Lecture 9 - Relativistic Dynamics

Lecture 9 - Relativistic Dynamics
Read chapter 1 (French)
So far we have considered measurements of:
position (Ξ”x)
time (Ξ”t)
velocity
- kinematics
Now we go on to consider:
momentum
energy
mass
forces
- dynamics
Classical Dynamics
Newton’s Laws:
𝐹=
𝑑
𝑝,
𝑑𝑑
𝑝 = π‘šπ‘£
1.
If we assume mass is independent of velocity:
∴ 𝐹 = π‘š × π‘Žπ‘π‘π‘’π‘™π‘’π‘Ÿπ‘Žπ‘‘π‘–π‘œπ‘› 2.
Momentum conserved, energy conserved
2. β‡’under constant F, v increases indefinitely. Does this happen?
Do an experiment
Accelerate 𝑒 βˆ’ under constant 𝐸, measure 𝑣 versus t
Accelerate 𝑒 βˆ’ under constant 𝐸, measure 𝑣 versus t
v
𝑣2
c
𝑐2
t
Kinetic energy, K
v approaches c, but does not reach it
If m is constant, then 𝑣 β†’ 𝑐 (const.)
β‡’ 𝑝 β†’ π‘π‘œπ‘›π‘ π‘‘ even though 𝐹 > 0
This is inconsistent with 1.
𝐹=
𝑑
𝑝
𝑑𝑑
Relativistic Dynamics
It was found that inertial mass π‘š increases and is given by:
π‘š=
π‘š0
𝑣2
1βˆ’ 2
𝑐
½
= π›Ύπ‘š0
3.
π‘š0 = rest mass, 𝑣 = vel. of particle relative to observer
We need to use π’Ž = πœΈπ’ŽπŸŽ to conserve momentum. (see French, ch. 6, p 169)
Thus, 𝐹 =
𝑑
𝑝,
𝑑𝑑
𝑝 = π‘šπ‘£,
π‘š = π›Ύπ‘š0
𝑝 = π›Ύπ‘š0 𝑣
Relativistic Dynamics
Let us consider this expression for inertial mass more closely:
π‘š = π›Ύπ‘š0 =
Use the binomial expansion:
π‘š = π‘š0
π‘š0
𝑣2
1βˆ’ 2
𝑐
½
1 𝑣2 3 𝑣4
1+
+
+β‹―
2 𝑐2 8 𝑐4
1 π‘š0 𝑣 2
3 𝑣2
Ξ”π‘š = π‘š βˆ’ π‘š0 =
1+
+β‹―
2 𝑐2
4 𝑐2
2
1
3
𝑣
Ξ”π‘šπ‘ 2 = π‘š0 𝑣 2 1 +
+β‹―
2
4 𝑐2
The first term corresponds to classical KE
Relativistic Dynamics
2
1
3
𝑣
Ξ”π‘šπ‘ 2 = π‘š0 𝑣 2 1 +
+β‹―
2
4 𝑐2
Particle moving under action of force 𝐹
KE acquired. KE = Work done = ∫ 𝐹 β‹… 𝑑 𝑠
y
𝐹
𝑣=0
𝑣=𝑉
x
Use this relation in SR:
𝐹=
𝑑
𝑑
𝑝=
(π›Ύπ‘š0 𝑣)
𝑑𝑑
𝑑𝑑
Relativistic Dynamics
𝐹=
𝑑
(π›Ύπ‘š0 𝑣)
𝑑𝑑
𝐹 = π‘š0 𝛾
𝑑𝑣
𝑑𝛾
+ π‘š0 𝑣
𝑑𝑑
𝑑𝑑
𝑑𝛾 𝑑𝛾 𝑑𝑣
=
𝑑𝑑 𝑑𝑣 𝑑𝑑
βˆ’½
𝑣2
𝑑𝛾
𝑑
=
1βˆ’ 2
𝑑𝑣 𝑑𝑣
𝑐
𝑑𝛾
𝑑𝑑
=
βˆ’3 2
2
𝑣
𝑣
= 2 1βˆ’ 2
𝑐
𝑐
𝛾 3 𝑣 𝑑𝑣
𝑐 2 𝑑𝑑
1.
𝛾 3𝑣
= 2
𝑐
Relativistic Force
𝑑𝛾
𝑑𝑑
=
𝛾 3 𝑣 𝑑𝑣
𝑐 2 𝑑𝑑
1.
