ANNEX Annex 1. Initial estimates of the parameters for biomass (B), production (P), P/B ratio, Q/B ratio, and non-assimilated food (UF % feces and DOM excretion) for the different groups that represent the pelagic foodwebs of the Inner Sea of Chiloé (in bold) and Moraleda Channel (in parentheses). Final P/B values were obtained by averaging the “A” (from physiological data) and “B” (from life histories data) from the P/B column. The origin of this data (either collected from field or literature sources) are provided below. P/B Taxa Biomass, B Production, P (mg C m–2) (mg C m–2d–1) information come from) Sprattus fueguensis, Strangomera Clupeiformes A 1,291.2331 bentincki, Engraulis ringens - consumer (1,105.269) 1 Pleurobrachia bachei - consumer 1.1582 (0.311) Oikopleura dioica, Oikopleura longicauda 3.0292 Q/B UF UF (d–1) (% feces) (% DOM) 0.12011 0.52011 0.00011 3.81033 0.26040 0.38011 1.24734 0.23311 0.24044 B 17.90611 0.014 Ctenophora Appendicularia (d–1) Species considered (biological (15.327)11 -- 0.30411 -- 0.76912 3 0.00118 0.01119 0.09920 Siphonophora Salpida Euphausiacea - consumer (0.219)3 Lensia conoidea, Muggiaea atlantica - 78.8052 0.30013 consumer (35.872) Salpa fusiforme, Thalia democratica - 0.0752 3 consumer (0.045) Euphausia mucronata, Euphausia 287.4882 vallentini - consumer -- 0.16811 -- 0.02814 -- 0.06015 3 (307.382) 3 0.03321 0.04722 0.00223 3.36835 0.09541 0.21045 2.13833 0.13011 0.04046 0.73133 0.17411 0.51033 0.39733 0.19042 0.14047 2.48736 0.11943 0.60048 0.11111 0.62049 0.12611 0.59049 Sagitta enflata, Sagitta tasmanica, Sagitta marri, Sagitta bieri, Sagitta minima, 1.6742 Chaetognatha Sagitta pacifica, Krohnitta subtilis - (0.856) 3 0.00424 consumer Podon leuckarti, Evadne nordmanni, Cladocera 0.2202 0.26116 Pseudevadne tergestina - consumer Calanus chilensis, Calanus brachiatus, Copepoda (0.008) 3 183.3862 0.16437 -- Paracalanus parvus, copepods >800 µm - (109.881) calanoida 0.02625 0.049 11 3 0.02626 (0.082) 33 consumer Copepoda Oithona similis, copepods <800 µm - 35.3642 -- 0.20117 0.03527 0.85738 cyclopoida consumer (34.224)3 Heterotrophic dinoflagellates - consumer 10.7624 5.0574 Microflagellates 2.259 -(12.136) Heterotrophic nanoflagellates - consumer (143.127) 2.259 11 1.63629 5 27.4234 0.04811 1.00011 (0.669) 0.04811 1.00011 -- 0.48050 0.05011 1.00011 39 1.426 11 5 1026.9524 producers. (438.292) Detritivorous 453.1164 5 1,698.0834 (1,244.336) 160.3834 (208.770)6 1.50030 (0.014) 39 1.654 5 (2.839) 1.26331 -- 2.36111 0.354 Bacteria No live groups – detritus group No. 1 1.00011 0.8204 -- (11.301) (0.027) 0.04811 29 0.5484 Ciliophora Diatoms, autotrophic flagellates – primary 1.35128 210.2024 -- Ciliates - consumer 11 5 Nanoflagellates Phytoplankton (0.497)33 4.00032 (21.140)5 (0.101) (3.755)33 -- -- -- -- -- -- -- -- -- -- 5,869.4429 Detritus (4,031.353)10 No live groups – detritus group No. 2 35,216.6547 DOM - detritus (24,188.118)8 1 = Niklitschek et al. (2009); 2 = unpublished zooplankton data from integrated averages of six stations and two layers (0-25m, 25-50m) during CIMAR 12 in summer and winter, in the Interior Sea of Chiloe; 3 = unpublished zooplankton data from integrated average values from thirteen stations and two layers (0-25m, 25-50m) during CIMAR 13 in summer and winter, in Moraleda Channel; 4 = González et al. (2010); 5 = González et al. (2011); 