225 9137.799 9246.93393 9366.QQ4 9419.1160 I( 9516.969 9589.6190 +== M6357498 u8Q584m b.39002484 M6QQ36Ql KM553755 I.38548534 M64353QQ 3.36734776 x36866573 I.38860454 M6556301 L38150413 M6206Q16 I.36938488 I.39204422 ).3666?442 X38626130 3.386QQ702 %38550602 m664Q?32 9.388Q6500 x36698500 3.36400800 3.36512800 D.38854QQQ LB.38488062 D.36552049 D.36714174 0.38888667 D.38155873 El6257946 0.38257948 0.386251OQ 0.38782425 0.360605?2 0.38682258 0.38851738 0.36618320 0.3816564Q 0.36274510 0.38514656 0.36337322 0.38337322 0.38126452 0.36203190 0.365Q2420 0.38776745 0.37792307 0.36238062 0.36318877 0.38315966 0.38049550 0.38250452 1.56666 !.51 1.37512 I.79615 I A9566 1.23075 I.86925 I .Qs I.56933 1.54600 1.176 1.33736 1.35007 3.31976 D.Q2?33 2.?6Q63 1.18879 1.151 1.64452 1.67100 1.33000 II.93900 1.31000 1.36000 0.55 2.66Q24 1.06522 1.6Q616 1.83021 1.56724 1.34291 1.36419 1.387 1.346 1.12750 0.999 0.94 2.30 1.47 1.55 0.964 1.37267 1.37267 1.219 1.17 0.746 0.66 1.32018 1.65 1.57657 1.64309 1.389 143905 ---- 10.090 0. 10.224 0.740 5.769 0.512 -1.851 0. -0.746 2.740 0. 0. 0. 19.669 -0.309 56.658 2.613 0. -1.003 -1.201 0. 0. 0. 0. 0. 90.587 1.473 4.381 4.973 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.414 3.887 0. 5.351 B I e= 0 0 0 I 0 I 0 0 0 (1 0 66 59 0 I 0 I 0 0 11 0 I 0 " 0 0 II 0 1 63 55 56 0 " 65 0 I 0 0 I 0 68 69 0 n 0 0 70 a a . a - C L. S. R-N et al Table I-continwd -z- -0, r 3 ” 9891.353 Qw4.45178 I 99872OQQ I) 10145.509 I 102Q7.083 I 10444.8Q201 10482.42758 I 10548.61303 11100.85249 I 114Q8A3720 12101.57111 I 12707.18932 I 13313.28158 I 13721.13825 1431aQ2343 I 14QO7.22350 I 15Q21.08782 18601.55838 I 17082.5Q233 I 18OQ8.35889 18854.57385 I 20247.03830 2Q803.01874 0 22373.14880 24474.84885 2855221158 0.38124472 0.37848333 Q.37QO132Q 0.38247wO 0.38381013 0.38085571 0.38218714 0.38185513 0.38241578 0.3785Q441 0.37955413 0.37956413 0.37787751 0.38037285 0.38037285 0.3748&w 0.37542465 0.37598060 0.37853145 0.37853145 0.37737817 0.37737817 0.3717918Q 0.37238910 0.37291185 0.37351138 0.37351188 0.3887312Q 0.38QMB85 OXQ86558 0.3704Q8OQ 0.3704QwQ 0.38587447 0.38832883 0.38582577 0.38282179 0.383304Q5 0.38378Q41 0.36957388 0.m 0.35349217 13@c O.OOOOO 848.47803 " 1285.82778 129728328 " 1370.08211 1898.53799 I 1948.34998 I 0.3QO23754 0.39081133 0.39124542 0.3QOQ15Q2 0.39181380 0.39181380 0.38971788 0.3QOQ8282 0.3Q202155 0.3Q2287Q2 1.333Q3 1.34681 1.552Ql 1.70432 3.288 1.087 1.012 1.25Q 1.58824 1.33148 1.35930 1.12894 1.38122 1.38122 1.31742 1.32896 1.34414 1.32105 1.35995 1.35855 1.35858 1.31530 1.32523 1.34178 1.31002 1.34Q58 1.31300 1.32074 1.33874 1.2W8Q 1.34484 1am3 1.31705 1.33538 1.30878 1.30812 1.3303Q 1.30854 1.3OlQ8 1.2Q824 0 89 55 0 0. 0. 0. -0.734 -0.310 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0 1 2 I 0 " 1 I 0 I 1 I 0 I 82 - 58 87 84 51 88 77 88 57 57 85 48 45 80 57 54 52 55 79 54 55 51 48 85 51 54 81 50 53 80 55 34 1 2 I 1 2 " 2 2 I 2 I 1 I 2 2 I 2 " 2 2 I 1 I 2 2 I 2 1 I - 2 2 1 (838) 1.33348 1.35489 1.38377 1.582QO 1.32714 1.38798 1.20251 1.4QO53 1.56117 [conrhcd. . .] Speotroscopic constants for isotopic variants of CO2 Table 1-contimred V !7m= 1llOlf QOOll 20003 122020 12202f D44010 D4401f s, 0, - ,.300;oal I 2283.48711 2507.5252954 2531.87814 1 2595.759 I 2845.08788 2700.28444 I Olllle Ollllf 211030 21103f 13302e 13302f 055010 05501 f 211026 21102f 1330le 133Olf 211018 2110lf 10012 02211e 02211f 10011 30001 11112e 11112f 03311e 033llf 111110 lllllf 00021 20013 122120 12212f 044110 044llf 20012 122lle 122llf 20011 0112le 0112lf 211138 21113f 13312e 133121 0551le - 2750.59644 2920.23782 II 3127.3533 I 3189.4418 I 3245.4464 " 3289.70119 " 3381.3QQ8Q I 3433.77073 I 3527.73747 3557.31234 I 3832.91028 4145.78887 414723205 I 4184.70585 1 4287.89801 I 4543.54803 4748.0858Q 4770.97523 . 4832.437 I 4887.39069 4938.83470 I 4991.35308 5188.59893 I 5357.00437 I 339725181 1 5470.4704 UQO91848 I.38727344 MQl88590 I.39211394 mQ2113Q4 I.39295427 3.39295427 M8Q88Q83 MQll814Q 1.3911814Q KMQ72586 3.38788022 xM82Q411 3.39137580 3.39289978 3.39278884 3.3927828Q 3.39382204 3.39382238 x38QQQ405 D.39113417 3.39185731 D.39185731 D.38873278 3.39094098 KM803847 D.38889956 II.38889955 D.38872378 0.39050355 0.38801702 lx38Q14170 D.38940348 0.38Q40348 0.38713084 0.38794439 0.38431127 0.38884257 0.38925882 0.38925882 0.3QOlOQQ2 0.3QOlOQQ2 0.38883530 0.38828219 0.38828219 0.38870813 0.38474991 0.38534498 0.38882235 0.39009954 0.38QQl811 0.38991811 0.39073350 0, izzr l.23848 1.32Ql8 1.84888 1.15471 1.48752 I.41097 1.41097 1.3Qsl 1.32808 1.28874 Q.QQ291 1.34923 1.35938 1.82320 1.77443 1.48814 1.43718 l&Q80 1.4308Q 1.44488 1.32892 1.37858 1.37858 1.20884 l.OQ208 1.57718 1.32077 1.38420 1.19863 2.41245 1.30883 1.54833 1.37487 1.37487 1.28083 1.23448 1.32487 1.83742 1.23021 1.53244 1.39303 1.3Q303 1.39009 la083 1.28742 095417 1.34385 1.35457 1.54217 1.70134 1.31004 1.31004 l.wOO7 - r T =mr 2% 97 1.829 0.143 4.501 0. 0. 0. 0. 0. -1207 -0.174 0. 0.555 0.280 1.517 2.154 -2.030 -2.089 -1.089 -1.028 2.879 -0.QQ2 0. 0. 0. 0. 2.349 0. 0. 2.111 0. 0. 0. -0.884 0.221 0.841 2.096 0.081 4.324 -7.835 1.401 0. 0. 0. 0. 0. 0. 0.809 0.073 0. 0. 0. 0. -10054 A 100 123 QO 30 37 95 Q5 82 88 8Q 54 112 115 0 " 0 I 0 I 53 42 45 34 41 32 105 105 104 103 50 72 97 Q4 97 Q8 QQ 104 91 59 56 Q6 96 81 87 80 87 99 86 44 47 42 43 a - 1 1L [continued. . .] L. S. ROTHMAN et al 546 Table l-continued I 211120 21112f 133110 133llf 2111189 21111f 10022 022210 02221 f 10021 30014 222138 22213f 30013 222120 22212f 30012 222lle 22211f 30011 111220 11122f 311149 31114f 31113e 31113f 00031 31112e 31112f 31111e 3llllf 0113le 0113lf 40013 40012 10032 02231e 02231 f 10031 00041 011410 0114lf 00051 0115le 0115lf 00061 01161s 0116lf 00071 0117le 01171f 00061 01161e 5519.92411 " uJ6706726 x96621673 U36QQ2176 5688.02625 I K36QO2176 5662.25617 3.36666742 " 3.36798327 5766.16045 3.36615797 5793.99179 3.36578539 I M6576539 5672.55126 D.36372777 3.36983672 5951.604 D.36997049 5970.9898 I D.36988827 6119.623 0.36759266 0.36664751 6155.5076 I 0.38850487 0.36565643 6241.972 6326.0756 D.3664OOW I 0.36607563 0.36702QOO 6363.624 0.36533315 6374.5313 I 0.36626970 0.36QO4363 6552.925 I 0.3QOQ637Q 0.36734610 6736.698 " 0.36667533 6760.21036 0.36135150 8892.1160 0.36704604 I 0.36773646 7046.031 0.36663504 I 0.36623442 73Q356QQ2 0.36162OQ4 I 0.36239897 7461.570 0.36638893 7600.127 0.36567749 7981.166 0.36227763 6007.33146 0.36267276 I 0.36287276 8089.026 0.38073941 6993.50726 0.3763Q366 9695.24601 0.37889274 I 0.37945451 1163.47756 0.37543675 1773.60746 0.37598832 I 0.37661304 3350.16635 0.37246573 3926.72146 0.37304266 I 0.37357533 5493.62510 0.36953621 6060.64231 0.37012259 " 0.37064065 17613.91274 0.3666QOO2 y16Q.43152_ 0.3672@407 0, m 1.29484 1.33067 1.32031 1.32031 1.16398 1.12698 1.56121 1.31992 1.36236 1.16687 2.349 1.24177 1.66403 1.639 1.3Q602 1.41634 1.102 2.31461 l.WlQ6 0.666 1.41979 1.52616 1.522 2.035 1.52 1.366 1.32266 3.43070 1.25359 o.QQ2 O&Q3 1.34166 1.366Q3 1.446 0.633 1.566 1.31665 1.37511 1.228 1.32Q32 1.33727 1.35369 1.31656 1.32679 1.34949 1.31145 1.32516 1.34956 1.30664 1.32507 1.34755 1.30579 1.31692 T !37r 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. -9.500 0.552 0. -2.620 1.576 0. 46.501 -0.337 0. -2.106 0.422 0. 0. 0. 0. 0.282 23.463 3.495 0. 0. 0.630 0.556 0. 0. 0. 0. 0. 0. 0.465 0.922 0.763 0.620 0. 0. 0. 0. 0. 0. 0. 0. 0. r =F 50 47 52 53 52 47 36 46 49 42 0 0 I 1 " 1 2 " 1 1 0 " 0 0 " 0 0 0 " 0 0 0 1) 0 0 I 0 I 73 0 I 0 I - 1 " 46 53 0 0 0 37 44 0 56 55 64 57 54 63 56 63 62 59 64 53 56 47 s q m 18 ” 1 ” 1 * 1 1 w 2 0 ” 1 * 2 a 1 18 1 1 I n m $ q q 0: q m 8 p1 8 9 t m q 01 31 t t *Q Q 119 2t 2t "t 2t 2 11 2 2 n 2 2 I 2 s- [continued. .] Spectroscopic constants for isotopic variants of CO2 541 Table I-conhwed MlQle 311911 MOXl mOY1 30021 20255.15758 " 21785.24778 23838.45190 25884.79949 oa429083 0.38478554 0.38070904 0.35777449 0.35484531 NO01 311010 31101f 10002 D22010 z201 f 10001 11102e 11102f D33Ols 03301 f 1llOle 1llOlf DO011 20003 122020 12202f 20002 044010 D4401f 12201e 12201f 20001 011110 Ollllf 211030 21103f 13302e 13302f 211028 21102f 13301s 133Olf 21101e PllOlf 10012 02211e 02211f 10011 30003 30002 11112e 11112f 033118 03311 f 111110 O.OOOOO 882.37335 . 