𝑑𝑣
𝑣2 2
𝐹 = π‘š0 𝛾
1+ 2𝛾
𝑑𝑑
𝑐
𝛾2 =
1
𝑣2
1βˆ’ 2
𝑐
𝐹 = π‘š0 𝛾
β‡’
𝑣2
1
=
1
βˆ’
𝑐2
𝛾2
𝑑𝑣
1
1 + 1 βˆ’ 2 𝛾2
𝑑𝑑
𝛾
𝐹 = π‘š0 𝛾 3
𝑑𝑣
𝑑𝑑
𝑐 2 𝑑𝛾
𝐹 = π‘š0
(𝑒𝑠𝑖𝑛𝑔 1. )
𝑣 𝑑𝑑
Relativistic Kinetic Energy
π‘₯
𝐾𝐸 =
𝑑
𝐹𝑑π‘₯ =
0
= π‘š0 𝑐
𝐹𝑣𝑑𝑑
0
𝛾
2
𝑑𝛾
1
= π‘š0 𝑐 2 (𝛾 βˆ’ 1)
Where the upper limit of 𝛾 𝑖𝑠
1
½
𝑉2
1βˆ’ 2
𝑐
Kinetic energy
Force
𝐹 = π‘š0 𝛾 3
Rest mass
𝑑𝑣
𝑑𝑑
𝐾. 𝐸. = π‘š0 𝑐 2 (𝛾 βˆ’ 1)
Acceleration
𝑐 2 𝑑𝛾
𝐹 = π‘š0
𝑣 𝑑𝑑
β‡’ 𝐹𝑣𝑑𝑑 = π‘š0 𝑐 2 dΞ³
Relativistic Kinetic Energy
KE in a given reference frame can be defined as the difference between the energy
when an object is in motion and when it is at rest.
𝐾 = π‘šπ‘ 2 βˆ’ π‘š0 𝑐 2 π‘œπ‘Ÿ π‘šπ‘ 2 = 𝐾 + π‘š0 𝑐 2
Call π‘šπ‘ 2 the total energy E. Then 𝐸 = π‘šπ‘ 2 = 𝐾 + π‘š0 𝑐 2
Total energy = Kinetic energy + rest energy
β€’ 𝐸 = π‘šπ‘ 2
β€’ Energy is conserved
β€’ Energy has mass
β€’ Mass is conserved (but not necessarily rest mass)
β€’ Mass and energy are different physical quantities
A Useful Relation
𝑝 = π›Ύπ‘š0 𝑣
𝐸 = π›Ύπ‘š0 𝑐 2
∴ 𝐸 2 βˆ’ 𝑝 2 𝑐 2 = 𝛾 2 π‘š 0 2 𝑐 4 βˆ’ 𝛾 2 π‘š0 2 𝑐 2 𝑣 2
𝐸 2 βˆ’ 𝑝 2 𝑐 2 = π‘š0 2 𝑐 4 𝛾 2
𝑣2
1βˆ’ 2
𝑐
𝐸 2 βˆ’ 𝑝 2 𝑐 2 = π‘š0 2 𝑐 4
But, π‘š0 and 𝑐 are invariant under a Lorentz Transform:
∴ 𝐸 2 βˆ’ 𝑝2 𝑐 2 is invariant under LT
𝐸 2 βˆ’ 𝑝2 𝑐 2 is the same for all observers!
Summary
𝑝 = π‘šπ‘£
𝐸 = π‘šπ‘ 2 = 𝐾 + π‘š0 𝑐 2
π‘š = π›Ύπ‘š0
𝐸 2 βˆ’ 𝑝 2 𝑐 2 = π‘š0 2 𝑐 4
Photons
𝑣 = 𝑐 for all observers
Since
π‘š = π›Ύπ‘š0 ,
π‘š0 = 1 βˆ’
𝑣2
𝑐2
½
π‘š
∴ π‘š0 = 0
β‡’ 𝐸 = 𝑝𝑐 since 𝐸 2 βˆ’ 𝑝2 𝑐 2 = (0)2 𝑐 4
𝐸 β„Žπ‘£
⇒𝑝= =
,
𝑐
𝑐
light photon has momentum
Example: laser cooling for Bose-Einstein condensation of atoms