6 = González et al. (2011) and unpublished nanoplankton and picoplankton data from CIMAR 13; 7 = González et al. (2010) plus unpublished POC data, DOM = COP * 6 (Wetzel 1984; 1990); 8 = González et al. (2011) plus COP data from CIMAR 13; DOM = COP * 6 (Wetzel 1984, 1990); 9 = González et al. (2010) plus unpublished COP data (integrated water column of 25 m) from CIMAR 12; 10 = González et al. (2011) plus unpublished COP data (integrated water column up to 25 m) from CIMAR 13; 11 = Pavés and González (2008); 12 = Hirst et al. 2003, (Table A1, A2), Somatic growth for Oikopleura dioica at 13 ºC; 13 = Larson (1986), Muggjaea atlantica, 0.1–0.3 P/B; 14 = Hirst et al. (2003) (Tables A1, A2), Somatic growth for Euphausia pacifica and Euphausia superva at 8 ºC; 15 = Hirst et al. (2003) (Tables A1, A2), Somatic growth for Saggita elegans at 9.5 ºC; 16 = Günter et al. (2009), growth rate Daphnia magna; 17 = Hirst et al. (2003) (Tables A1, A2), somatic growth for Paracalanus parvus and Acartia tonsa at 9 and 9.5ºC; 18 = P/Bi = P/Best * CF = 1/MLS; where P/Best = P/B from column A; CCF = Carbon Conversion Factor; MLS = mean life span, 2.5 years (Canales and Leal 2009; Niklitschek et al. 2009; Castillo-Jordán et al. 2010); P/Best in year was converted in days (P/Best / 365 days). 19 = P/Bi = P/Best * CF = 1/MLS; where P/Best = P/B from column A; CCF = Carbon Conversion Factor; MLS = mean life span, 0.247 years (Hirota 1974); P/Best in year was converted in days (P/Best / 365 days). 20 = P/Bi = P/Best * CF = 1/MLS; where P/Best = P/B from column A; CCF = Carbon Conversion Factor; MLS = mean life span, 0.028 years (López-Urrutia et al. 2003; Deibel and Lowen 2011); P/Best in year was converted in days (P/Best / 365 days). 21 = P/Bi = P/Best * CF = 1/MLS; where P/Best = P/B from column A; CCF = Carbon Conversion Factor; MLS = mean life span, 0.082 years (Carre and Carre 1991); P/Best in year was converted in days (P/Best / 365 days). 22 = P/Bi = P/Best * CF = 1/MLS; where P/Best = P/B from column A; CCF = Carbon Conversion Factor; MLS = mean life span, 0.058 years (Deibel and Lowen 2011); P/Best in year was converted in days (P/Best / 365 days). 23 = P/Bi = P/Best * CF = 1/MLS; where P/Best = P/B from column A; CCF = Carbon Conversion Factor; MLS = mean life span, 1.638 years (Ross 1982; Taki 2004; Hamame and Antezana 2010); P/Best in year was converted in days (P/Best / 365 days). 24 = P/Bi = P/Best * CF = 1/MLS; where P/Best = P/B from column A; CCF = Carbon Conversion Factor; MLS = mean life span, 0.708 years (Giesecke and González 2008); P/Best in year was converted in days (P/Best / 365 days). 25 = P/Bi = P/Best * CF = 1/MLS; where P/Best = P/B from column A; CCF = Carbon Conversion Factor; MLS = mean life span, 0.103 years (Bottrell 1975; Lynch 1980); P/Best in year was converted in days (P/Best / 365 days). 26 = P/Bi = P/Best * CF = 1/MLS; where P/Best = P/B from column A; CCF = Carbon Conversion Factor; MLS = mean life span, 0.105 years (Huntley and Lopez 1992); P/Best in year was converted in days (P/Best / 365 days). 27 = P/Bi = P/Best * CF = 1/MLS; where P/Best = P/B from column A; CCF = Carbon Conversion Factor; MLS = mean life span, 0.079 years (Huntley and Lopez 1992); P/Best in year was converted in days (P/Best / 365 days). 