12237_2014_9780_MOESM1_ESM

ANNEX
Annex 1. Initial estimates of the parameters for biomass (B), production (P), P/B ratio, Q/B ratio, and non-assimilated food (UF % feces and DOM
excretion) for the different groups that represent the pelagic foodwebs of the Inner Sea of Chiloé (in bold) and Moraleda Channel (in parentheses).
Final P/B values were obtained by averaging the “A” (from physiological data) and “B” (from life histories data) from the P/B column. The origin of
this data (either collected from field or literature sources) are provided below.
P/B
Taxa
Biomass, B
Production, P
(mg C m–2)
(mg C m–2d–1)
information come from)
Sprattus fueguensis, Strangomera
Clupeiformes
A
1,291.2331
bentincki, Engraulis ringens - consumer
(1,105.269) 1
Pleurobrachia bachei - consumer
1.1582
(0.311)
Oikopleura dioica, Oikopleura longicauda
3.0292
Q/B
UF
UF
(d–1)
(% feces)
(% DOM)
0.12011
0.52011
0.00011
3.81033
0.26040
0.38011
1.24734
0.23311
0.24044
B
17.90611
0.014
Ctenophora
Appendicularia
(d–1)
Species considered (biological
(15.327)11
--
0.30411
--
0.76912
3
0.00118
0.01119
0.09920
Siphonophora
Salpida
Euphausiacea
- consumer
(0.219)3
Lensia conoidea, Muggiaea atlantica -
78.8052
0.30013
consumer
(35.872)
Salpa fusiforme, Thalia democratica -
0.0752
3
consumer
(0.045)
Euphausia mucronata, Euphausia
287.4882
vallentini - consumer
--
0.16811
--
0.02814
--
0.06015
3
(307.382)
3
0.03321
0.04722
0.00223
3.36835
0.09541
0.21045
2.13833
0.13011
0.04046
0.73133
0.17411
0.51033
0.39733
0.19042
0.14047
2.48736
0.11943
0.60048
0.11111
0.62049
0.12611
0.59049
Sagitta enflata, Sagitta tasmanica, Sagitta
marri, Sagitta bieri, Sagitta minima,
1.6742
Chaetognatha
Sagitta pacifica, Krohnitta subtilis -
(0.856)
3
0.00424
consumer
Podon leuckarti, Evadne nordmanni,
Cladocera
0.2202
0.26116
Pseudevadne tergestina - consumer
Calanus chilensis, Calanus brachiatus,
Copepoda
(0.008)
3
183.3862
0.16437
--
Paracalanus parvus, copepods >800 µm -
(109.881)
calanoida
0.02625
0.049
11
3
0.02626
(0.082)
33
consumer
Copepoda
Oithona similis, copepods <800 µm -
35.3642
--
0.20117
0.03527
0.85738
cyclopoida
consumer
(34.224)3
Heterotrophic dinoflagellates - consumer
10.7624
5.0574
Microflagellates
2.259
-(12.136)
Heterotrophic nanoflagellates - consumer
(143.127)
2.259
11
1.63629
5
27.4234
0.04811
1.00011
(0.669)
0.04811
1.00011
--
0.48050
0.05011
1.00011
39
1.426
11
5
1026.9524
producers.
