RADIATION-INDUCED CWGES I N TKE PROFILES OF CERTAIN KEY ENZYMES I N RAT MYOCARDIUM AND SERUM: EFFECTS OF EXERCISE AND DIETARY SUPPLEMENTATION WITH VITAMIN E Lyle Dean MacWilliam B. Sc . , ( ~ i o c h e m i s t r ~Simon ) Fraser U n i v e r s i t y , 1971 A THESIS SUBMITTED I N PARTIAL FULFILLMENT OF m l ~ nn n n T r r n m t m T r n c - m n n m r v nwr+Dw;1T;r nw 11lI ~ & ~ U L ~ & I " ~ L VYL \I U lllU UUUI\UU V I MASTER OF SCIENCE (KINESIOLOGY) i n t h e Department of Kinesiology @ LYLE DEAN MACWILLIAM 1974 SIMON FRASER UNIVERSITY A p r i l 1974 A l l r i g h t s r e s e r v e d . This t h e s i s may not be reproduced i n whole o r i n p a r t , by photocopy o r o t h e r means, w i t h o u t permission of t h e author. APPROVAL NAME : Lyle Dean MacWilliam DEGREE : Master of Science (~inesiolo~~) 7 TITLE OF THESIS : Radiation-induced Changes in the Profiles of Certain Key Enzymes in Rat Myocardium and Serum: Effects of Exercise and Dietary Supplementation with Vitamin E. EXAMINING COMMITTEE: Chairman: Dr. T.W. Calvert Dr. N.M.G. Bhakthan Senior Supervisor Dr. A.J. Davison Dr. K.K. Nair Dr. E.W. Banister External Examiner Professor , Chairman Department of Kinesiology Simon Fraser University Date Approved: iii ABSTRACT Levels of l a c t a t e dehydrogenase, c r e a t i n e k i n a s e and glutamate o x a l o a c e t a t e transaminase i n serum show q n i t i a l e l e v a t i o n s w i t h i n twelve hours of exposure t o 2,000 r a d s of gamma r a d i a t i o n t o t h e t h o r a c i c region of r a t s . S i g n i f i c a n t decreases of t h e s e enzymes i n homogenates of h e a r t muscle c o i n c i d e w i t h i n i t i a l e l e v a t i o n s i n t h e serum and may suggest t h a t enhanced leakage of enzymes i s a consequence of r a d i a t i o n i n j u r y t o h e a r t muscle. However, i n s i g n i f i c a n t a l t e r a t i o n s i n mitochondria1 l e v e l s of glutamate o x a l o a c e t a t e transaminase following exposure i n d i c a t e t h a t in y i y ~inSi_l_ryf g - f he mff g ~ h ~ n d r ff argm t h p y a p p 1 1 t . f ~ l e v e l s nf i s questionable. pmmn radiat.-inn The r e s u l t s suggest t h a t i o n i z i n g r a d i a t i o n causes a l t e r - a t i o n s i n t h e dynamic p e r m e a b i l i t y of membranes, allowing leakage of biol o g i c a l l y a c t i v e m a t e r i a l out of t h e i n j u r e d c e l l . 1 Levels of l a c t a t e dehydrogenase, c r e a t i n e k i n a s e and glutamate o x a l o a c e t a t e transaminase i n t h e serum of r a t s e x e r c i s e d immediately following t h o r a c i c exposure t o 2,000 r a d s of gamma r a d i a t i o n become e l e v a t e d w i t h i n twelve hours of t r e a t m e n t . Although LDH l e v e l s i n serum of i r r a d i a t e d , e x e r c i s e d animals were s i g n i f i c a n t l y g r e a t e r t h a n s i m i l a r l y t r e a t e d sedentary s u b j e c t s , serum l e v e l s of CK and GOT d i d not d i f f e r s i g n i f i c a n t l y between t h e two groups. . These o b s e r v a t i o n s a r e i n t e r p r e t e d i n terms of changes i n t h e p e r m e a b i l i t y of membranes. Temporary r e d u c t i o n s i n l e v e l s of LDH i n homogenates of h e a r t corresponded t o i n i t i a l e l e v a t i o n s of LDH i n serum and suggest t h a t enhanced leakage of t h e enzyme i s a consequence of r a d i a t i o n injury t o the heart. I n c o n t r a s t t o demonstrated l o s s e s of CK and GOT from homogenates of h e a r t i n i r r a d i a t e d sedentary animals, t h e l e s s e r amount of leakage i n e x e r c i s e d s u b j e c t s suggests t h a t e x e r c i s e i n i r r a d i a t e d , 1 t r a i n e d s u b j e c t s may p r o t e c t a g a i n s t l o s s of b i o l o g i c a l m a t e r i a l from t h e damaged system. Levels of GOT i n i s o l a t e d r a t h e a r t mitochondria were temporarily decreased twenty-four hours a f t e r exposure. However, enzyme l e v e l s a f t e r i r r a d i a t i o n d i d not d i f f e r s i g n i f i c a n t l y between e x e r c i s e d and sedentary animals, i n d i c a t i n g t h a t e x e r c i s e , a s an added metabolic s t r e s s i n i r r a d i a t e d r a t s , d i d not cause any remarkable a l t e r a t i o n s i n t h e i n t e g r i t y of mitochondria1 membranes. Comparisons of percentage e l e v a t i o n s i n serum 1;DH l e v e l s between i r r a d i a t e d r a t s previously maintained on t o c o p h e r o l - f o r t i f i e d and standard l a b chow d i e t s d i d not r e v e a l any s i g n i f i c a n t r a d i o p r o t e c t i v e a c t i o n of vitamin E . However, a marked decrease i n LDH a c t i v i t y i n t h e serum of both sham-irradiated, d i e t a r y groups suggests t h a t a-tocopherol may induce a f u r t h e r s t a b i l i z a t i o n of normal membrane permeability. Although no evidence of formation of l i p i d peroxides induced by i r r a d i a t i o n could be d e t e c t e d , t h e r e was a s i g n i f i c a n t l y decreased l e v e l of TBA r e a c t a n t s / i n h e a r t homogenates of a l l t o c o p h e r o l - f o r t i f i e d animals. Be very c a r e f u l when you a r e looking f o r a t h i n g o r you w i l l be s u r e t o f i n d it. Louis Pas t e u r ACKNOWLEDGMENTS The completion of t h i s t h e s i s would have been d i f f i c u l t without t h e h e l p of many people. The author i s indebted t o D r . N.M.G. f o r h i s valued guidance and continued s u p p o r t , t o D r . A . J . D r . K.K. Bhahthan Davison and Nair f o r t h e i r h e l p f u l c r i t i c i s m s and s u g g e s t i o n s , t o Tony Legault f o r h i s a s s i s t a n c e w i t h computer programs and s t a t i s t i c a l analy s i s , and D r . R . Cornelson f o r h i s t e c h n i c a l a s s i s t a n c e i n i r r a d i a t i o n procedures. F i n a l l y , I would l i k e t o thank my w i f e , Arlene, f o r h e r hours of work i n t h e t y p i n g of t h i s manuscript. This work was f i n a n c i a l l y supported by t h e National Research Council of Canada. viii TABLE OF CONTENTS PAGE ...................................................... x i OF FIGURES ..................................................... x i v LIST OF TABLES LIST CHAPTER I I1 ................................................. 1 Importance of t h e Study .................................... 4 O b j e c t i v e s of t h e Study .................................... 8 LITERATURE REVIEW ........................................ 1 0 INTRODUCTION Enzymological C o n s i d e r a t i o n s ............................ 10 ............... 1 4 L i p i d P e r o x i d a t i o n and Damage t o Membranes .............. 1 7 A/ General Considerations ............................ 1 7 B/ R a d i o l o g i c a l Considerations ....................... 21 V i t a n i n E; Antioxidant o r Metabolic I n t e r m e d i a t e ? ...... 24 RADIATION-INDUCED ENZYME: EFFLUX FROM RAT HEART: I . SEDENTARY ANIMALS ...................................................... 28 I n t r o d u c t i o n ..................................... ........ 28 M a t e r i a l and Methods ....................................... 29 I r r a d i a t i o n Procedure ................................... 29 Sampling Procedure ...................................... 30 Heart Muscle P r e p a r a t i o n ................................ 31 Enzyme Assays ........................................... 32 P r o t e i n Determination ................................... 34 Data A n a l y s i s ........................................... 35 Evidence of R a d i a t i o n I n j u r y t o Membranes ix CHAPTER PAGE ................................................... Serum Assays ........................................... Homogenate A s s a y s ...................................... Mitochondria1 Assays ................................... Discussion ............................................... RADIATION-INDUCED ENZYME EFFLUX FROM RAT HEART : I1 . EXERCISETRAINED RATS ................................................ I n t r o d u c t i o n .............................................. M a t e r i a l and Methods ...................................... T r a i n i n g Procedure ..................................... I r r a d i a t i o n Procedure .................................. R e s u l t s ................................................... Results IV E f f e c t s of y-Radiation of E x e r c i s e d Rats ............... ........................................ Homogenate Assays ................................... Mitochondria1 Assays ................................ Serum Assays 35 35 43 50 60 64 64 65 65 66 66 66 66 74 87 The E f f e c t of E x e r c i s e T r a i n i n g on Sham-Irradiated Control Rats 87 Comparison of Radiation-Induced A l t e r a t i o n s i n Enzyme Concentrations i n Serum. Heart Homogenate and Heart Mitochondria i n E x e r c i s e d and Sedentary Rats 91 ........................................... ........... Serum Enzyme E l e v a t i o n s ............................. H e a r t Homogenate Enzyme Levels ...................... Heart Mitochondria1 Enzyme Levels ................... Discussion 91 94 97 ............................................... 97 X PAGE CHAPTER . ................................................... 103 I n t r o d u c t i o n ........................................ 103 M a t e r i a l and Methods ....................................... 104 I r r a d i a t i o n Procedure ................................... 105 Heart Muscle P r e p a r a t i o n f o r T h i o b a r b i t u r a t e Analysis ... 105 T h i o b a r b i t u r a t e Analysis f o r L i p i d Peroxides ............ 105 R e s u l t s .................................................... 106 Serum Enzyme Analysis ................................... 106 L i p i d Peroxide Determination ............................ 114 Discussion ................................................. 1 2 1 VI GENERAL CONCLUSIONS .......................................... 126 I r r a d i a t i o n E f f e c t s i n Sedentary Animals ................... 126 I r r a d i a t i o n E f f e c t s i n Exercised Animals ................... 127 I r r a d i a t i o n E f f e c t s i n Vitamin E - F o r t i f i e d Animals ......... 128 BIBLIOGRAPHY ....................................................... 130 APPENDIXES .......................................................... 144 V RADIATION-INDUCED ENZYME EFFLUX FROM RAT HEART: 111 EFFECT OF DIETARY SUPPLEMENTATION WITH VITAMIN E ON LIPID PEROXIDE FORMATION LIST OF TABI;ES TABLE 1 PAGE Serum l e v e l s of l a c t a t e dehydrogenase a t v a r i o u s i n t e r v a l s Significant a f t e r exposure t o 2,000 r a d s . o f y - r a d i a t i o n . d i f f e r e n c e s between c o n t r o l and t e s t means were determined by t - t e s t , u s i n g a pooled e s t i m a t e of v a r i a n c e 37 Serum l e v e l s of c r e a t i n e k i n a s e a t v a r i o u s i n t e r v a l s a f t e r Significant differexposure t o 2,000 r a d s of y - r a d i a t i o n . ences between c o n t r o l and t e s t means were determined by tt e s t , u s i n g a pooled e s t i m a t e of v a r i a n c e 40 Serum l e v e l s of glutamate o x a l o a c e t a t e transaminase a t v a r i o u s i n t e r v a l s a f t e r exposure t o 2,000 r a d s of yr a d i a t i o n . S i g n i f i c a n t d i f f e r e n c e s between c o n t r o l and t e s t means were determined by t - t e s t , u s i n g a pooled e s t i m a t e of v a r i a n c e 44 .............. 2 ................... 3 ........................................ 4 5 6 Eelrt hnmngenate levels ~f lactate dehydrngenase Fct. v ~ r i n l l s i n t e r v a l s a f t e r exposure t o 2,000 r a d s of y - r a d i a t i o n . S i g n i f i c a n t d i f f e r e n c e s between c o n t r o l and t e s t means were determined by t - t e s t , u s i n g a pooled e s t i m a t e of v a r i a n c e ... 47 Heart homogenate l e v e l s of c r e a t i n e k i n a s e a t v a r i o u s i n t e r v a l s a f t e r exposure t o 2,000 r a d s of y - r a d i a t i o n . S i g n i f i c a n t d i f f e r e n c e s between c o n t r o l and t e s t means were determined by t - t e s t , u s i n g a pooled e s t i m a t e of variance .................................................... 51 Heart homogenate l e v e l s of glutamate o x a l o a c e t a t e t r a n s aminase a t v a r i o u s i n t e r v a l s a f t e r exposure t o 2,000 r a d s of y - r a d i a t i o n . S i g n i f i c a n t d i f f e r e n c e s between c o n t r o l and t e s t means were determined by t - t e s t , u s i n g a pooled e s t i m a t e of v a r i a n c e 54 ........................................ 