0.38818450 0.38880192 0.38915324 0.38812143 0.38958418 0.38958418 0.38851237 0.38852010 0.38931323 0.37023432 0.37028432 0.38882927 0.38950958 0.38528875 0.38849295 0.389859 0.389859 0.38774382 0.37091415 0.37091415 0.38986999 0.38Q88QW 0.38904215 0.38573112 0.38828757 0.38883303 0.38072232 0.370371 0.370371 0.38814783 0.38917925 0.370274 0.370274 0.388759 0.389187 0.38530734 0.38870707 0.38870707 0.38557351 0.387404 0.38823159 0.38571894 0.38849734 0.38743345 0.38743345 0.38575789 ‘wwo 1259.42520 1325.141 I 1385.84343 1901.738% I 1988.328 I 2049.33885 I 2332.11231 2500.75995 2549.449 I 2814.24775 2851.931 " 2728.24134 I 2757.17770 2982.11105 I 3127.35412 I 32OO.lQ2 I 3281.01892 I 3405.082 I 3454.011 I 3571.14018 3832.524 " 3875.13289 3858.858 3987.595 4201.15072 1 4283.373 I 4348.18588 1.31480 1.38082 1.30087 1.29583 1.29229 0. 0. 0. 0. 0. 44 30 48 57 58 (828) 1.18701 1.20878 1.20882 1.38812 1.24872 1.23158 1.W208 1.32318 1.38848 1.29798 1.29795 1.11901 1.08182 1.18424 1.58393 1.30 1.34 l.OW84 1.29018 1.29018 1.32197 1.13708 0.88719 1.20288 1.20389 1.45042 1.54834 1.34 1.34 1.19318 1.18942 1.24 1.24 1.M 1.12 1.37493 1.23511 1.22499 1.01195 1.25 0.984 1.32213 1.37302 1.29394 1.29394 1.11080 -0.015 0.188 -0285 1.819 -3.814 0.803 0.983 1.578 0.443 -0.510 0.517 0.388 0.427 0.014 3.438 0. 0. 3.583 -0.578 -0.578 0. 0. 0. 0.217 -0298 1.588 1.883 0. 0. 0. 0. 0. 0. 0. 0. 1.813 -3.705 0.444 0.808 0. 0. 2.243 0.553 0. 0. h 1003 119 113 111 103 100 98 100 75 92 97 0 92 99 118 83 0 I 8 3 I 1 " 3 I 48 46 0 I 2 I AZ 2-t 2 4 1 0 I 1 1 I 102 99 99 99 0 0 74 91 98 0 2 5 3 I 84 98 98 49 44 35 114 110 45 43 0 . 0 I c 1 I 3 ct 1 2 I 1 I 0 I : 0 I 0 (1 2 1 I C C 3 0 0 2 I 1 I C C =2 [conrinued. ..] L. S. ROTHMAN et al Table I-con&ued a,* T 469960157 479125978 4835.559 . 0.38239125 0.38573@52 0.3888QQl8 0.3868OQ?8 0.38484197 -88008 0.38311032 4Q34.680 I 0.388llQ32 5012.815 0.3858163Q I 0.36881630 5042.58248 0.33813133 52n.15210 0.3%288lQQ I os338427 5408.070 0.38589919 " 0.388QQ18Q 0.38521505 5558.588 I 0.36831024 5727.047 0.365Q54 I 0.387160 5858.028 0.3825OOQ8 5915234 0.363842 I 0.383842 5Q5Q.966 0.m 5993.588 0.38835464 0.38161882 8127.783 8254.5Q4 0.38628589 8429.178 0.38883281 osQ4Q7Q7 w2.lQ672 8762.658 0.385047 I 0.388233 8Q27.845 0.385297 I 0.388814 7347.52735 0.35QQQ435 I 0.38050264 8120.109 osQ70328 8220.384 osQ58221 918023221 0.35680734 1413.84Q29 0.35371885 osQ83374 3822.4Q542 0.31795170 5808.825Q4 0.34507337 7986.70358 D102.lQQl4 0.342lQ8QO !2213.38382 0.333933580 Tm1.57723 0.14472 0.18875 1.07388 1.28169 1.28109 1.22188 1.13812 0.85461 l.lQQ23 1.20185 1.347 1.5Q2 1.238 1.233 O.QQ 1.03 1.385 1.23 1.22 1.018 1.817 1.407 0.8646 0.3227 1.17897 1.20 1.27 1.07 1.02 1.19695 1.19191 1.398 1.004 1.17712 1.17250 1.17083 1.18843 1.18689 1.16180 1.17709 0.080 0. 0. 0. 0. 0. 0. ,20242 8.871 -1.027 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. ig a 93 80 32 32 54 95 Q5 53 54 51 51 60 0 " 2 1 1 I 0 I 1 I 0 (1 0 I 2 1 I 1 1 1 2 " 1 I 1 0 " 1 1 1 1 1 2 0 1 0 " 50 39 0 0 58 48 52 53 52 37 36 1 I - 1 1 2 2 2 2 2 2 1 '%Pf [continued. Spectroscopic constants for isotopic variants of CO, 549 Table l--Continued , I V =: 0, iYszF= I 111010 lllOlf DO011 2062.09885 I 2340.01370 252424512 2566.646 I 122020 122021 20002 122010 12201f 20001 Dlllle Ollllf 10012 02211e 02211f 10011 111128 11112f llllle lllllf 00021 20013 20012 20011 21112e 21112f 30013 30012 00031 264124036 2743.465 I 2775.55765 2QQ2.310 I 3591251 3644.990 I 3693.346 4223.434 I 4366.612 . 4655204 4621.515 4939.351 5066.930 5593.645 1 6175.954 6298.116 6946.606 4 - O.OOOOO 643.329 I 1244SOO23 1266.982 (I 134227778 2005.44617 I 2265.97126 2566.16210 2897.709 I 3490.39555 3529.769 " 3567.54964 4506.746 4692.179 4614.570 4925.013 - T 0.380725 1.32 0.37894151 0.37984267 0.37563150 0.37920541 0.360210 0.360210 0.37604734 0.360019 0.360019 0.37935305 0.376102 0.376684 0.375612 0.377079 0.377079 0.375745 0.376157 0.377014 0.375973 0.378829 0.37285080 0.3763Q562 0.375116 0.376263 0.375625 0.376756 0.374Q6224 0.37531350 0.369871 'b'% 00001 OllOle OllOlf 10002 022018 02201 f 10001 111Ole 1llOlf 00011 20002 Olllle Ollllf 10012 02211e 0221lf 10011 00021 20013 20012 20011 3 -L 1.16611 1.13166 1.26053 1.66266 1.35 1.43 1.20449 1.37 1.21 1.46367 1.23 1.23 1.46 1.30 1.28 1.07 1.39 1.45 1.18 1.14 1.25 1.716 1.21 0.91 1.23 1.22 1.512 0.666 1.24 T T=-= zr - = =G 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 50 31 41 39 0 I 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 102 94 101 64 66 77 63 33 36 101 37 Q5 102 63 65 76 82 0 0 0 0 45 0 " 31 0 I 0 0 I 0 0 I 0 I x 0 0 0 ;18 9 9 A 'oow 0.36616116 0.36656153 0.36911244 0.36653201 0.36949264 0.36Q4Q264 0.36602125 0.36625410 0.36908204 0.36539121 0.36757742 0.36560015 0.36633437 0.36562920 0.36674444 0.36674444 0.36518Q60 0.36260620 0.36651099 0.364815 0.365556 1.16498 1.20496 1.20134 1.36123 1222940 1.22800 1.01052 1.07427 1.00379 1.18167 1.31998 1.20125 1.19855 1.36376 1.22423 1.21644 1.00666 1.205 1.643 1.12 0.66 - - - c / C c C 0’ - = [continued. . .] 550 L. S. ROTHMAN et al Table l-continued 00001 01101~ OllOlf 10902 022010 02201 f 10001 Do011 Olllle Ollllf 10012 02211e 02211f 10911 00001 OllOle OllOlf 10002 022010 02201 f 10001 00011 011110 Ollllf 10012 022110 02211f 10011 00021 00031 040000 645.744 . 1255.330 1291.827 I 1355.117 2274.09940 2909.197 I 3503.376 3542.825 I 3808.559 0.00000 357.331 I 1230.32420 1315.094 I 1347.09295 2314.04834 2sQ.131 I 3525.20346 3804.953 I 3639.OQ4QO 4603.69909 m63.97331 0.37631700 0.378981 0.37QeOO 0.379142 0.379989 0.379988 0.373233 0.37574440 0.376152 0.376734 0.379353 0.377129 1.24220 1.22 1.23 1.43 1.25 1.30 1.11 1.23940 1.27 1.27 1.43 1.24 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.377129 0.375380 lzcl0 1.29 1.11 0. 0. 0.34QQl727 0.34723371 0.34772525 0.34952340 0.34812573 0.34912573 0.34740293 0.344OQO46 0.34433039 0.34500968 0.34335314 0.34543473 0.34543473 0.34465129 0.34136563 0.33@4346 "0'4 80 T 0 (I 1 - :(Q29) 1.05353 1.07024 1.07Q9Q 1.16834 1.15233 1.09342 0.91732 1.0511s 1.O3QQ5 1.07486 1.17367 1.14019 1.09974 0.9lOQQ 1.0477s 1.04595 0.042 0. 0. o.ge5 0. 0. -0.015 0.048 0. 0. 1.135 0. 0. -0.090 0. 0. 1uI 111 122 99 84 101 99 127 110 121 97 93 100 97 76 05 3 - 1 1 1 1 1 1 2 1 1 3 1 1 3 4 1 0 c/28) The notation in the first column is described in Ref. 20 with X = 10, Y = 11, and Z = 12 for the very high vibrational levels of Ref. 9. The units are cm-‘; D, should be multiplied by IO-’ and H, by IO-“. The sixth column, J_, is the higheat observed J for the level, or sublevel in the case of d-doubled bands. The seventh column, 0, indicates the number of different bands in which this level was observed. The characters in the comments column, $, are interpreted as folows: a = level observed in Raman spectroscopy (Refs. 86.89); t = a single DND energy at J = 180 was used to help determine H,; 9 = observed in Venus spectra (Ref. 39); q = DND constants are given, no observations were available; * = a perturbed level; C = constraint applied to force lower level of G: in fit to a literature value.