(438.292)
Detritivorous
453.1164
5
1,698.0834
(1,244.336)
160.3834
(208.770)6
1.50030
(0.014)
39
1.654
5
(2.839)
1.26331
--
2.36111
0.354
Bacteria
No live groups – detritus group No. 1
1.00011
0.8204
--
(11.301)
(0.027)
0.04811
29
0.5484
Ciliophora
Diatoms, autotrophic flagellates – primary
1.35128
210.2024
--
Ciliates - consumer
11
5
Nanoflagellates
Phytoplankton
(0.497)33
4.00032
(21.140)5
(0.101)
(3.755)33
--
--
--
--
--
--
--
--
--
--
5,869.4429
Detritus
(4,031.353)10
No live groups – detritus group No. 2
35,216.6547
DOM - detritus
(24,188.118)8
1 = Niklitschek et al. (2009); 2 = unpublished zooplankton data from integrated averages of six stations and two layers (0-25m, 25-50m) during
CIMAR 12 in summer and winter, in the Interior Sea of Chiloe; 3 = unpublished zooplankton data from integrated average values from thirteen
stations and two layers (0-25m, 25-50m) during CIMAR 13 in summer and winter, in Moraleda Channel; 4 = González et al. (2010); 5 = González et
al. (2011); 6 = González et al. (2011) and unpublished nanoplankton and picoplankton data from CIMAR 13; 7 = González et al. (2010) plus
unpublished POC data, DOM = COP * 6 (Wetzel 1984; 1990); 8 = González et al. (2011) plus COP data from CIMAR 13; DOM = COP * 6 (Wetzel
1984, 1990); 9 = González et al. (2010) plus unpublished COP data (integrated water column of 25 m) from CIMAR 12; 10 = González et al. (2011)
plus unpublished COP data (integrated water column up to 25 m) from CIMAR 13; 11 = Pavés and González (2008); 12 = Hirst et al. 2003, (Table A1,
A2), Somatic growth for Oikopleura dioica at 13 ºC; 13 = Larson (1986), Muggjaea atlantica, 0.1–0.3 P/B; 14 = Hirst et al. (2003) (Tables A1, A2),
Somatic growth for Euphausia pacifica and Euphausia superva at 8 ºC; 15 = Hirst et al. (2003) (Tables A1, A2), Somatic growth for Saggita elegans
at 9.5 ºC; 16 = Günter et al. (2009), growth rate Daphnia magna; 17 = Hirst et al. (2003) (Tables A1, A2), somatic growth for Paracalanus parvus and
Acartia tonsa at 9 and 9.5ºC; 18 = P/Bi = P/Best * CF = 1/MLS; where P/Best = P/B from column A; CCF = Carbon Conversion Factor; MLS = mean
life span, 2.5 years (Canales and Leal 2009; Niklitschek et al. 2009; Castillo-Jordán et al. 2010); P/Best in year was converted in days (P/Best / 365
days). 19 = P/Bi = P/Best * CF = 1/MLS; where P/Best = P/B from column A; CCF = Carbon Conversion Factor; MLS = mean life span, 0.247 years
(Hirota 1974); P/Best in year was converted in days (P/Best / 365 days). 20 = P/Bi = P/Best * CF = 1/MLS; where P/Best = P/B from column A; CCF =
Carbon Conversion Factor; MLS = mean life span, 0.028 years (López-Urrutia et al. 2003; Deibel and Lowen 2011); P/Best in year was converted in
days (P/Best / 365 days). 21 = P/Bi = P/Best * CF = 1/MLS; where P/Best = P/B from column A; CCF = Carbon Conversion Factor; MLS = mean life
span, 0.082 years (Carre and Carre 1991); P/Best in year was converted in days (P/Best / 365 days). 22 = P/Bi = P/Best * CF = 1/MLS; where P/Best = P/B
from column A; CCF = Carbon Conversion Factor; MLS = mean life span, 0.058 years (Deibel and Lowen 2011); P/Best in year was converted in days
(P/Best / 365 days). 23 = P/Bi = P/Best * CF = 1/MLS; where P/Best = P/B from column A; CCF = Carbon Conversion Factor; MLS = mean life span,
1.638 years (Ross 1982; Taki 2004; Hamame and Antezana 2010); P/Best in year was converted in days (P/Best / 365 days). 24 = P/Bi = P/Best * CF =
1/MLS; where P/Best = P/B from column A; CCF = Carbon Conversion Factor; MLS = mean life span, 0.708 years (Giesecke and González 2008);