28 = P/Bi = P/Best * CF = 1/MLS; where P/Best = P/B from column A; CCF = Carbon Conversion Factor; MLS = mean life span, 0.0020 years (Anderson 1998; Strom and Morello 1998); P/Best in year was converted in days (P/Best / 365 days). 29 = P/Bi = P/Best * CF = 1/MLS; where P/Best = P/B from column A; CCF = Carbon Conversion Factor; MLS = mean life span, 0.0017 years (Dolana and Coats 1990; Drebes et al. 1996); P/Best in year was converted in days (P/Best / 365 days). 30 = P/Bi = P/Best * CF = 1/MLS; where P/Best = P/B from column A; CCF = Carbon Conversion Factor; MLS = mean life span, 0.0018 years (Dolana and Coats 1990; Strom and Morello 1998); P/Best in year was converted in days (P/Best / 365 days). 31 = P/Bi = P/Best * CF = 1/MLS; where P/Best = P/B from column A; CCF = Carbon Conversion Factor; MLS = mean life span, 0.0022 years (Redalje and Laws, 1981); P/Best in year was converted in days (P/Best / 365 days). 32 = P/Bi = P/Best * CF = 1/MLS; where P/Best = P/B from column A; CCF = Carbon Conversion Factor; MLS = mean life span, 0.0007 years (assumed); P/Best in year was converted in days (P/Best / 365 days). 33 = Individual rate from Pavés and González (2008), rate adjusted to the number of individuals m–2 or biomass recorded in this study; 34 = Scheinberg et al. (2005), 5.475 µgC ind –1 Oikopleura dioia, Oikopleura fusiformes, Oikopleura longicauda; 35 = Purcell and Kremer (1983), 607.3 µgC siphonophore–1 d–1; 36 = Sánchez (2007), 4.56 µgC cladocera–1 d–1; 37 = González et al. (2010), 8.24 µgC calanoid copepods –1 d–1, 3453.35 calanoid copepods m–2; 38 = González et al. (2010), 3.09 µgC cyclopoid copepods –1 d–1, 33207.06 cyclopoid copepods m–2; 39 = Individual rate obtained in CIMAR 13 experiments (González et al. 2011) and adjusted to the biomass; 40 = Reeve et al. (1978) assimilation efficiencies 74% for Mnemiopsis mccradyi and Pleurobrachia bachei; 41 = Purcell (1983), 87–94% carbon assimilation; 42 = Purcell (1983), 80–82% carbon assimilation; 43 = assumed by the authors, average value determined for copepods; 44 = Hansell and Carlson (2002), 9% biomass is excreted as DOM; 45 = assumed by the authors, average value of DOM for gelatinous zooplankton groups; 46 = Madin and Deibel (1998), 0.13% corresponds to the nitrogen excreted from the corporal nitrogen and transformed to carbon; 47 = Hansell and Carlson (2002), 16% of the nitrogen excreted is DOM, N is transformed to C by the relationship C/N 3.8. 48 = assumed by the authors, average DOM value of the copepods; 49 = Hansell and Carlson (2002), 18% of the carbon ingested is excreted as DOM. 50 = extracellular DOM, 18% PP, 14% of the PP is phytodetritus (Vargas et al. 2007). Annex 2. Matrix of dietary data input of the models representing the Inner Sea of Chiloe (in bold) and Moraleda Channel (in parentheses), based on bibliographic data and adjusted according to the in situ prey availability for filter-feeding organisms. Prey/Predator 1 2 3 4 0.114 0.132 (0.118) (0.130) 5 6 7 8 9 1.- Clupeiforms 2.- Ctenophora 0.010 3.- Appendicularians 0.016 (0.009) 4.- Siphonophora 0.008 5.- Salpida (0.012) 0.405 0.110 0.002 6.- Euphausiacea (0.453) (0.107) 0.003 7.- Chaetognatha 8.- Cladocera 0.001 0.066 0.062 0.090 0.001 10 11 12 13 15 0.331 0.326 0.706 (0.325) (0.332) (0.711) 0.010 0.127 0.015 (0.007) (0.126) 0.445 0.826 0.004 9.- Copepoda calanoida (0.832) 0.007 0.025 0.001 10.