*J Models used We assume that the transition moment squared I R I2 can be separated into a rotationless dipole moment squared, I R, I’, a rotational line strength or Hiinl-London factor L(J, d), where G is the angular momentum associated with the bending mode, and a Herman-Wallis factor F(J), i.e. IR(2=(R,~2L(J,t’)F(J). (3) The total internal partition sum Q(T) can be approximated by the product of a vibrational part QV(T) and a rotational part Qa( T), Q(T) =gj Q~(T)QR(TX (4) where gj is the state-independent nuclear spin factor, and depends on the isotopic species. 551 Spectroscopic constants for isotopic variants of CO2 Table 2. Intensity parameters for CO, bands on the HITRAN database. Is0 471.5112 479.8980 508.1863 510.3208 526.4759 535.8935 542.2202 544.2858 557.7860 561.1210 564.9089 568.9082 573.6826 576.5960 578.6313 579.1417 581.3891 581.7760 585.3282 586.8501 594.2873 596.6752 596.4419 597.0518 697.3385 599.0230 599.2747 601.5712 603.1872 607.5550 607.5575 607.9745 608.8285 609.5860 610.9915 611.2204 615.6969 617.3497 618.0283 619.8238 630.7103 633.0969 634.8641 635.1401 636.7508 637.7635 640.5478 642.3118 643.3290 643.6530 644.4065 644.6333 645.1047 645.7440 646.0830 647.0618 647.7121 648.4780 648.7852 649.0887 649.4090 649.6874 2OOO3 13302 12202 21103 11102 Ill02 21102 11102 14402 12202 20002 13302 13302 11102 21102 20002 22203 12202 12202 11102 20002 21103 21103 looo2 11102 2OOO3 11102 looo2 30003 20003 looo2 20002 10012 10002 20003 30004 20003 10002 loo02 21103 11102 21103 11112 12202 01111 13302 22203 11102 01101 02201 11102 21102 23303 01101 02201 11102 12202 01101 02201 03301 04401 05501 11101 12201 11101 20002 loool loool -2oool 1WOl 05601 03301 11101 04401 04401 02201 12201 11101 13302 03301 03301 02201 11101 12202 12202 01101 02201 11102 02201 01101 21102 11102 01101 11101 01111 01101 11102 21103 11102 01101 01101 2OOO3 10002 20003 10012 11102 OWll 12202 21103 10002 OooOl 01101 looo2 20002 22203 OooOl 01101 10002 11102 ooool 01101 02201 03301 04401 326 926 526 326 536 328 526 626 626 828 528 826 536 628 526 627 526 626 636 527 526 636 526 628 626 628 536 638 626 627 627 636 626 637 636 626 626 636 626 636 636 636 626 636 636 636 626 628 638 638 627 636 626 637 637 626 628 636 636 636 636 636 p2 0.0115 0.00145 0.0609 0.00470 0.0139 0.0207 o.walo 3.279 0.00302 0.00765 0.00326 0.0807 0.00147 0.193 0.0415 O.OOO72 0.0109 2.16 0.0365 0.0439 0.994 o.oo457 0.280 4.66 56.18 0.0270 0.920 0.055 0.00544 0.0052 1.17 0.0204 0.0190 0.0106 0.111 0.0259 7.36 24.04 1567.5 0.00932 2.84 0.665 0.00278 0.211 0.0127 0.0132 0.045 1 0.950 3.57 0.3 0.15 0.00353 0.00265 0.642 0.055 230. 0.0737 878.3 72.2 4.58 0.258 0.0136 0.00049 0.00098 O.WlO7 0.00063 0.00084 0.00077 0.00096 o.oooa 0.00087 0.00085 0.0009 o.ooo91 0.00094 o.ooo93 O.Wll 0. 0.00101 O.OOO96 0.0010 0. 0.00104 0.00123 0.00117 o.oooa5 0.00095 0.00062 O.Wl13 0. 0.00103 0. 0. O.WlO2 0.00083 0. 0.00078 0.0008 0.00087 O.Wll4 0.000959 o.oooa7 0.00099 0.00097 o.oooa9 0.00144 0.00094 0.0013 0.~148 o.wo91 0. 0. 0. 0.00113 0.00131 0. 0. 0.001127 O.Wlll 0.00077 0.00126 0.00122 0.00128 0.00135 1 0.898 0.57 0.547 1.54 i .a3 .1.09 .2.37 0. .0.632 0.468 0.827 0.598 0.551 0.46 0.379 0. .0.602 0.554 0.483 0. .o.a74 .3.77 -2.14 a.69 0. .0.094 -1.93 0. -0.612 0. 0. -0.466 -0.368 0. 1.66 1.36 0.468 0. 0. 0.864 0.166 0.196 -0.25 -2.67 -0.073 -0.41 -2.51 -0.22 0. 0. 0. -0.078 -0.378 0. 0. 0. -0.259 0. -0.707 -0.111 -o.o05 0.093 0. 0. 0. 0. 0. 0. 0. 5.7 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. X: Oo:ae 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. .3.13 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. :: :: -3.58 0. 0. 0. 0. 0. 0. L. S. ROTHMANet al 552 Table 2-continued ‘0 v’ If* 049.9649 12202 11102 627 652.5520 154.8694 166.2600 tj56.6006 t155.6414 t557.3310 t157.6911 12202 01111 02211 13302 03311 01101 14402 t157.7532 02201 169.2816 15602 11102 00011 01111 12202 02211 OOOOI 13302 01101 14402 626 626 626 626 626 828 626 628 626 13301 01101 12201 00001 12201 11101 t t t t t IS0 a, . 0.0118 16.5 0.898 0.073s 0.966 0.00454 0.343 0.0510 0.0277 0.00263 0. 0.00132 0.00092 0.00108 0.00124 0.00107 0. 0.00129 0. 0.00136 a, 82 0. -1.03 -0.077 0.112 -0.151 0.086 0. -0.018 0. 0.096 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. b2 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. R&S M-r 3 3 3 3 3 3 3 [continued 553 Spectroscopic constants for isotopic variants of CO, _..,. 1 aole 733.3474 741.7243 748.1330 746.5233 754.3333 755.1458 757.4766 761.0793 765.6407 767.2917 770.5008 771.2656 781.7408 769.8120 789.9136 790.9869 791.4476 803.7264 626.2546 829.5290 857.1932 664.6650 683.1446 898.5476 910.6378 913.4250 315.6600 917.6461 927.1564 941.6976 355.6673 356.5435 960.3506 363.6862 365.6345 366.2663 1017.6693 1023.6999 1043.6387 1057.3651 1060.4847 1063.7346 1064.4737 1066.2409 1067.7271 1071.5421 072.6871 074.2502 078.4966 080.3741 233.3636 244.6002 253.4252 272.2666 342.2776 365.6434 376.0275 '386.9655 646.3324 1680.987 1 683.2001 896.0557 696.6360 Y’ V= 21101 11101 12201 20002 21102 22201 12201 30003 13301 22202 13301 11101 14401 11101 11101 21102 11101 12201 12201 21101 13301 20001 01111 02211 00021 00011 21101 10011 01111 lo012 00031 00021 00011 00011 ooo21 00011 00011 01111 10011 00031 00021 00011 10012 11112 00011 01111 00011 02211 DO021 01111 11102 10002 10002 10002 loo01 loo01 loo01 11101 21103 2OOO3 12202 21103 11102 12201 02201 03301 11102 12202 13301 03301 21103 04401 13302 04401 10002 05501 10002 loo02 20003 10002 11102 11102 20002 12202 11102 11101 12201 10011 10001 12202 20001 11101 20002 10021 loo11 ~10001 10001 10011 10001 10002 11102 20002 10022 10012 10002 20003 21103 loo02 11102 10002 12202 10012 11102 01101 00001 00001 00001 Ooool ooool OOool 01101 02201 01101 01101 lOOO2 ooool so 326 626 527 836 626 626 626 826 636 626 626 636 626 627 626 626 626 636 626 626 626 626 636 626 636 636 626 626 626 626 626 626 626 627 626 628 636 636 626 626 626 626 626 626 627 626 626 626 626 626 628 636 628 627 638 628 627 628 626 626 636 626 636 .. A-conwwea . s”, 0.136 63.4 0.0025 0.0194 0.120 0.00481 2.45 0.00435 o.oo115 0.00526 0.0951 0.131 0.00365 0.01 0.0199 0.0357 7.65 0.00329 0.151 0.00633 0.00527 0.042 0.00599 0.0146 0. 0.080 0.00071 0.00990 0.414 0.0138 0. 0.00015 6.13 0.0046 0. 0.018 0.054 0.00605 0.0158 0. 0.0002 9.15 0.0318 0.00307 0.0064 0.757 0.036 0.0305 0. 0.00434 0.0223 0.00267 0.320 0.0152 0.00625 0.359 0.0221 0.0342 0.00120 0.01597 0.00160 0.00711 0.0175 0.00096 O.ooo758 0. O.Ooo87 O.OOO96 0.00092 0.00107 0.ooo84 0.00074 o.ooo79 0.00073 O.OOO58 O.ooo66 0. o.ooo59 O.Ooo48 0.001016 0.00073 0. o.ooo71 o.ooo15 0. -0.00109 -o.o0102 0. 0. -0.00127 -O.O0089 -0.OOO56 -0.0008 0. 0. -0.00078 0. 0. 0. 0. -0.00027 -0.ooo49 0. 0. 0. -0.00044 -0.00032 0. -o.ooOl 0. ~O.ooo39 0. -0.00031 -0.ooo135 O.OOO46 -0.OOO27 -0.OOO895 o.ooo35 -0.ooo293 -0.00032 0. -0.15 -0.1572 -0.060 -0.0899 -0.0729 2.44 0. 0. 0.662 0.126 0.203 0. 0.629 0.025 0.07 0.035 0.749 .0.06 0. .1.69 0.709 .1.6 .0.052 0. -1.9 -0.134 0. -0.461 -0.459 0. 0. -4.7 -0.997 0. -0.47 0. 0. -1.06 0. 0. 0. 0. 1.17 0.233 0. 0. 1.33 1.33 0.835 0. 0. 0. 0.925 0. 0.664 0. -3.73 1.52 4.34 -2.76 -0.84 -2.09 0. 0. 17.3 0. 5.10 6.6 A& 3. 3. 3. 3. 3. 3. D. 3. Q. 0. i: 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. :: 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. Q. 0. 0. 0. 0. 0. 0. 0. 0. :: 0. 0. 0.485 0. 0. 0.123 - A 0. 3.23 0. 0. 0. 0. 1.33 0. 0. 0. 0. 0. 0. 0. 0. 0. -3.5 0. 3 14.11 1 3 3 3 13.11 3 31 3 3 3 3 3 3 12.11 3 71 ii: 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 3 3 71 3 i 71 32 3 16 : 8 16 16 71 : 3 63 83 63 63 63 03 63 63 72 :: 0. 64 (I4 84 ::6 - 64 554 L. S. ROTHMANet al Table 2-continued “0 1901.7370 1905.4911 1916.6931 1917.6422 1932.4701 1951.1717 1996.5698 2003.2462 2003.7632 2004.2245 2005.4462 2023.8734 2037.0933 2049.3388 2051.7864 2053.9477 2062.0987 2063.7086 2064.1365 2065.8680 2075.4444 2076.8659 2093.3448 2094.6044 2102.1184 2107.0838 2110.6265 2112.4878 2119.0225 2120.5053 2129.7559 2131.8047 2136.5075 2148.2407 2157.6763 2165.5406 2167.9430 2170.8490 2180.6991 2162.4803 2194.1150 2205.2967 2215.2638 2224.6565 2224.9910 2225.0240 2227.8102 3229.6611 2230.2229 2236.6624 2236.6764 2236.5703 2239.2971 2240.5362 2240.7666 2242.3228 2242.8071 2245.2719 2245.4953 2248.3669 2248.3610 225O.