7 57 Serum l e v e l s of l a c t a t e dehydrogenase i n e x e r c i s e - t r a i n e d r a t s a t v a r i o u s i n t e r v a l s a f t e r exposure t o 2,000 r a d s of y-radiation. S i g n i f i c a n t d i f f e r e n c e s between c o n t r o l and t e s t means were determined by t - t e s t , u s i n g a pooled estimate of variance 68 ........................................ 1.A (r Mitochondria1 l e v e l s of glutamate o x a l o a c e t a t e transaminase at v a r i o u s i n t e r v a l s a f t e r exposure t o 2,000 r a d s of yr a d i a t i o n . S i g n i f i c a n t d i f f e r e n c e s between c o n t r o l and t e s t means were determined by t - t e s t , u s i n g a pooled e s t i m a t e of v a r i a n c e ...............................L.. .... PAGE Serum l e v e l s of c r e a t i n e k i n a s e i n e x e r c i s e - t r a i n e d rats a t v a r i o u s i n t e r v a l s a f t e r exposure t o 2,000 r a d s of yr a d i a t i o n . S i g n i f i c a n t d i f f e r e n c e s between c o n t r o l and t e s t means were determined by t - t e s t , u s i n g a pooled e s t i m a t e of v a r i a n c e 71 Serum l e v e l s of glutamate o x a l o a c e t a t e transaminase i n e x e r c i s e - t r a i n e d r a y s at v a r i o u s i n t e r v a l s a f t e r exposure t o 2,000 r a d s of y - r a d i a t i o n . Significant differences between c o n t r o l and t e s t means were determined by tt e s t , u s i n g a pooled e s t i m a t e of v a r i a n c e 75 Heart homogenate l e v e l s of l a c t a t e dehydrogenase i n e x e r c i s e - t r a i n e d r a t s a t v a r i o u s i n t e r v a l s a f t e r exposure t o 2,000 r a d s of y-radiation. Significant differences between c o n i r o i auci test m e z x v c r e d z t = l m h e r l h - r tt e s t , u s i n g a pooieli estimzte of \-artace 78 Heart homogenate l e v e l s of c r e a t i n e k i n a s e i n exerciset r a i n e d r a t s a t v a r i o u s i n t e r v a l s a f t e r exposure t o 2,000 r a d s of y - r a d i a t i o n . S i g n i f i c a n t d i f f e r e n c e s between c o n t r o l and t e s t means were determined by t - t e s t , u s i n g a pooled e s t i m a t e of variance 81 Heart homogenate l e v e l s of glutamate o x a l o a c e t a t e t r a n s aminase i n e x e r c i s e - t r a i n e d r a t s a t v a r i o u s i n t e r v a l s a f t e r exposure t o 2,000 r a d s of y - r a d i a t i o n . Significant d i f f e r e n c e s between c o n t r o l and t e s t means were determined by t - t e s t , u s i n g a pooled e s t i m a t e of v a r i a n c e 84 Mitochondria1 l e v e l s of glutamate o x a l o a c e t a t e transaminase i n e x e r c i s e - t r a i n e d r a t s a t v a r i o u s i n t e r v a l s a f t e r exposure t o 2,000 r a d s of y - r a d i a t i o n . Significant differences between c o n t r o l and t e s t means were determined by t - t e s t , using a pooled e s t i m a t e of v a r i a n c e 88 Enzyme l e v e l s of sham-irradiated, e x e r c i s e d and sedentary c o n t r o l s . A comparison of exercise-induced changes i n enzyme a c t i v i t i e s of serum ( s ) , h e a r t homogenate ( H ) , and h e a r t mitochondrial ( M ) f r a c t i o n s 92 Comparison of a l t e r a t i o n s i n serum enzyme l e v e l s of posti r r a d i a t e d s e d e n t a r y and e x e r c i s e d r a t s 93 ........................................ ................... -.I .................-. ............................... .............. ......................... ........................... ..................... xiii TABLE 10A PAGE Comparison of a l t e r a t i o n s i n homogenate enzyme l e v e l s of p o s t - i r r a d i a t e d s e d e n t a r y and e x e r c i s e d r a t s 95 Comparison of a l t e r a t i o n s i n mitochondria1 GOT l e v e l s of p o s t - i r r a d i a t e d s e d e n t a r y and e x e r c i s e d r a t s 96 ................ ................ P o s t - i r r a d i a t i o n serum l a c t a t e dehydrogenase l e v e l s i n r a t s maintained on s t a n d a r d P u r i n a l a b chow. S i g n i f i c a n t d i f f e r ences between c o n t r o l and t e s t means were determined by tt e s t , u s i n g a pooled e s t i m a t e of v a r i a n c e ................... 