- Copepoda cyclopoida (0.022) 0.088 0.648 0.060 0.034 0.030 0.456 0.097 0.300 0.601 0.010 11.- Microflagellates 0.447 0.296 0.189 0.896 0.091 0.037 12.- Nanoflagellates 0.001 0.044 0.042 14.- Phytoplankton 0.358 0.005 15.- Bacteria 0.057 0.009 13.- Ciliophora 0.792 0.070 0.004 0.892 0.001 0.061 0.209 0.009 0.244 0.005 0.001 0.210 0.090 1.000 0.019 0.047 16.- Detritus (0.003) 0.006 17.- DOM 0.110 0.371 1.00 0.142 0.077 0.001 18.- Import diet (0.065) (0.369) 1.000 1.000 (0.139) 1.000 1.000 (0.075) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 SUM 1 = based on Pavés and Gonzalez (2008); Prokopchuk (2009); Espinoza and Bertrand (2008); 2 = Pavez et al. (2006); Purcell and Sturdevant (2001); Larson (1987); 3 = Vargas and Gonzalez (2004a); 4 = Purcell (1981); Purcell (1982); Purcell and Kremer (1983); 5 = Vargas and Madin (2004); 6 = based on Pavés and Gonzalez (2008); Sánchez (2007); Sánchez et al. (2011); 7 = Giesecke and González (2004); Baier and Purcell (1997); Feigenbaum and Maris (1984); 8 = Sánchez (2007); Sánchez et al. (2011); 9 = Vargas et al. (2007); Lopez-Urrutia et al. (2004); 10 = Vargas et al. (2007); 11 = Jeong et al. (2010a, 2010b); 12 = Boenigk and Arndt (2002); 13 = Vargas and González (2004b); Epstein et al. (1992); Bernard and Rassoulzadegan (1990); 15 = Cho and Azam (1988). 1.000 Annex 3. Confidence intervals of the data used in the models estimated based on pedigree values (sensu Christensen et al. 2000). The confidence intervals are given in percentage for each biomass (B), production/biomass (P/B), consumption/biomass (Q/B), and dietary data and show the accuracy of each datum. The mean pedigree index was 0.816 for the 15 functional groups of the models representing the Inner Sea of Chiloé and Moraleda Channel. Taxa B P/B Q/B Diet Clupeiforms 50 40 20 10 Ctenophora 30 40 20 10 Appendicularians 30 40 20 10 Siphonophora 30 40 50 10 Salpida 30 40 20 10 Euphausiacea 30 40 20 10 Chaetognatha 30 40 20 10 Cladocera 30 40 10 10 Copepoda calanoida 30 40 10 10 Copepoda cyclopoida 30 40 10 10 Phytoplankton 10 10 --- --- Microflagellates 10 40 10 10 Heterotrophic 10 40 10 10 Ciliophora 10 40 10 10 Bacteria 10 10 20 10 nanoflagellates Literature Cited Anderson, D. 1998. Physiology and Bloom dynamics of Toxic Alexandrium species, with emphasis on life cycle transition. In: Physiological ecology of harmful algal blooms, eds. D.M. Anderson, A.D. Cembella and G.M Hallegraeff, 29-48. Nato ASI Series. Vol G 41. Baier, C.T., and J. Purcell. 1997. Trophic interactions of chaetognaths, larval fish, and zooplankton in the South Atlantic Bight. Marine Ecology Progress Series 146(1-3): 43-53. Bernard, C., and F. Rassoulzadegan. 1990. Bacteria or microflagellates as a major food source for marine ciliates: possible implications for themicrozooplankton. Marine Ecology Progress Series 64: 147155. Boenigk, J., and H. Arndt. 2002. Bacterivory by heterotrophic flagellates: community structure and feeding strategies. Antonie Van Leeuwenhoek 81(1-4): 465-480. Bottrell, H.H. 1975. Generation time, length of life, instar duration and frequency of moulting, and their relationship to temperature in eight species of cladocera from the River Thames, reading. Oecologia 19(2):129-140. Canales, T.M., and E. Leal. 2009. Parámetros de historia de vida de la anchoveta Engraulis ringens Jenyns, 1842, en la zona centro norte de Chile. Revista de Biología Marina y Oceanografía 44(1): 173-179. Carre C. and D. Carre. 