@O47 izmu%w! ,( \ ,v.: 11102 13302 11102 12202 11102 21102 20002 03301 2ooo2 21102 11101 21102 11101 11101 12201 21102 11101 21101 13301 12201 22202 11101 12201 20001 20001 13301 20001 21101 14401 22201 20001 30002 21101 30001 10012 21101 21101 11112 20012 20013 22201 10012 21101 10012 01131 05611 13312 21113 21112 00031 04411 12211 12212 20013 20011 20012 02211 10011 10012 03311 01121 11111 1 1 1 12 ,v’. gg ooool 02201 OooOl 01101 OOOOI loo01 01101 Ooool 01101 02201 OOOOI loo02 ooool ooool 01101 10002 0ooo1 loo01 02201 01101 11102 00001 01101 01101 01101 02201 01101 loo01 03301 11101 01101 11102 02201 11101 1Oool 02201 10002 11101 20001 2OOO2 03301 loo01 looo2 IOOOI 01121 05601 13302 21103 21102 00021 04401 12201 12202 2OOO3 2oool 2ooo2 02iOl loo01 loo02 03301 01111 11101 628 626 627 626 626 626 636 626 626 626 638 636 636 628 636 626 627 636 636 626 626 626 626 628 636 626 627 626 626 626 626 626 636 626 636 626 636 626 626 626 626 628 626 626 636 636 636 636 636 636 636 636 636 636 636 636 636 638 638 636 636 636 636 s”, b.01956 0.00990 o.oo329 0.1979 3.425 0.00768 O.oo289 0. 0.01711 o.oo219 0.ooo78 o.ooo99 0.4584 0.1431 0.0461 0.0849 0.0268 0.00297 O.OO610 0.0166 0.0103 41.56 4.01 o.oo92 0.0217 0.289 O.oQ18 0.1700 0.0183 0.0119 2.132 0.0050 0.0022 0.0077 0.00788 0.0920 0.0009 0.0426 0.0012 0.0028 0.0037 0.00517 0.0331 1.19 0. 0.00254 0.00366 0.00447 0.00198 o.oooo1 0.0603 0.0364 0.0818 0.0459 0.0136 0.0229 0.149 0.0665 0.0816 1.43 0.0250 0.897 1.81 -0.0611 -0.0711 -0.0637 -0.067 -0.06044 -0.0469 -0.0483 -0.0413 -0.06703 -0.0279 -0.0366 -0.060 -0.0417 -0.0334 -0.0436 -0.0404 -0.0369 -0.0273 -0.0325 -0.0327 -0.0377 -0.03772 -0.03638 -0.0305 -0.0482 -0.0394 -0.04 -0.0414 -0.0414 -0.0470 -0.04202 -0.0425 -0.03 -0.048 0. -0.0516 -0.045 0. 0. 0. -0.068 0.00003 -0.0648 -o.oooo2 0. -0.ooo14 -0.00080 0. -0.oooo3 0. -0.ooo12 -0.ooo13 -0.ooo10 -0.00013 -0.00013 -0.ooo14 0. 0. 0. -0.00012 -0.00015 -0.00014 R6f-s 82 Am 0. 0. 0. 0. 0. 0. 64 64 64 64 64 64 5.5 5.53 0. 5.6 4.91 0. 0. 0. 3. 0. 0. 0. 0. .I.6 0. 0. 0. 0. 0. 0. 0. 0.56 0. 0. 0. 0. 0. 0. 0. 0. 1.9 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 64 64 66 61.66 64 64 64 64 66 66 :: 13.7 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.52 3.30 0. 0. 0.80 0. 0. 0. 0. -1.6 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. -1.7 5.55 -0.945 0. -0.309 -2.3 0. 0.06 0. -0.017 -0.013 0.008 -0.021 0.021 -0.063 0. 0. 0. 0.009 0. -0.013 24 24 64 64 64@ 64 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 67 61,67 67 61.67 67 67 67 67 67 67 67 67 67 61.67 67 67 67 67 67 61.67 67 67 67 67 67 67 67 67 67 67 67 67 67 67 67 67 67 67 67 67 3 3 3 8 6 3 3 3 3 Q 3 it 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 3 3 3 66 3 3 68 6a 66 66 66 a.66 66 66 555 Spectroscopic constants for isotopic variants of CO, Table 2-contimed I80 !250.7980 !253.0460 !253.4420 !254.3798 !260.0491 !260.0809 !261.9097 t281.9859 !262.4530 i262.8481 L265.2792 1265.9713 t271.7599 1274.0884 2274.3720 1274.4217 1275.8424 1277.1728 2277.2812 2277.3385 2277.9842 2278.3874 2280.8180 2281.6742 2282.7286 2283.2960 2283.4871 2283.5786 2284.3738 2285.3738 2288.7994 2286.8007 2286.8036 2287.1097 2288.3898 2289.0771 2289.5689 2289.6508 2289.9038 2290.2539 2290.4988 2290.6123 2290.6805 2290.9719 2293.4088 2293.6104 2294.8793 2295.0411 2295.0453 2296.8471 2299.2137 2299.2398 2299.2519 2299.4138 2301.0534 2301.7998 2301.9081 2302.3714 2302.5246 2302.9628 2305.2663 2306.6919 2306.7409 12211 10012 10011 31111 32211 30021 10012 33331 31111 10011 30031 DO011 31111 00011 02231 06611 14411 22211 10031 10032 30011 14412 22212 22213 04411 30014 00011 30012 12211 30013 03321 01131 05511 12212 13311 11121 02211 00021 21111 11122 20013 20012 13312 10011 21112 21113 10012 01121 03311 11111 04411 02221 00031 11112 12211 01111 10021 10022 20011 12212 20013 20012 11112 02201 10002 10001 01101 02201 00011 10002 03321 01101 10001 00021 00001 01101 00001 02221 08601 14401 22201 10021 10022 30001 14402 22202 22203 04401 30004 00001 30002 12201 30003 03311 01121 05501 12202 13301 11111 02201 00011 21101 11112 20003 20002 13302 10001 21102 21103 10002 01111 03301 11101 04401 02211 00021 11102 12201 01101 10011 10012 20001 12202 20003 20002 11102 63;637 637 638 638 638 636 626 637 636 828 838 636 837 626 626 626 626 826 626 626 628 626 826 628 826 836 628 828 628 826 826 628 628 826 826 828 828 626 626 628 628 626 828 626 626 828 628 628 828 626 826 826 628 626 828 628 826 626 626 626 826 627 - a, 0.0264 0.0146 0.0098 3.48 33.7 0.279 19.5 0. 0.628 11.6 0. 38.8 771.6 7.15 0. 0.00599 0.00339 0.00231 0. 0. 0.00100 0.0102 0.00584 0.0147 0.0178 0.00843 9286. 0.00216 0.0121 0.00394 0.00273 0.00002 0.156 0.0290 0.0931 0.00185 0.0127 0.00009 0.089 0.00375 0.0181 0.0103 0.252 0.00487 0.151 0.333 0.00796 0.00720 0.452 0.330 4.06 0.0666 0.00037 0.679 2.58 0.31 0.0250 0.0414 1.07 8.13 3.84 1.98 0.116 0. 0. 0. 0. 0.00013 0.00015 ~0.00014 0. 0. ~0.00014 0. 0. ~0.00015 0. 0. O.00024 ~0.00011 ~0.00012 0. 0. O.00009 .0.00037 ~0.00012 -0.00010 ~0.00010 0.00012 -0.00013 ~0.00012 -0.00011 mIOo13 -0.00012 0. -0.00011 0. -0.00011 -0.00014 0. 0. -0.00012 -0.00015 -0.00012 -0.00013 -0.00011 0. -0.00011 0. 0. -0.00013 -0.00011 -0.00012 -0.00011 -0.00013 0. -0.00013 -0.00012 0. -0.00014 -0.00014 -0.00012 0.00005 -0.00013 -0.00014 L b 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.012 0.007 0.005 0. 0. 0.017 0. 0. 0. 0. 0. 0.827 0.152 .0.106 0. 0. 0.043 0.89 .0.034 0.01 0.017 0.033 0. 0.031 0.008 0.1 0.016 0. -0.032 0. -0.028 -0.001 0. 0. -0.05 -0.082 -0.019 -0.047 0.002 0. -0.004 0. 0. 0.005 0.019 0.018 0.006 0.014 0. -0.027 -0.004 0. 0.028 -0.006 0.029 0.243 -0.02 -0.058 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. ll6f-S I I L b IO B 68 53.9 0.68 63 28 63 0 63 63.9 68 28 I I L B 62 62 1 3 3 3 3 3 IO 3 3 3 3 9 3 3 3 30 @ 3 3 3 3 3 3 3 3 3 3 3 L 3 3 3 3 3 3 3 3 70 70 46 45.28 28 70 46 55 62 45.62 40 111 [continued. . .1 L. S. ROTWANet al 556 Table 2-continued v’ !307.3832 !307.3693 !309.2693 !311.6676 !311.7010 !311.7150 !313.7726 !314.0483 !315.1470 L315.2348 L317.3165 i316.9644 t319.7377 !322.4360 !324.1406 L324.1626 t326.5976 t327.4325 t327.6609 Z332.1123 t336.6324 2340.0137 2349.1429 2367.0624 2415.7075 2426.5174 2429.3736 2429.4679 2456.1564 2464.9606 2500.7600 2524.2461 2566.1821 2614.2477 2616.6436 2641.2404 2757.1777 2775.5577 2791.6377 3125.3044 3154.6316 3161.4640 3275.1633 3261.0169 3269.7012 3305.7064 3339.3560 3340.5345 3341.6569 3365.2691 3396.6949 3396.2166 3460.9018 3460.4684 3466.4391 3473.7120 3462.2379 3462.6933 3482.6307 3490.3956 3496.1413 3497.2866 3496.7540 v’ )2iril: mo21 10011 13311 11121 10012 11111 )OOll 32211 11112 10011 10012 11111 No11 12211 30021 10011 10012 31111 mall 31111 30011 30011 10011 10011 20011 10011 20012 11111 21103 20003 20003 20002 20002 21102 20002 20001 20001 21101 30004 22203 21103 30003 21102 21102 31103 21102 22202 23302 31102 30002 21113 13312 21113 20013 12212 20013 loo22 21112 10012 23313 30001 11112 00011 10001 03301 01111 10002 11101 00001 02201 11102 10001 10002 01101 OOool 02201 00011 10001 10002 01101 00001 01101 00001 OOool loo02 10002 20002 10002 20003 11102 01101 00001 00001 00001 OooOl 01101 00001 Ooool OOool 01101 01101 01101 OOool 01101 OOool OOOOI 1000~ OOool 01101 02201 10001 01101 11101 03301 1110; 1000' 02201 1000: 0001' 1110' 0000' 1330; 0110' 0110' E i28 $28 528 126 $26 128 i26 326 527 326 327 527 $26 728 526 326 526 326 527 128 526 527 926 536 526 526 526 626 626 526 626 627 636 626 626 627 626 627 626 626 626 626 626 626 636 626 626 626 626 626 626 626 636 636 626 636 836 636 636 635 626 636 636 d - so, 11.4 0.0656 4.82 105. 