P/Best in year was converted in days (P/Best / 365 days). 25 = P/Bi = P/Best * CF = 1/MLS; where P/Best = P/B from column A; CCF = Carbon
Conversion Factor; MLS = mean life span, 0.103 years (Bottrell 1975; Lynch 1980); P/Best in year was converted in days (P/Best / 365 days). 26 = P/Bi
= P/Best * CF = 1/MLS; where P/Best = P/B from column A; CCF = Carbon Conversion Factor; MLS = mean life span, 0.105 years (Huntley and Lopez
1992); P/Best in year was converted in days (P/Best / 365 days). 27 = P/Bi = P/Best * CF = 1/MLS; where P/Best = P/B from column A; CCF = Carbon
Conversion Factor; MLS = mean life span, 0.079 years (Huntley and Lopez 1992); P/Best in year was converted in days (P/Best / 365 days). 28 = P/Bi =
P/Best * CF = 1/MLS; where P/Best = P/B from column A; CCF = Carbon Conversion Factor; MLS = mean life span, 0.0020 years (Anderson 1998;
Strom and Morello 1998); P/Best in year was converted in days (P/Best / 365 days). 29 = P/Bi = P/Best * CF = 1/MLS; where P/Best = P/B from column
A; CCF = Carbon Conversion Factor; MLS = mean life span, 0.0017 years (Dolana and Coats 1990; Drebes et al. 1996); P/Best in year was converted
in days (P/Best / 365 days). 30 = P/Bi = P/Best * CF = 1/MLS; where P/Best = P/B from column A; CCF = Carbon Conversion Factor; MLS = mean life
span, 0.0018 years (Dolana and Coats 1990; Strom and Morello 1998); P/Best in year was converted in days (P/Best / 365 days). 31 = P/Bi = P/Best * CF
= 1/MLS; where P/Best = P/B from column A; CCF = Carbon Conversion Factor; MLS = mean life span, 0.0022 years (Redalje and Laws, 1981);
P/Best in year was converted in days (P/Best / 365 days). 32 = P/Bi = P/Best * CF = 1/MLS; where P/Best = P/B from column A; CCF = Carbon
Conversion Factor; MLS = mean life span, 0.0007 years (assumed); P/Best in year was converted in days (P/Best / 365 days). 33 = Individual rate from
Pavés and González (2008), rate adjusted to the number of individuals m–2 or biomass recorded in this study; 34 = Scheinberg et al. (2005), 5.475 µgC
ind –1 Oikopleura dioia, Oikopleura fusiformes, Oikopleura longicauda; 35 = Purcell and Kremer (1983), 607.3 µgC siphonophore–1 d–1; 36 = Sánchez
(2007), 4.56 µgC cladocera–1 d–1; 37 = González et al. (2010), 8.24 µgC calanoid copepods –1 d–1, 3453.35 calanoid copepods m–2; 38 = González et al.
(2010), 3.09 µgC cyclopoid copepods –1 d–1, 33207.06 cyclopoid copepods m–2; 39 = Individual rate obtained in CIMAR 13 experiments (González et
al. 2011) and adjusted to the biomass; 40 = Reeve et al. (1978) assimilation efficiencies 74% for Mnemiopsis mccradyi and Pleurobrachia bachei; 41
= Purcell (1983), 87–94% carbon assimilation; 42 = Purcell (1983), 80–82% carbon assimilation; 43 = assumed by the authors, average value
determined for copepods; 44 = Hansell and Carlson (2002), 9% biomass is excreted as DOM; 45 = assumed by the authors, average value of DOM for
gelatinous zooplankton groups; 46 = Madin and Deibel (1998), 0.13% corresponds to the nitrogen excreted from the corporal nitrogen and transformed
to carbon; 47 = Hansell and Carlson (2002), 16% of the nitrogen excreted is DOM, N is transformed to C by the relationship C/N 3.8. 48 = assumed by
the authors, average DOM value of the copepods; 49 = Hansell and Carlson (2002), 18% of the carbon ingested is excreted as DOM. 50 = extracellular
DOM, 18% PP, 14% of the PP is phytodetritus (Vargas et al. 2007).
Annex 2. Matrix of dietary data input of the models representing the Inner Sea of Chiloe (in bold) and Moraleda Channel (in parentheses), based
on bibliographic data and adjusted according to the in situ prey availability for filter-feeding organisms.