1991. A Complete Life Cycle of the Calycophoran Siphonophore Muggiaea kochi (Will) in theLaboratory, under Different Temperature Conditions: Ecological Implications. Philosophical Transactions: Biological Sciences 334 (1269): 27-32. Castillo-Jordán, C., L.A. Cubillos, and E. Navarro. 2010. Inter-cohort growth rate changes of common sardine (Strangomera bentincki) and their relationship with environmental conditions off central southern Chile. Fisheries Research 105(3): 228-236. Cho, B.C., and F. Azam. 1988. Major role of bacteria in biogeochemical fluxes in the ocean’s interior. Nature 332: 441–443. Deibel, D., and B. Lowen. 2011. A review of the life cycles and life-history adaptations of pelagic tunicates to environmental conditions. – ICES Journal of Marine Science 69(3):358-369. Dolana, J.R. and D.W. Coats. 1990. Seasonal Abundances of Planktonic Ciliates and Microflagellates in Mesohaline Chesapeake Bay Waters. Estuarine, Coastal and Shelf Science 31: 157-175. Drebes, G., S. F. Kuhn, A. Gmelch, and E. Schnepf. 1996. Cryothecomonas aesfivalis sp. nov., a colourless nanoflagellate feeding on the marine centric diatom Guinardia delicatula (Cleve) Hasle. Helgoland Marine Research 50: 497-515. Epstein, S.S., I.V. Burkovsky, and M.P. Shiaris. 1992. Ciliate grazing on bacteria, flagellates, and microalgae in a temperate zone sandy tidal flat: ingestion rates and food niche partitioning. Journal of Experimental Marine Biology and Ecology 165(1): 103-123. Espinoza, P., and A. Bertrand 2008. Revisiting Peruvian anchovy (Engraulis ringens) trophodynamics provides a new vision of the Humboldt Current system. Progress in Oceanography 79(2-4): 215-227. Feigenbaum, D., and R. Maris. 1984. Feeding in the Chaetognatha. Oceanography and Marine Biology: An Annual Review 22:343-392. Giesecke, R., and H.E. González. 2004. Feeding of Sagitta enflata and vertical distribution of chaetognaths in relation to low oxygen concentrations. Journal of Plankton Research 26(4): 475– 486. Giesecke, R., and H. E. González. 2008. Reproduction and feeding of Sagitta enflata in the Humboldt Current system off Chile. – ICES Journal of Marine Science 65: 361–370. González, H.E., M.J. Calderón, L. Castro, A. Clement, L. Cuevas, G. Daneri, J.L. Iriarte, L. Lizárraga, R. Martínez, E. Menschel, N. Silva, C. Carrasco, C. Valenzuela, C.A. Vargas, and C. Molinet. 2010. Primary production and its fate in the pelagic food web of the Reloncaví Fjord and plankton dynamics of the Interior Sea of Chiloé, Northern Patagonia, Chile Marine Ecology Progress Series 402: 13–30. González, H.E., L. Castro, G. Daneri, J.L. Iriarte, N. Silva, C. Vargas, R. Giesecke, and N. Sánchez. 2011. Seasonal plankton variability in Chilean Patagonia Fjords: carbon flow through the pelagic food web of the Aysen Fjord and plankton dynamics in the Moraleda Channel basin. Continental Shelf Research 31(3-4): 225-243. Günter, T., M. Hammers-Wirtz, U. Hommenc, M. Rubachd, and H. Rattea. 2009. Development and validation of an individual based Daphnia magna population model: The influence of crowding on population dynamics. Ecological Modelling 220: 310–329. Hamame, M., and T. Antezana. 2010. Vertical diel migration and feeding of Euphausia vallentini within southern Chilean fjords, Deep-Sea Research Part II: Topical Studies in Oceanography 57:642–651. Hansell, D., and C. Carlson. 