1.62 7.75 72.3 3.60 1.91 147. 0.605 1.29 269. 1.35 2632. 19.6 1021. 1717. 49.7 3666. 70417. 679. 16076. 0.00459 0.00325 0.00065 0.6635 0.00137 0.0159 0.0115 0.1391 0.00507 0.00242 0.231 0.0162 0.0114 0.033 0.00214 0.00255 0.00016 0.00015 0.00159 0.00642 0.00066 0.00067 0.00097 0.1219 0.00553 0.00007 0.00035 0.00165 0.00429 0.0107 0.0234 0.174 0.246 0.217 0.00153 o.ooaa3 0.463 0.00496 0. 5.51 a, tmoo12 Q.ooO14 Q.00012 ~0.ooo12 9.09015 ~O.Ooo13 ~0.00014 0. 0. -0.00017 0. 0. Q.ooO13 0. -0.ooo15 Q.00015 -0.ooo15 -0.00006 0. -0.00032 -0.00026 -0.ooo22 -0.ooo14 -0.00078 0. 0. -0.001667 0. -0.00247 0. 0.0000069 0. 0. -0.0000103 0. 0. 0. 0. 0. 0.4 0.4 0.5064 0.0715 0.14 0.212 0.129 0.1615 0.22 0.53 0.19 0.3 0. -0.00073 0. -0.00016 0.00001 -0.00009 -0.00006 0.00011 0. -0.00002 0. 0. , & 0.016 o.oo2 0.031 0.015 0.003 0.003 .0.002 0. 0. -0.144 0. 0. 0.006 0. 0. 0.009 0. 0. 0. 0. 0. 0. 0. -0.415 0. 0. -1.67 0. 0. 0. 0.69 0. 0. -1.03 0. 0. 0. 0. 0. 0. 0. a. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. -1.24 0. 1.21 1.29 1.43 2.2 0.943 0. 0.977 0. 0. ). 1. I. I. I. I. I. I. 1. I. I. I. I. I. I. I. I. I. I. I. I. I. 3. I. I. I. 3. 3. 3. 3. 3. 3. D. D. 3. 0. 0. Q. 0. 0. 0. 1.35 0. 0. 0. 0. 0.14 0.23 Z: 0. 0. 0. 0. X: 0. 0. 0. 0. 0. 0. 0. m I8 ‘0 ;B t6.28 le.za i6 M.62 WY 3 M.52 3 i6 IO k3.28 s 16.28 IO 16.62 IO 16.62 IO.87 is.69 IO 16.28 IO 16 IO u1.27.28 3 91 I1 Bl @ 31 Bl.SO 31 Bl 31 81 11 Bl 51 Bl 31 Bl 91 El $1 El 31 81 51 81 Bl 73 73 738 4 4 4 4 4 1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 23 23 23 23 23 23 23 23 23 Spectroscopicconstants for isotopic variants of CO, 557 Table 2-continued a, I50 3500.6721 3504.3331 3504.9067 3506.7130 3506.3760 3509.2272 3511.4177 3517.3266 3516.6639 3524.2004 3526.2035 3527.6133 3527.7375 3527.6076 3526.0571 3529.9612 3531.0346 3533.9465 3536.7774 3539.0167 3542.6043 3543.0949 3649.2284 3550.7156 3552.6534 3556.9090 3556.7739 3557.7167 3556.7049 3563.3235 3566.0693 3566.2151 3571.1402 3560.3249 3567.5496 3569.0641 3569.6507 3591.2510 3608.5690 3612.8408 3621.2910 3621.5629 3623.3862 3625.1648 3632.9103 3638.0646 3639.2199 3641.5714 3641.6762 3645.4349 3656.8291 3659.2723 3667.0644 3667.5471 3675.1327 3675.6934 3676.7083 3676.7390 3677.7082 3679.5500 3682.0925 3683.8125 3684.3193 21101 21113 14412 31114 10012 21112 12212 20012 22213 31113 10012 30014 10012 22212 13312 22201 20013 11122 11112 20012 21113 40002 20013 30012 12212 21112 30013 30001 11112 20012 10022 20013 10012 11112 10011 10021 20012 10012 10011 10012 20011 20012 21112 21111 10011 10011 11111 12211 13311 20012 21112 02211 20012 10021 10011 11121 30012 20011 21111 30013 31113 11111 31112 00001 11102 04401 21103 00001 11101 02201 10001 12202 21102 00001 20003 00001 12201 03301 01101 10002 01111 01101 10001 11102 11102 10002 20001 02201 11101 20002 01101 01101 10001 00011 10002 00001 01101 00001 00011 10001 00001 00001 00001 10001 10002 11102 11101 00001 00001 01101 02201 03301 10002 11102 00001 10002 00011 00001 01111 20002 10001 11101 20003 21103 01101 21102 626 628 626 626 637 628 628 636 626 626 828 626 636 626 626 626 628 626 628 628 626 626 627 626 626 626 626 626 627 627 626 628 626 638 636 626 627 637 626 636 636 636 636 636 828 636 636 636 628 628 626 627 626 628 626 626 628 628 626 626 628 626 - 0.124 0.0162 0.0417 0.00899 0.0771 0.00499 0.144 0.128 0.120 0.00378 0.0588 0.0900 56.1 0.0323 1.09 0.0113 0.185 0.0163 3.81 0.0775 2.83 0. 0.0224 0.0167 28.6 0.969 0.0537 0.00536 0.668 0.0135 0.197 30.7 52.5 729. 0.703 0.00582 16.1 8.41 0.126 9861. 0.413 0.422 0.0381 0.0330 190. 0.0392 15.6 0.657 0.0279 0.146 0.0120 0. 0.0333 0.349 47.3 0.0290 0.0740 0.106 0.00898 0.0797 0.00705 4.17 0.00565 0.128 ~0.00010 -0.00029 -0.00021 0. -0.00007 ::00013 0. 0.00003 0. -0.00008 -0.00009 -0.00007 -0.00003 0.112 -0.00009 -0.00010 -0.00009 -0.00009 0. 0. 0. -0.00007 0.00019 -0.00004 -0.00013 0.214 0. 0. -0.00011 -0.00008 -0.00011 0.0001 0. -0.00016 -0.00012 0. 0. 0.00010 -0.00017 -0.00017 -0.00004 -0.00017 -0.00016 0. -0.00016 -0.00016 -0.00016 -0.00019 -0.00014 0. 0. -0.00017 -0.00015 -0.00015 -0.00018 -0.00017 -0.00029 -0.00018 -0.00008 -0.00014 -0.00017 &L LL 15.71 0.763 0.018 0.429 0. 0.361 0. 1.51 1.08 0.731 0. 1.19 2.1 0.695 0.988 i8.06 1.23 1.23 0.781 0.354 0. 0. 0. 0.229 1.38 0.598 1.16 23.05 0. 0. 1.81 1.52 1.06 1.57 0. -0.63 0.641 0. 0. 1.57 -0.952 -0.331 -0.223 -0.69 -0.684 0. -0.516 -0.551 -0.553 -1.01 -0.625 0. 0. -1.12 -1.32 -0.707 -1.08 -1.03 -1.18 -0.365 -0.311 -0.764 -0.753 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. X: 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 56 23 68 23 68 58 65 58 65 68 68 23 23 68 68 23 23 23 23 23 58 23 23 23 68 [continued. . .] 558 L. S. ROTHMAN et al Table 2-continued 90 1667.4743 1692.4267 1692.9025 1693.3460 l700.2948 1702.0629 1703.1568 1703.5104 1704.1117 1705.9450 1711.4762 1712.4120 1713.7201 1713.8093 1714.7819 1723.2486 1724.1327 1725.5253 1726.3964 1726.6466 1727.3590 1799.4844 1814.2522 1856.6580 1858.1058 1980.5817 $987.5950 1005.9455 1416.1490 1591.1167 1614.7788 1639.5016 1655.2040 1673.7365 1685.7762 1687.7961 t692.1790 1708.5263 $722.6495 t733.5180 1735.6110 1743.6967 1748.0656 1753.4534 4755.7069 4768.5544 4784.6810 4786.7006 4790.5720 4791.2598 4807.6945 4608.1851 4814.5700 4821.5150 4839.7328 4853.6234 4871.4461 4887.3907 4887.9850 4896.1927 4904.8601 4910.6054 4aiz.~px 12211 !0012 too11 10011 !1112 11111 $1111 !2212 !3312 30011 zoo11 !3311 ill11 E2211 10011 11111 15511 !OOll 14411 12211 13311 30012 zoo11 30003 21111 11121 30002 )0021 31104 31103 11121 30021 30021 22213 30014 30014 20013 21113 32214 23313 40015 21113 20013 31102 31114 22213 20023 31113 30014 20013 21113 40002 20012 20013 30013 20013 21112 20012 12212 21112 20012 20022 02201 10002 10001 00001 11102 01101 21101 12202 13302 20001 10001 13301 11101 12201 00001 01101 05501 10002 04401 02201 03301 20003 10002 00001 11102 02201 00001 01101 00001 00001 01101 00001 00001 02201 10002 10001 00001 01101 12202 03301 20003 01101 00001 00001 11102 02201 00011 11101 10002 00001 01101 01101 00001 00001 10001 00001 01101 00001 00001 01101 00001 00011 i28 526 527 i27 326 527 526 j26 i26 j26 326 526 126 526 $26 526 326 336 $26 326 326 526 126 328 926 526 528 526 326 926 228 528 527 536 536 626 638 636 626 626 626 628 636 626 626 626 626 626 626 628 626 626 638 627 626 626 636 638 626 628 628 626 E 0.175 36.5 0.0279 10.2 2.93 0.771 0.00318 0.120 0.00489 0.0439 29.7 0.00327 2.30 0.0870 15223. 1199. 0.00292 0.00761 0.0746 48.1 1.90 0.00211 0.624 0.0144 0.0199 0.00294 0.00625 0.0365 0.00024 0.00289 0.0104 0.124 0.0127 0.00239 0.00234 0.00746 0.0026 0.0442 0.00227 0.0146 0.00180 0.0457 0.323 0.00412 0.0465 0.344 0.00154 0.0116 0.409 0.531 7.85 0. 0.0134 0.0744 0.162 78.1 0.219 2.70 0. 0.0928 1.30 0.00752 0.00361 ~0.00015 ~0.00019 0. 0. ~0.00013 0. ~0.0002 -0.00018 ~0.00017 ~0.00020 ~.00017 0. u.00017 -0.00017 0.00004 0.00004 -0.00037 9.00040 ~0.00018 -0.00016 -0.00016 -0.00042 -0.00034 -0.00026 -0.00027 0.0826 0.00004 0.0701 0.144 0.158 0. 0. 0. -0.00005 -0.00015 -0.00026 0. 0. -0.00004 -0.00001 -0.00012 -0.00009 -0.00009 0.146 -0.00016 -0.00003 -0.00003 0.00008 -0.00008 -0.00008 0. 0. 0. 0. -0.00011 0.0008 0.00003 -0.00015 0. -0.00011 -0.00015 -0.00016 -0.00014 a, 0.691 .0.62 0. 0. 0.499 0. ,1.05 .0.621 0.593 .1.03 .1.09 0. .0.783 .0.788 .1.14 .1.14 .I.79 0.181 .0.702 -0.688 -0.627 .0.037 .2.34 2.22 -1.26 -3.49 -0.304 -0.479 2.9 0. 0. 0. 0. 1.49 1.59 1.91 0. 0. 1.25 1.34 1.35 1.37 2.84 -9.53 1.19 1.42 3.11 1.17 2.03 2.23 0. 0. 0. 0. 2.07 2.6 0.54 0.996 0. -0.3 -0.627 0.157 0.815 W-S LL D. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 1 / I I I 1 I I I I I IO.86 IO I I I I I I I I I I I I 36 37 14 I4 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3+ l 3 76 3 3 * 3 3 3 3 [conrimed. . .] Spectroscopic constants for isotopic variants of CO2 559 Table 2-continued 4920.2114 4922.5519 1925.0130 4928.9159 4931.0883 4937.3120 4939.3510 4941.4884 4942.5088 4948.8194 4953.4009 4959.8872 4985.3849 4978.1442 4977.8350 4991.3531 4993.5819 5013.7801 5020.4011 5028.8123 5042.5825 5081.7701 5082.4432 5084.8737 5088.9300 5091.2052 5099.8805 5114.8988 5123.1981 5128.9731 5139.4024 5151.3812 5188.5989 5217.8728 5247.8323 5291.1322 5315.7132 5584.3931 5887.1890 5858.0280 5951.8040 6959.9680 5972.5401 5993.5880 5998.5897 8020.7970 8075.9803 8088.2180 8119.8230 8127.7830 8149.3847 8170.1019 8175.1187 8175.9540 8198.1785 8205.5107 8227.9171 8241.9720 8243.8380 8254.5940 8298.1180 8308.2087 8348.2837 32213 10013 20011 21112 31113 10012 20012 23312 30013 31112 22212 30012 21112 30012 20012 20011 30011 21111 20021 22211 20011 12211 30012 21111 20011 31112 20011 30011 21111 31111 22211 23311 01121 30011 10022 02221 01121 ooo31 00031 10022 30014 10021 32214 30014 40015 31114 30014 31113 30013 30013 41114 32213 40014 30013 31113 40013 30013 30012 31112 30012 30012 40013 40012 12202 20002 Ooool 01101 11102 20001 ooool 03301 10002 11101 02201 10001 01101 10002 ooool Ooool 10001 01101 00011 02201 00001 OooOl 10002 01101 00001 11102 OooOl 10001 01101 11101 02201 03301 OoOOl 10002 01101 01101 00001 10001 10002 00001 OooOl 00001 02201 00001 10002 01101 00001 01101 OooOl 00001 11102 02201 10002 OOool 01101 10001 Ooool OooOl 01101 00001 00001 10002 10001 z= 928 628 538 627 628 628 627 628 628 628 628 628 628 638 628 638 638 638 628 638 628 628 628 628 627 628 828 828 628 828 828 828 838 828 828 828 828 828 828 828 838 828 828 828 828 828 828 838 838 828 828 828 828 827 828 828 828 838 838 828 827 828 828 - s”, 0.00387 0.00358 0.00448 0.0149 0.0994 0.00108 0.231 0.0313 1.28 0.0507 0.851 0.002 23.5 0.00408 347.5 1.97 0.00521 0.184 0.00288 0.00892 0.252 0. 0.252 0.0281 0.0832 0.0232 109. 0.293 10.1 0.0283 0.422 0.0171 o.oo149 0.0208 0.00848 0.0121 0.188 0.00830 0.00883 0.00410 0.00188 0.00332 0.00339 o.oo400 o.oo409 0.0885 0.514 0.00218 0.0214 0.0221 0.00197 0.0124 0.0222 0.0032 0.330 0.0144 4.52 0.0554 o.oo411 0.0121 0.00275 0.0205 0.0130 alslamA -0.oooo8 -0.ooo12 0. 0. -0.oooo3 0. 0. -0.00011 -0.00018 -0.ooo14 -0.00009 -0.ooo13 -0.00009 -o.ooo14 -0.oooo9 -0.00017 -O.OOO85 -0.00015 -o.o0015 -0.ooo22 -0.Ooo18 0. -0.00020 -0.00021 0. -0.00014 0. -0.00023 -0.00014 -0.00018 -0.00022 0. -0.00008 -0.00033 0.0194 -0.00054 0.00315 -0.oooo7 -0.oooo5 0.00045 -0.00019 -0.00039 -0.00013 -0.00008 -0.00018 -0.00010 0.0018 -0.00008 0. -0.00029 -0.00007 -0.00007 -0.00013 0. -0.00001 -0.00008 0.0009 -0.00009 0. -0.00014 0. -0.00018 0. 0.332 -0.397 0. 0. 0.31 0. 0. 0.007 0.884 -0.491 0.127 -0.878 0.02 -1.29 -0.47 -2.07 -3.9 -1.38 -2.58 -1.59 -2.54 0. -2.21 -1.88 0. -1.49 0. -2.24 -1.88 -1.88 -1.78 0. 0.099 -4.11 0.438 -1.79 0.288 -0.797 2.07 1.88 3.08 -0.892 1.53 3.12 2.19 2.38 2.5 1.13 0. 0.384 0.884 0.883 1.9 0. 0.831 -0.078 4.2 -0.492 0. -2.11 0. -0.835 0. 3. 3. 3. 3. 3. 3. D. D. 3. 0. D. 0. 3. D. D. D. D. D. 0. D. 0. 0. D. D. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. ZI 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 3 3 3 3 3 3 3 3 3 3 32 3 92.76 32 3 3 3 3 3 3 l 3 3 3 77 62 3 3 82 3 3 3 3 3 3 3 3 82 3 3 3 3 3 3 3 3 3 78 67 3 3 3 3 3 3 3 67 3 78 67 3 3 3 3 3 [continued.. .] L. S. ROTHMAN~~ 560 al Table 2-continued 8347.8515 8356.2954 6359.2569 8363.6240 6367.6675 8503.0609 6532.6537 5536.4490 6537.9566 5562.4414 8679.7056 6746.1119 6760.2104 6870.7999 6885.1540 6697.7525 6905.7669 6907.1424 6922.1967 6935.1340 6945.6080 6972.5773 7263.9780 7414.4549 7460.5270 7583.252 7593.695 7734.448 7757.625 7901.4791) 7920.6380 7981.1860 8089.0280 8103.5857 8120.1090 8135.8900 8192.5507 8220.3640 8231.5607 8243.1687 8254.6874 8276.7600 8293.9512 9368.9940 9478.1290 9516.9690 9631.353 30012 31112 32212 30011 41101 30011 40011 31111 11122 32211 11121 01131 00031 11132 01131 02231 10031 10032 00031 01131 00031 00031 40015 41114 40014 41113 40013 40012 41112 21122 40011 10032 10031 20033 10032 11132 10032 10031 20032 20031 12231 11131 10031 20033 21132 20032 20031 00001 01101 02201 00001 00001 00001 10001 01101 00001 02201 00001 01101 00001 11102 01101 02201 10001 10002 00001 01101 00001 00001 00001 01101 00001 01101 00001 00001 01101 00001 00001 00001 00001 10002 00001 01101 00001 00001 10002 10001 02201 01101 00001 00001 01101 00001 00001 626 626 626 626 626 636 636 626 626 626 626 628 626 626 626 626 626 626 626 626 626 - a, s”, I80 626 626 626 636 626 626 626 626 626 626 626 636 636 626 628 626 626 626 628 626 627 626 626 626 626 - 4.54 0.341 0.0128 0.0137 0. 0.586 0.00242 0.0725 0.00598 0.00353 0.0148 0.0147 0.164 0.00246 0.00497 0.0526 0.0153 0.0274 0.0591 1.29 0.0112 15.8 0.00401 0.00445 0.0469 0.00753 0.102 0.0281 0.00218 0.00149 0.00175 0.00256 0.00805 0.00139 0.00217 0.0367 0.431 0.00191 0.00139 0.00112 0.00191 0.0465 0.614 0.00424 0.00165 0.0252 0.00912 v,, is in cm-’ and Sf is in units of cm-‘/(molecule-cm-‘) 0.00095 0.00014 0.00015 0.00062 0. 0.00115 ~0.00009 0.00005 0.0116 0. 0.0159 0. 0. 9.00009 0. -0.ooOO6 -0.00005 -0.00006 0. -0.00007 0. -0.000215 -0.00019 -0.00009 -0.00014 0. 0. 0.00025 0. 0.018 0.00075 -0.00002 -0.00010 0. 0. -0.00005 0. 0. 0. -0.00012 -0.00012 -0.00011 0. 0. 0. 0. 0. i7 3.8 .1.02 0.935 4.81 0. 3.8 -2.96 -2.12 .8.18 ::668 0. 0. 0.164 0. 0.411 0.801 0.107 0. 0.426 0. 0. 3.71 1.18 2.82 0. 0. 0. 0. 0. -2.43 2.52 -0.21 0. 0. 1.66 0. 0. 0. -0.712 -0.38 -0.399 0. 0. 0. 8: i7 i7 57 57 36.81 3 3 3 82 82 83 83 t 3 3 3 3 3 3 34 3 3 3 3 3 84 91 3 81 81 315 4 lo- u. The Herman-Wallis coelhcients n,, a2. a3 are for the P- and R-branches, while b, is for the Q-branch. The second-and third-order Herman-Wallis coefficients (ur, (I~,and br) should be multiplied by 10T5.The non-numeric characters in the Ref-S column are interpreted thus: 1 = HITRAN line intensity cutoff lowered for significant Q-branch (densely-packed lines); @ = band absent from HITRAN, but included since it was used in the least-squares determination of energy levels; * = a perturbed band. When there are multiple references under Ref.-S, the first is the one actually used in HITRAN. x (Note that, to derive QR(T) from the Q(T) given by Gamache et a1,3*one must use QR(T) = Q(T)/ kj Q,(T)]. Values of gi are given in Ref. 38 and QJ296K) can be obtained by a simple summation of exponentials using the G, in Table 1). Then the line intensity S(T) at temperature T is S(T) = K8~310-36Y(3hc11 W(siQJT)Q,V)lv xexp(-Gz/kT)exp(-Ei/RT)[l -exp(-hv/kT)]IR,12L(Jn,e)F(Jn) (5) where h is Planck’s constant, c is the speed of light, Z, is the isotopic abundance, v is the transition frequency or line position, E; is the rotational energy of the lower state, and k is Boltzmann’s constant. Often the factor gj is omitted from Eq.(5) by absorbing it into 1R, 1’. Spectroscopic constants for isotopic variants of CO, 561 The rotationless band strength given in Table 2 is defined as S:(T) = W”10-~6)/(3~cll Kvo4,)l(giQv(~11ew(--G/W at T = 296K, where v0 is the band center (G: - G:‘). Substituting intensity can then be expressed S(T) = (v/v,,)S,O(T)L(J”, t’) F(J”) [exp( -E;;/kT)/Q,(T)] l&l* 09 Eq. (6) into Eq. (5), the line [I - exp( -hv/kT)J. (7) S(T) should be used as given by Eq. (7) when at least one of the upper and lower states has zero vibrational angular momentum (G = 0). When both upper and lower states have nonxero vibrational angular momentum (/ > 0), the intensity is split between e and f subbands, and S(T) should be divided by 2. It should be noted that some of the St values listed in Table 2 were determined with an additional factor, g,, in the numerator of Eq. 6, where g, = 2 - &,. For such values, the rotational partition sum of the band in question was used to determine St. This cancels the factor of approx. 