Prey/Predator
1
2
3
4
0.114
0.132
(0.118)
(0.130)
5
6
7
8
9
1.- Clupeiforms
2.- Ctenophora
0.010
3.- Appendicularians
0.016
(0.009)
4.- Siphonophora
0.008
5.- Salpida
(0.012)
0.405
0.110
0.002
6.- Euphausiacea
(0.453)
(0.107)
0.003
7.- Chaetognatha
8.- Cladocera
0.001
0.066
0.062
0.090
0.001
10
11
12
13
15
0.331
0.326
0.706
(0.325)
(0.332)
(0.711)
0.010
0.127
0.015
(0.007)
(0.126)
0.445
0.826
0.004
9.- Copepoda calanoida
(0.832)
0.007
0.025
0.001
10.- Copepoda cyclopoida
(0.022)
0.088
0.648
0.060
0.034
0.030
0.456
0.097
0.300
0.601
0.010
11.- Microflagellates
0.447
0.296
0.189
0.896
0.091
0.037
12.- Nanoflagellates
0.001
0.044
0.042
14.- Phytoplankton
0.358
0.005
15.- Bacteria
0.057
0.009
13.- Ciliophora
0.792
0.070
0.004
0.892
0.001
0.061
0.209
0.009
0.244
0.005
0.001
0.210
0.090
1.000
0.019
0.047
16.- Detritus
(0.003)
0.006
17.- DOM
0.110
0.371
1.00
0.142
0.077
0.001
18.- Import diet
(0.065)
(0.369)
1.000
1.000
(0.139)
1.000
1.000
(0.075)
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
SUM
1 = based on Pavés and Gonzalez (2008); Prokopchuk (2009); Espinoza and Bertrand (2008); 2 = Pavez et al. (2006); Purcell and Sturdevant
(2001); Larson (1987); 3 = Vargas and Gonzalez (2004a); 4 = Purcell (1981); Purcell (1982); Purcell and Kremer (1983); 5 = Vargas and Madin
(2004); 6 = based on Pavés and Gonzalez (2008); Sánchez (2007); Sánchez et al. (2011); 7 = Giesecke and González (2004); Baier and Purcell
(1997); Feigenbaum and Maris (1984); 8 = Sánchez (2007); Sánchez et al. (2011); 9 = Vargas et al. (2007); Lopez-Urrutia et al. (2004); 10 =
Vargas et al. (2007); 11 = Jeong et al. (2010a, 2010b); 12 = Boenigk and Arndt (2002); 13 = Vargas and González (2004b); Epstein et al. (1992);
Bernard and Rassoulzadegan (1990); 15 = Cho and Azam (1988).
1.000
Annex 3. Confidence intervals of the data used in the models estimated based on
pedigree values (sensu Christensen et al. 2000). The confidence intervals are given in
percentage for each biomass (B), production/biomass (P/B), consumption/biomass
(Q/B), and dietary data and show the accuracy of each datum. The mean pedigree index
was 0.816 for the 15 functional groups of the models representing the Inner Sea of
Chiloé and Moraleda Channel.
Taxa
B
P/B
Q/B
Diet
Clupeiforms
50
40
20
10
Ctenophora
30
40
20
10
Appendicularians
30
40
20
10
Siphonophora
30
40
50
10
Salpida
30
40
20
10
Euphausiacea
30
40
20
10
Chaetognatha
30
40
20
10
Cladocera
30
40
10
10
Copepoda calanoida
30
40
10
10
Copepoda cyclopoida
30
40
10
10
Phytoplankton
10
10
---
---
Microflagellates
10
40
10
10
Heterotrophic
10
40
10
10
Ciliophora
10
40
10
10
Bacteria
10
10
20
10
nanoflagellates
Literature Cited
Anderson, D. 1998. Physiology and Bloom dynamics of Toxic Alexandrium species, with emphasis on life
cycle transition. In: Physiological ecology of harmful algal blooms, eds. D.M. Anderson, A.D.
Cembella and G.M Hallegraeff, 29-48. Nato ASI Series. Vol G 41.
Baier, C.T., and J. Purcell. 1997. Trophic interactions of chaetognaths, larval fish, and zooplankton in the
South Atlantic Bight. Marine Ecology Progress Series 146(1-3): 43-53.
Bernard, C., and F. Rassoulzadegan. 1990. Bacteria or microflagellates as a major food source for marine
ciliates: possible implications for themicrozooplankton. Marine Ecology Progress Series 64: 147155.