2002. Biogeochemistry of marine dissolved organic matter. San Diego, CA (USA): Academic Press. Hirota, J. 1974. Quantitative natural history of Pleurobrachia bachei in La Jolla Bight. Fishery Bulletin U.S. 72(2): 295-335. Hirst, A.G., J.C. Roff, and R.S. Lampitt. 2003. A synthesis of growth rates in marine epipelagic invertebrate zooplankton. In, Southward, A.J., Tyler, P.A., Young, C.M. and Fuiman, L.A. (eds.) Advances in Marine Biology, Vol. 44. London, UK, Academic Press, 1-142. (doi:10.1016/S00652881(03)44002-9). Huntley, M.E., and M.D.G. Lopez. 1992. Temperature-Dependent Production of Marine Copepods: A Global Synthesis. The American Naturalist 140(2): 201-242. Jeong, H.J., Y.D. Yoo, N.S. Kang, J.R. Rho, K.A. Seong, J.W. Park, G.S. Nam, and W. Yih. 2010a. Ecology of Gymnodinium aureolum. I. Feeding in western Korean waters. Aquatic Microbial Ecology 59(3): 239-255. Jeong, H.J., Y.D. Yoo, J.S. Kim, K.A. Seong, N.S. Kang, and T.H. Kim. 2010b. Growth, feeding and ecological roles of the mixotrophic and heterotrophic dinoflagellates in marine planktonic food webs. Ocean Science Journal 45(2): 65-91. Larson, R., 1986. Changes in the standing stocks, growth rates, and production rates of gelatinous predators in Saanich Inlet, British Columbia. Marine Ecology Progress Series 33: 89–98. Larson, R.J. 1987. Daily ration and predation by medusae and ctenophores in Saanich Inlet, B.C., Canada. Netherlands Journal of Sea Research 21(1): 35-44. López-Urrutia, A, X. Irigoien, J.L. Acuña, and R. Harris. 2003. In situ feeding physiology and grazing impact of the appendicularian community in temperate waters. Marine Ecology Progress Series 252:125-141. Lopez-Urrutia, A, R. P. Harris, and T. Smith. 2004. Predation by calanoid copepods on the appendicularian Oikopleura. Limnology and Oceanography 49 (1): 303-307. Lynch, M. 1980. The Evolution of Cladoceran Life Histories. The Quarterly Review of Biology 55(1): 2342. Madin, L., and D. Deibel. 1998. Feeding and energetics of Thaliacea, in: The Biology of Pelagic Tunicates, ed. Q. Bone, 81–104. Oxford: Oxford University Press. Niklitschek, E., P. Toledo, E. Hernández, J. Nelson, M. Soule, C. Herranz, C. Murillo, and X. Valenzuela. 2009. Identificación y evaluación hidroacústica de pequeños pelagicos en aguas interiores de la X y XI regiones, año 2007. Final report, Fondo de Investigación Pesquera, FIP 2007–05. Universidad Austral de Chile. (http:/www.fip.cl). Pavés, H., and H. González. 2008. Carbon fluxes within the pelagic food web in the coastal area off Antofagasta (23ºs), Chile: The significance of the microbial versus classical food webs. Ecological Modelling 212: 218–232. Pavez, M.A., L. R. Castro, and H. E. González. 2006. Across-shelf predatory effect of Pleurobrachia bachei (Ctenophora) on the small-copepod community in the coastal upwelling zone off northern Chile (23° S). Journal of Plankton Research 28(2): 115 -129. Prokopchuk, I. 2009. Feeding of the Norwegian spring spawning herring Clupea harengus (Linne) at the different stages of its life cycle. Deep-Sea Research Part II: Topical Studies in Oceanography 56(2122): 2044-2053. Purcell, J.E. 1981. Dietary composition and diel feeding patterns of epipelagic siphonophores. Marine Biology 65(1):83-90. Purcell, J.E. 1982. Feeding and growth of the siphonophore Muggiaea atlantica (Cunningham 1893). Journal of Experimental Marine Biology and Ecology62(1): 39-54. Purcell, J.E. 1983. Digestion rates and assimilation efficiencies of siphonophores fed zooplankton prey. Marine Biology 73: 257–261. Purcell, J., and P. Kremer. 