2 since for t # 0 bands, all rotational levels exist and QR (G # 0) = 2 x Q&round state). For these bands, we have used 2 x QR(ground state) which introduces an error of a few percent for transitions originating from bands with 8 larger than 0. There are not many bands on the HITRAN database where this would be a problem, e.g. starting from the P level (/ = 4). The Hiinl-London factors for parallel bands (A/ = 0) are given by L(J”, /) = (J” + 1 + G)(J” + 1 - /)/(J” + 1) (R-branch), (Q-branch), L(J”, t) = (Zr” + 1)G2/[.P’(.P’+ l)] L(J”, /) = (J” + d)(J” - 8)/J” and for perpendicular (9) (P-branch), (10) bands (be = f 1) L(J”, e) = (J” + 2 + CA&)(Y’+ 1 + dAd)/Z(J” + 1) (R-branch), L(J”, e) = (J” + 1 + /At)(.P’ - k’A~)(2.P’+ 1)/[2J”(J” + l)] L(J”, d) = (J” - 1 - CAC)(.P’- CA/)/U” The Herman-Wallis (8) (Q-branch), (P-branch). (11) (12) (13) factor F was assumed to be of the form F(m) = (1 + a,m + u2m2+ a3m3)2 (P- and R-branches), (14a) F(m) = (1 + b2m2)2 (Q-branches), (14b) where a,, a,, and a3 are constants for a given band, and where there is potentially a separate b2 constant for e and f lines in the Q-branch of a given band (b; and bi). The running index m is m = J + 1 in the R-branch, m = J in the Q-branch, and m = -J in the P-branch. The use of up to three coefficients in the P- and R-branches is a signiticant improvement over the single coefficient used in the 1986 edition of HITKAN. Other expressions are used to report Herman-Wallis factors in the literature. These other formulae were algebraically converted to the form of Eq. (14) for use in generating the values in Table 2. DND has now been extensively utilized to calculate unobserved band intensities, and especially Herman-Wallis factors, for the three most abundant species (626, 636 and 628 in HITRAN notation). On the 1986 HITRAN database, the method2 was utilized only for the parallel band intensities of the 626 isotopomer. It was decided to supercede DND calculations with experimental values where available. The DND calculations yielded first and second order coefficients for the Herman-Wallis coefficients for the P- and R-branches (a, and a~). The experiments occasionally provided the third-order coefficient u3 and the second-order coefficient for the Q-branch, b2. In a few cases, the measurement did not supply a, and/or u2. PRESSURE BROADENING General approach It was assumed that the pressure broadening of CO2 is independent of vibrational transition. Data from Johnsi and Dana et aV2*”were used for self-broadening. Data from Dana et alI2 provided 562 L. S. ROTHMANet al nitrogen- and oxygen-broadening, data from John~‘~ provided air-broadening, and data from Devi et al” and Margottin-Maclou et alI8 provide additional nitrogen-broadening values. The calculations of Gamache and Rosenmann’ provide a complete set in m for 1 S )m ) < 121 for nitrogen-, oxygen- and self-broadening. The measured broadenings y(T) were converted to 296K by y(T) = Y(Tll)(TITl’) (15) setting T,, = 296K and using a value for n calculated by Gamache and Rosenmann.*g Air-broadened widths were obtained from nitrogen- and oxygen-broadened widths by Yair = 0*79~nitrogea + o*21Yoxygem. (16) Where only nitrogen-broadening was available, the m-dependent Ykr/Ynimpn ratio determined from the calculations of Gamache and Rosenmann was used to convert to air-broadening. As a test, these procedures were applied to the data of Dana,” determining yailin two ways: by Eq. (16), and by multiplying the nitrogen broadening by the calculated ratio. The two methods agreed to better than 1% in all cases. For comparison, the measurements in the different references cited differ by as much as 6%, with an average difference of 2.7%. Air broadening The air-broadened line widths at 296K used in HITRAN were determined in this way: because the polynomial fit did not work well for m = 1, the only available experimental valuei was used: rtii,(1) = 0.09489 cm- '/atm. (17) Yair(m= 2 to 45) = 0.09259 - 1.749 10m3m+ 4.263 lo-’ m* - 3.6793 lo-’ m3 (18) For m = 2 to m = 45 inclusive, in cm-‘/atm, obtained by least-squares fitting the experimental data. For m = 46 to 121 inclusive, yti,(m = 46 to 121) = 0.039313 + 1.7806 10e3 m - 3.7746 10m5m* + 2.9570 lo-’ m3 - 7.969 10m4m4 (19) in cm-“/atm, obtained from the calculated widths, with the requirements that Eq. (18) match Eq. (19) at m = 45, and go smoothly to 0.055 at m = 121. However, HITRAN does not include any lines above m = 108. Figure 1 shows a plot of yail as a function of m chosen for HITRAN. Self-broadening The self-broadened widths at 296K used averages of the experimental values’5,‘6 for m = l-4, again because of poor polynomial fits: y&l) = 0.1279 cm-‘/atm, (20) ~~“(2) = 0.1228 cm-‘/atm, (21) y,,,(3) = 0.1204 cm-‘/atm, (22) y,‘,(4) = 0.1190 cm-‘/atm. (23) For m = 5 to 121 inclusive, y&m) = 0.12223 - 1.4039 10d3 m + 9.1762 10e6m2 - 2.0051 lo-* m3 (24) in cm-‘/atm, obtained by least-squares fitting of the experimental data. Figure 2 illustrates the function chosen for the HITRAN database. Related parameters The temperature dependence of the air-broadened HITRAN was taken from the calculations of Ref. parameter, which is applied as in Eq. (15). Pressure v3 fundamental; these data were from the work of halfwidths, n, used for the current edition of 19. These calculations provide a J-dependent shifts for the lines were only provided for the Devi et a1.17 563 Spectroscopic constants for isotopic variants of CO* 0 20 40 60 80 100 m Fig. 1. Air-broadened halfwidths of carbon dixode as a function of m. The data are: 0 Ref. 12, + Ref. ) represent the values on HITRAN92. 16, 0 Ref. 17, and A Ref. 18. (CONCLUSION The improvement in the method of fitting observed CO, line positions did not, in general, signiflcantly change those lines which also appeared in the 1986 edition of HITRAN. However, the global fit procedure makes full use of the experimental data, where the old method required 40 60 a0 m Fig. 2. Self-broadened halfwidths of carbon dioxide as a function of m. The data are: 0 Ref. 12, A Ref. 15, and +Ref. 16. (-) represents the values on HITRAN92. 564 L. S. ROTHMAN et al a subset of the measured bands to be chosen. Also, it is more flexible, allowing use of information from other sources. Extrapolation to unobserved levels via DND does represent a significant improvement. Line intensities are greatly improved, through inclusion of new measurements, and DND calculations which now include Herman-Wallis coefficients. Line broadening is improved by use of new measurements and calculations. A single m-dependence of the line broadening was used for all CO2 bands. There remains a fair amount of research, both experimental and theoretical, to be performed to adequately simulate carbon dioxide spectra in problems such as remote sensing and high-temperature applications. There is the need to obtain more intensity measurements of lines, especially isotopically-enriched samples. There is still a dearth of observations of the line positions of the “0 isotopomers. Further advancements of the Direct Numerical Diagonalization approach will lead to better Herman-Wallis factors, but more importantly, to proper representation of perturbed bands. Acknowledgements-Many colleagues have graciously provided their data prior to publication for this project. We wish to thank in particular J. W. C. Johns, V. Dana, M. P. Esplin, M. L. Hoke, D. C. Benner, V.M. Devi, M. A. H. Smith, C. P. Rinsland, and C. Boulet for their valuable inputs. This project has been supported by the Air Force Oflice of Scientific Research under Task 231OGl. REFERENCES L. S. Rothman, Appl. Opt. 25, 1795 (1986). : : R. B. Wattson and L. S.