Boenigk, J., and H. Arndt. 2002. Bacterivory by heterotrophic flagellates: community structure and
feeding strategies. Antonie Van Leeuwenhoek 81(1-4): 465-480.
Bottrell, H.H. 1975. Generation time, length of life, instar duration and frequency of moulting, and their
relationship to temperature in eight species of cladocera from the River Thames, reading. Oecologia
19(2):129-140.
Canales, T.M., and E. Leal. 2009. Parámetros de historia de vida de la anchoveta Engraulis ringens
Jenyns, 1842, en la zona centro norte de Chile. Revista de Biología Marina y Oceanografía 44(1):
173-179.
Carre C. and D. Carre. 1991. A Complete Life Cycle of the Calycophoran Siphonophore Muggiaea kochi
(Will) in theLaboratory, under Different Temperature Conditions: Ecological Implications.
Philosophical Transactions: Biological Sciences 334 (1269): 27-32.
Castillo-Jordán, C., L.A. Cubillos, and E. Navarro. 2010. Inter-cohort growth rate changes of common
sardine (Strangomera bentincki) and their relationship with environmental conditions off central
southern Chile. Fisheries Research 105(3): 228-236.
Cho, B.C., and F. Azam. 1988. Major role of bacteria in biogeochemical fluxes in the ocean’s interior.
Nature 332: 441–443.
Deibel, D., and B. Lowen. 2011. A review of the life cycles and life-history adaptations of pelagic
tunicates to environmental conditions. – ICES Journal of Marine Science 69(3):358-369.
Dolana, J.R. and D.W. Coats. 1990. Seasonal Abundances of Planktonic Ciliates and Microflagellates in
Mesohaline Chesapeake Bay Waters. Estuarine, Coastal and Shelf Science 31: 157-175.
Drebes, G., S. F. Kuhn, A. Gmelch, and E. Schnepf. 1996. Cryothecomonas aesfivalis sp. nov., a
colourless nanoflagellate feeding on the marine centric diatom Guinardia delicatula (Cleve) Hasle.
Helgoland Marine Research 50: 497-515.
Epstein, S.S., I.V. Burkovsky, and M.P. Shiaris. 1992. Ciliate grazing on bacteria, flagellates, and
microalgae in a temperate zone sandy tidal flat: ingestion rates and food niche partitioning. Journal
of Experimental Marine Biology and Ecology 165(1): 103-123.
Espinoza, P., and A. Bertrand 2008. Revisiting Peruvian anchovy (Engraulis ringens) trophodynamics
provides a new vision of the Humboldt Current system. Progress in Oceanography 79(2-4): 215-227.
Feigenbaum, D., and R. Maris. 1984. Feeding in the Chaetognatha. Oceanography and Marine Biology:
An Annual Review 22:343-392.
Giesecke, R., and H.E. González. 2004. Feeding of Sagitta enflata and vertical distribution of
chaetognaths in relation to low oxygen concentrations. Journal of Plankton Research 26(4): 475–
486.
Giesecke, R., and H. E. González. 2008. Reproduction and feeding of Sagitta enflata in the Humboldt
Current system off Chile. – ICES Journal of Marine Science 65: 361–370.
González, H.E., M.J. Calderón, L. Castro, A. Clement, L. Cuevas, G. Daneri, J.L. Iriarte, L. Lizárraga, R.
Martínez, E. Menschel, N. Silva, C. Carrasco, C. Valenzuela, C.A. Vargas, and C. Molinet. 2010.
Primary production and its fate in the pelagic food web of the Reloncaví Fjord and plankton dynamics
of the Interior Sea of Chiloé, Northern Patagonia, Chile Marine Ecology Progress Series 402: 13–30.
González, H.E., L. Castro, G. Daneri, J.L. Iriarte, N. Silva, C. Vargas, R. Giesecke, and N. Sánchez.
2011. Seasonal plankton variability in Chilean Patagonia Fjords: carbon flow through the pelagic food
web of the Aysen Fjord and plankton dynamics in the Moraleda Channel basin. Continental Shelf
Research 31(3-4): 225-243.