1983. Feeding and the metabolism of the siphonophore Sphaeronectes gracillis. Journal of Plankton Research 5(1): 95–106. Purcell, J.E., and M.V. Sturdevant. 2001. Prey selection and dietary overlap among zooplanktivorous jellyfish and juvenile fishes in Prince William Sound, Alaska. Marine Ecology Progress Series 210: 67-83. Redalje, D. G. and E. A. Laws,1981. A New Method for Estimating Phytoplankton Growth Rates and Carbon Biomass, Marine Biology 62: 73-79. Reeve, M.R., M.A. Walter, and T. Ikeda. 1978. Laboratory studies of ingestion and food utilization in lobate and tentaculate ctenophores. Limonology and Oceanography 23: 740–751. Ross, R.M. 1982. Energetics of Euphausia pacifica. II. Complete Carbon and Nitrogen Budgets at 8º and 12º~ Throughout the Life Span. Marine Biology 68: 15-23. Sánchez, N. 2007. Variación estacional y tasas de ingestión del zooplancton quitinoso dominante en el fjord de Comau (décima región, Chile) durante 2005–2007. Undergraduate Thesis, Marine Biology, Facultad de Ciencias, Universidad Austral de Chile, Valdivia. Chile. Sánchez, N., H.E. González, and J.L. Iriarte. 2011. Trophic interactions of pelagic crustaceans in Comau Fjord (Chile): their role in the food web structure. Journal of Plankton Research 33(8): 1212-1229. Scheinberg, R., M. Landry, and A. Calbet. 2005. Grazing of two common appendicularians on the natural prey assemblage of a tropical coastal ecosystem. Marine Ecology Progress Series 294: 201–212. Strom, S.L., and T.A. Morello. 1998. Comparative growth rates and yields of ciliates and heterotrophic dinoflagellates. Journal of Plankton Research 20(3): 571-584. Taki, K. 2004. Distribution and life history of Euphausia pacifica off northeastern Japan. Fisheries Oceanography 13(Suppl 1): 34-43. Vargas, C. A., and H.E. González. 2004a. Plankton community structure and carbon cycling in a coastal upwelling system. I. Bacteria, microprotozoans and phytoplankton in the diet of copepods and appendicularians. Aquatic Microbial Ecology 34(2): 151-164. Vargas, C.A., and H.E. González. 2004b. Plankton community structure and carbon cycling in a coastal upwelling system. II. Microheterotrophic pathway. Aquatic Microbial Ecology 34(2): 165-180. Vargas, C., and L. Madin. 2004. Zooplankton feeding ecology: clearance and ingestion rates of the salps Thalia democratica, Cyclosalpa affinis and Salpa cylindrica on naturally occurring particles in the Mid-Atlantic Bight. Journal of Plankton Research 26 (6): 1–7. Vargas, C., R. Martínez, L. Cuevas, M. Pavez, C. Cartes, H.E. González, R. Escribano, and G. Daneri. 2007. Interplay between microbial and classical food webs in a highly productive coastal upwelling area. Limnology and Oceanography 52: 1495–1510. Wetzel, R.G. 1984. Detrital dissolved and particulate organic carbon functions in aquatic ecosystems. Bulletin of Marine Science 35: 503–509. Wetzel, R.G. 1990. Land-water interfaces. Metabolic and limnological regulators. Verhandlungen der Internationalen Vereinigung für Theoretische und Angewandte Limnologie 24: 6–24.
© Copyright 2026 Paperzz