‘Rothman, J. Molec. Spectrosc. 119, 83 (1986); R. B. Wattson, L. S. Rothman, A. Newburgh, and R. Pavelle, Paper TE9,43rd Molecular Spectroscopy Symposium, Ohio State University (1988). 3. R. B. Wattson and L. S. Rothman, JQSRT 48, 763 (1992). 4. D. C. Benner, V. Malathy Devi, C. P. Rinsland, and P. S. Ferry-Leeper, Appl. Opt. 27, 1588 (1988). 5. M. P. Esplin, private communication (1987). 6. M. P. Esplin, R. B. Wattson, M. L. Hoke, R. L. Hawkins, and L. S. Rothman, Appl. Opt. 2& 409 (1989). 7. M. P. Esplin and M. L. Hoke, paper TE6,44th Molecular Spectroscopy Symposium, Ohio State University (1989). 8. G. Blanquet, J. Walrand, and J.-L. Teffo, Appl. Opt. 27, 2098 (1988). 9. D. Bailly, Thesis, Universitk de Paris-Sud, France (1983). 10. J. W. C. Johns, .I. Molec. Spectrosc. 134, 433 (1989). 11. J. W. C. Johns and J. Vander Auwera, J. Molec. Spectrosc. 140, 71 (1990). 12. V. Dana, A. Valentin, A. Hamdouni, and L. S. Rothman, Appl. Opt. 28, 2562 (1989). 13. A. Hamdouni and V. Dana, Appl. Opt. 29, 1570 (1990). 14. V. Dana, A. Hamdouni, R. B. Wattson, and L. S. Rothman, Appl. Opt. 29, 2474 (1990). R. B. Wattson, and L. S. 15. V. Dana, J.-Y. Mandin, G. Guelachvili, Q. Kou, M. Morillon-Chapey, Rothman, J. Molec. Spectrosc. 152, 328 (1992). 16. J. W. C. Johns, J. Molec. Spectrosc. 125, 442 (1987). 17. V. Malathy Devi, D. C. Benner, C. P. Rinsland, and M. A. H. Smith, JQSRT 48, 581 (1992). P. Dahoo, A. Henry, A. Valentin, and L. Henry, J. Molec. Spectrosc. 131, 21 18. M. Margottin-Maclou, (1988). 19. R. R. Gamache and L. Rosenmann, unpublished results. L. S. Rothman and L. D. G. Young, JQSRT 25, 505 (1981). ;:: A. George and M. T. Heath, Linear Algebra and Its Applications 34,69 (1980); M. T. Heath, SIAM J. Sci. Stat. Comput. 5, 497 (1984). 22. W. M. Gentleman, J. Inst. Maths. Applies. 12, 329 (1973); W. M. Gentleman, Appl. Stat. 23,448 (1974). 23. A. Baldacci, C. P. Rinsland, M. A. H. Smith, and K. Narahari Rao, J. Molec. Spectrosc. 94,351 (1982). C. P. Rinsland and D. C. Benner, Appl. Opt. 23, 4523 (1984). ::: C. P. Rinsland, D. C. Benner, V. Malathy Devi, P. S. Ferry-Leeper, C. H. Sutton, and D. J. Richardson, NASA Technical Memorandum 85764 (1984). 26. G. Guelachvili, J. Molec. S’ctrosc. 79, 72 (1980). A. S. Pine and G. Guelachvili, J. Molec. Spectrosc. 79, 84 (1980). Z: D. Bailly, R. Farrenq, G. Guelachvili, and C. Rossetti, J. Molec. Spectrosc. 90, 74 (1981). 29. L. R. Brown and R. A. Toth, JOSA B 2, 842 (1985). 30. L. S. Rothman, R. R. Gamache, A. Goldman, L. R. Brown, R. A. Toth, H. M. Pickett, R. L. Poynter, J.-M. Flaud, C. Camy-Peyret, A. Barbe, N. Husson, C. P. Rinsland and M. A. H. Smith, Appl. Opt. 26, 4058 (1987). 31. V. Dana, private communication (1989). Spectroscopic constants for isotopic variants of CO2 565 32. T. Huet, N. Lacome, and A. I&y, J. Molec. Speczrosc. 12% 206 (1988). 33. P. Varanasi and S. Chudamani, J. Geophys. Res. 94, 13069 (1989). 34. R. A. McClatchey, W. S. Benedict, S. A. Clough, D. E. Butch, R. F. Calfee, K. FOX , L. S. Rothman, and J. S. Garing, “AFCRL atmospheric absorption line parameters compilation,” Tech. Report AFCRL-TR-0096 (1973). 35. C. Boulet, private communication (1991). 36. L. P. Giver and C. Chackerian Jr, J. Molec. Spectrosc. 148, 80 (1991). 37. L. P. Giver and C. Chackerian Jr, Paper RF6, 46th Molecular Specfroscopy Symposium, Ohio State University (1991). 38. R. R. Gamache, R. L. Hawkins, and L. S. Rothman, J. Molec. Spectrosc. 142, 205 (1990). 39. J.-Y. Mandin, J. Molec. Spectrosc. 67, 304 (1977). 40. R. Paso, J. Kauppinen, and R. Anttila, J. Molec. Spectrosc. 79, 236 (1980). 41. R. Paso, U. Oulu Finland, private communication (1980). 42. V. Malathy Devi, P. Das, and K. N. Rao, Appl. Opt. 18, 2918 (1979). 43. C. Freed, L. C. Bradley, and R. G. O’Donnell, IEEE J.Q.Electronics 16, 1195 (1980). 44. J.-P. Monchalin, M. J. Kelly, J. E. Thomas, N. A. Kumit, and A. Javan, J. Molec. Specrrosc. 64, 491 (1977). 45. J. Dupre-Maquaire and P. Pinson, J. Molec. Spectrosc. 62, 181 (1976). 46. M. P. Esplin, H. Sakai, L. S. Rothman, G. A. Vanasse, W. Barowy, and R. Huppi, Tech. Report AFGL-TR-0046 (1986). 47. F. R. Petersen, J. S. Wells, A. G. Maki, and K. J. Siemsen, Appl. Opt. 20, 3635 (1981). 48. K. 3. Siemsen, Opt. L&t. 6, 114 (1981). 49. K. J. Siemsen and B. G. Whitford, Opt. Commun. 22, 11 (1977). 50. K. J. Siemsen, Opt. Commun. 34, 447 (1980). 51. H. Sakai, Paper ME7, 38th Molecular Spectroscopy Symposium, Ohio State University (1983). 52. D. Bailly and C. Rossetti, J. Molec. Spectrosc. 102, 392 (1983). 53. M. P. Esplin, R. J. Huppi, and G. A. Vanasse, Appl. Opt. 21, 1681 (1982). 54. J. Kauppinen, K. Jolma, and V.-M. Homeman, Appf. Opt. 21, 3332 (1982). 55. F. R. Petersen, J. S. Wells, K. J. Siemsen, A. M. Robinson, and A. G. Maki, J. Molec. Spectrosc. 105, 324 (1984). 56. M. P. Esplin and L. S. Rothman, J. Molec. Spectrosc. 180, 193 (1983). 57. J. P. Maillard, J. Cuisenier, Ph. Arcas, E. AriC, and C. Amiot, Can. J. Phys. 58, 1560 (1980). 58. M. P. Esplin and L. S. Rothman, J. Molec. Spectrosc. 116, 351 (1986). 59. D. Bailly and C. Rossetti, J. Molec. Spectrosc. 105, 331 (1984). 60. K. Jolma, J. Kauppinen, and V.-M. Homeman, J. Molec. Spectrosc. 101, 300 (1983). 61. V. Malathy Devi, C. P. Rinsland, and D. C. Benner, Appl. Opt. 23, 4067 (1984). 62. Ph. Arcas, E. AI%, M. Cuisenier, and J. P. Maillard, Can. J. Phys. 61, 857 (1983). 63. R. A. Toth, Appl. Opt. 24, 261 (1985). 64. C. P. Rinsland, D. C. Benner, and V. Malathy Devi, Appl. Opt. 24, 1644 (1985). 65. C. P. Rinsland, D. C. Benner, D. J. Richardson, and R. A. Toth, Appl. Opt. 22, 3805 (1983). 66. D. C. Benner and C. P. Rinsland, J. Molec. Spectrosc. 112, 18 (1985). 67. C. P. Rinsland, D. C. Benner, and V. Malathy Devi, Appl. Opt. 25, 1204 (1986). 68. K. Jolma, J. Molec. Specbosc. 111, 211 (1985). 69. Ph. Arcas, private communication (1985). 70. M. P. Esplin, private communication (1987). 71. M. S. Abubakar and J. H. Shaw, Appl. Opt. 25, 1196 (1986). 72. C. P. Rinsland, private communication (1985). 73. M. L. Hoke and J. H. Shaw, Appl. Opt. 22, 328 (1983). 74. M. S. Abubakar and J. H. Shaw, Appl. Opt. 23, 3310 (1984). 75. F. P. J. Valero, C. B. Suarez, and R. W. Boese, JQSRT 22, 93 (1979). 76. F. P. J. Valero, C. B. Suarez, and R. W. Boese, JQSRT 23, 337 (1979). 77. K. P. Vasilevskii, L. E. Danilochkina, and V. A. Kazbanov, Opt. Spektrosk. 38, 871 (1975). 78. C. B. Suarez and F. P. J. Valero, JQSRT 19, 569 (1978). 79. C. B. Suarez and F. P. J. Valero, J. Molec. Spectrosc. 71, 46 (1978). 80. F. P. J. Valero and C. B. Suarez, JQSRT 19, 579 (1978). 81. R. A. Toth, R. H. Hunt, and E. K. Plyler, J. Molec. Spectrosc. 38, 107 (1975). 82. F. P. J. Valero, J. Molec. Spectrosc. 68, 269 (1977). 83. F. P. J. Valero and R. W. Boese, JQSRT 18, 391 (1977). 84. D. E. Burch, D. A. Gryvnak, and R. R. Patty, JOSA 58, 335 (1968). 85. A. Chedin and J.-L. Teffo, J. Molec. Spectrosc. 107, 333 (1984). 86. N. Papineau and M. Pealat, Appl. Opt. 24, 3002 (1985). 87. V. Malathy Devi, B. Fridovich, G. D. Jones, and D. G. S. Snyder, J. Molec. Spectrosc. loS, 61 (1984). 88. H. D. Dowling, L. R. Brown, and R. H. Hunt, JQSRT 15, 205 (1975). 89. Y. Ouazzany and J. P. Boquillon, Europhys. Lutt. 4, 421 (1987); R. Saint-Loup, B. Lavorel, G. Millot, C. Wenger, and H. Berger, J. Raman Spectrosc. 21, 77 (1990). 566 90. 91. 92. 93. L.S.Romm~etd V. Dana and A. Vaientin, Appl. Opt. 27, 4450 (1988). R. W. Boese, J. H. Miller, and E. C. Y. Inn, JQSRT 6, 717 (1966). C. B. Suarez and F. P. J. Vakro, J. Molec. S’ctmsc. 140,407 (1990). A. Groh, D. Goddon, M. Schneider, W. Zimmermann, and W. Urban, J. Molec. Spectrosc. 146, 161 (1991).
© Copyright 2026 Paperzz