Günter, T., M. Hammers-Wirtz, U. Hommenc, M. Rubachd, and H. Rattea. 2009. Development and
validation of an individual based Daphnia magna population model: The influence of crowding on
population dynamics. Ecological Modelling 220: 310–329.
Hamame, M., and T. Antezana. 2010. Vertical diel migration and feeding of Euphausia vallentini within
southern Chilean fjords, Deep-Sea Research Part II: Topical Studies in Oceanography 57:642–651.
Hansell, D., and C. Carlson. 2002. Biogeochemistry of marine dissolved organic matter. San Diego, CA
(USA): Academic Press.
Hirota, J. 1974. Quantitative natural history of Pleurobrachia bachei in La Jolla Bight. Fishery Bulletin
U.S. 72(2): 295-335.
Hirst, A.G., J.C. Roff, and R.S. Lampitt. 2003. A synthesis of growth rates in marine epipelagic
invertebrate zooplankton. In, Southward, A.J., Tyler, P.A., Young, C.M. and Fuiman, L.A. (eds.)
Advances in Marine Biology, Vol. 44. London, UK, Academic Press, 1-142. (doi:10.1016/S00652881(03)44002-9).
Huntley, M.E., and M.D.G. Lopez. 1992. Temperature-Dependent Production of Marine Copepods: A
Global Synthesis. The American Naturalist 140(2): 201-242.
Jeong, H.J., Y.D. Yoo, N.S. Kang, J.R. Rho, K.A. Seong, J.W. Park, G.S. Nam, and W. Yih. 2010a.
Ecology of Gymnodinium aureolum. I. Feeding in western Korean waters. Aquatic Microbial
Ecology 59(3): 239-255.
Jeong, H.J., Y.D. Yoo, J.S. Kim, K.A. Seong, N.S. Kang, and T.H. Kim. 2010b. Growth, feeding and
ecological roles of the mixotrophic and heterotrophic dinoflagellates in marine planktonic food webs.
Ocean Science Journal 45(2): 65-91.
Larson, R., 1986. Changes in the standing stocks, growth rates, and production rates of gelatinous
predators in Saanich Inlet, British Columbia. Marine Ecology Progress Series 33: 89–98.
Larson, R.J. 1987. Daily ration and predation by medusae and ctenophores in Saanich Inlet, B.C., Canada.
Netherlands Journal of Sea Research 21(1): 35-44.
López-Urrutia, A, X. Irigoien, J.L. Acuña, and R. Harris. 2003. In situ feeding physiology and grazing
impact of the appendicularian community in temperate waters. Marine Ecology Progress Series
252:125-141.
Lopez-Urrutia, A, R. P. Harris, and T. Smith. 2004. Predation by calanoid copepods on the
appendicularian Oikopleura. Limnology and Oceanography 49 (1): 303-307.
Lynch, M. 1980. The Evolution of Cladoceran Life Histories. The Quarterly Review of Biology 55(1): 2342.
Madin, L., and D. Deibel. 1998. Feeding and energetics of Thaliacea, in: The Biology of Pelagic
Tunicates, ed. Q. Bone, 81–104. Oxford: Oxford University Press.
Niklitschek, E., P. Toledo, E. Hernández, J. Nelson, M. Soule, C. Herranz, C. Murillo, and X. Valenzuela.
2009. Identificación y evaluación hidroacústica de pequeños pelagicos en aguas interiores de la X y
XI regiones, año 2007. Final report, Fondo de Investigación Pesquera, FIP 2007–05. Universidad
Austral de Chile. (http:/www.fip.cl).
Pavés, H., and H. González. 2008. Carbon fluxes within the pelagic food web in the coastal area off
Antofagasta (23ºs), Chile: The significance of the microbial versus classical food webs. Ecological
Modelling 212: 218–232.
Pavez, M.A., L. R. Castro, and H. E. González. 2006. Across-shelf predatory effect of Pleurobrachia
bachei (Ctenophora) on the small-copepod community in the coastal upwelling zone off northern
Chile (23° S). Journal of Plankton Research 28(2): 115 -129.
Prokopchuk, I. 2009. Feeding of the Norwegian spring spawning herring Clupea harengus (Linne) at the
different stages of its life cycle. Deep-Sea Research Part II: Topical Studies in Oceanography 56(2122): 2044-2053.
Purcell, J.E. 1981. Dietary composition and diel feeding patterns of epipelagic siphonophores. Marine
Biology 65(1):83-90.
Purcell, J.E. 1982. Feeding and growth of the siphonophore Muggiaea atlantica (Cunningham 1893).
Journal of Experimental Marine Biology and Ecology62(1): 39-54.
Purcell, J.E. 1983. Digestion rates and assimilation efficiencies of siphonophores fed zooplankton prey.
Marine Biology 73: 257–261.
Purcell, J., and P. Kremer. 1983. Feeding and the metabolism of the siphonophore Sphaeronectes
gracillis. Journal of Plankton Research 5(1): 95–106.
Purcell, J.E., and M.V. Sturdevant. 2001. Prey selection and dietary overlap among zooplanktivorous
jellyfish and juvenile fishes in Prince William Sound, Alaska. Marine Ecology Progress Series 210:
67-83.
Redalje, D. G. and E. A. Laws,1981. A New Method for Estimating Phytoplankton Growth Rates and
Carbon Biomass, Marine Biology 62: 73-79.
Reeve, M.R., M.A. Walter, and T. Ikeda. 1978. Laboratory studies of ingestion and food utilization in
lobate and tentaculate ctenophores. Limonology and Oceanography 23: 740–751.
Ross, R.M. 1982. Energetics of Euphausia pacifica. II. Complete Carbon and Nitrogen Budgets at 8º and
12º~ Throughout the Life Span. Marine Biology 68: 15-23.
Sánchez, N. 2007. Variación estacional y tasas de ingestión del zooplancton quitinoso dominante en el
fjord de Comau (décima región, Chile) durante 2005–2007. Undergraduate Thesis, Marine Biology,
Facultad de Ciencias, Universidad Austral de Chile, Valdivia. Chile.
Sánchez, N., H.E. González, and J.L. Iriarte. 2011. Trophic interactions of pelagic crustaceans in Comau
Fjord (Chile): their role in the food web structure. Journal of Plankton Research 33(8): 1212-1229.
Scheinberg, R., M. Landry, and A. Calbet. 2005. Grazing of two common appendicularians on the natural
prey assemblage of a tropical coastal ecosystem. Marine Ecology Progress Series 294: 201–212.
Strom, S.L., and T.A. Morello. 1998. Comparative growth rates and yields of ciliates and heterotrophic
dinoflagellates. Journal of Plankton Research 20(3): 571-584.
Taki, K. 2004. Distribution and life history of Euphausia pacifica off northeastern Japan. Fisheries
Oceanography 13(Suppl 1): 34-43.
Vargas, C. A., and H.E. González. 2004a. Plankton community structure and carbon cycling in a coastal
upwelling system. I. Bacteria, microprotozoans and phytoplankton in the diet of copepods and
appendicularians. Aquatic Microbial Ecology 34(2): 151-164.
Vargas, C.A., and H.E. González. 2004b. Plankton community structure and carbon cycling in a coastal
upwelling system. II. Microheterotrophic pathway. Aquatic Microbial Ecology 34(2): 165-180.
Vargas, C., and L. Madin. 2004. Zooplankton feeding ecology: clearance and ingestion rates of the salps
Thalia democratica, Cyclosalpa affinis and Salpa cylindrica on naturally occurring particles in the
Mid-Atlantic Bight. Journal of Plankton Research 26 (6): 1–7.
Vargas, C., R. Martínez, L. Cuevas, M. Pavez, C. Cartes, H.E. González, R. Escribano, and G. Daneri.
2007. Interplay between microbial and classical food webs in a highly productive coastal upwelling
area. Limnology and Oceanography 52: 1495–1510.
Wetzel, R.G. 1984. Detrital dissolved and particulate organic carbon functions in aquatic ecosystems.
Bulletin of Marine Science 35: 503–509.
Wetzel, R.G. 1990. Land-water interfaces. Metabolic and limnological regulators. Verhandlungen der
Internationalen Vereinigung für Theoretische und Angewandte Limnologie 24: 6–24.