107 P o s t - i r r a d i a t i o n serum l a c t a t e dehydrogenase l e v e l s i n rats maintained on vitamin E - f o r t i f i e d l a b chow f o r two weeks p r i o r t o i r r a d i a t i o n . S i g n i f i c a n t d i f f e r e n c e s between c o n t r o l and t e s t means were determined by t - t e s t , u s i n g a -,soled estlmate of v a r i z r , c e ............................... 110 Comparison of a l t e r a t i o n s i n serum l a c t a t e dehydrogenase l e v e l s between r a t s f e d s t a n d a r d l a b chow and tocopherolfortified diets ............................................. 113 Comparison of l a c t a t e dehydrogenase serum a c t i v i t y between sham-irradiated c o n t r o l r a t s f e d s t a n d a r d l a b chow and tocopherol-fortified d i e t s .................................. 115 Concentrations of TBA r e a c t a n t s , expressed a s nmolar v a l u e s , i n t h e f i n a l s u p e r n a t a n t of h e a r t homogenates from r a t s f e d s t a n d a r d P u r i n a l a b chow b e f o r e i r r a d i a t i o n . S i g n i f i c a n t d i f f e r e n c e s between c o n t r o l and t e s t means were determined by t - t e s t , u s i n g a pooled e s t i m a t e of v a r i a n c e .............. 116 Concentration of TBA r e a c t a n t s , expressed a s nmolar v a l u e s , i n t h e f i n a l s u p e r n a t a n t of h e a r t homogenates from r a t s f e d t o c o p h e r o l - f o r t i f i e d d i e t . S i g n i f i c a n t d i f f e r e n c e s between c o n t r o l and t e s t means were determined by t - t e s t , u s i n g a pooled e s t i m a t e of v a r i a n c e ................................. 119 Comparison of malonaldehyde c o n c e n t r a t i o n s i n t h e f i n a l s u p e r n a t a n t of h e a r t homogenates from sham-irradiated c o n t r o l r a t s f e d normal d i e t and vitamin E - f o r t i f i e d d i e t . . . . . . . . . . . . 120 xiv LIST OF FIGURES FIGURE PAGE 1 Serum l e v e l s of l a c t a t e dehydrogenase a t various i n t e r v a l s a f t e r exposure t o 2,000 r a d s of y - r a d i a t i o n . 2 Serum l e v e l s of c r e a t i n e k i n a s e a t v a r i o u s i n t e r v a l s a f t e r exposure t 3 2,000 r a d s of y-radiation 3 Serum l e v e l s of glutamate o x a l o a c e t a t e transaminase at v a r i o u s i n t e r v a l s a f t e r exposure t o 2,000 r a d s of yradiation L.. .................. 38 ........................ 41 ............................... ................ 45 4 Heart homogenate l e v e l s of l a c t a t e dehydrogenase a t various i n t e r v a l s a f t e r exposure t o 2,000 r a d s of y-radiation 6 Heart homogenate l e v e l s of glutamate oxaloacetate t r a n s aminase at v a r i o u s i n t e r v a l s a f t e r exposure t o 2,000 rads of y-radiation ........ 48 ............................................... 55 7 Mitochondria1 l e v e l s of glutamate oxaloacetate transaminase at various i n t e r v a l s a f t e r exposure t o 2,000 r a d s of yradiation .................................................... 58 1A Serum l e v e l s of l a c t a t e dehydrogenase i n e x e r c i s e - t r a i n e d r a t s a t v a r i o u s i n t e r v a l s a f t e r exposure t o 2,000 rads of y-radiation .................................................. 09 2A Serum l e v e l s of c r e a t i n e k i n a s e i n e x e r c i s e - t r a i n e d r a t s at various i n t e r v a l s aftel: exposure t o 2,000 rads of yradiation .................................................... 72 3A Serum l e v e l s of glutamate o x a l o a c e t a t e transaminase i n e x e r c i s e - t r a i n e d r a t s a t v a r i o u s i n t e r v a l s a f t e r exposure t o 2,000 r a d s of y-radiation ................................. 76 4~ Heart homogenate l e v e l s of l a c t a t e dehydrogenase i n exerciset r a i n e d r a t s a t various i n t e r v a l s a f t e r exposure t o 2,000 rads of y - r a d i a t i o n 79 .............................................. 5A Heart homogenate l e v e l s of c r e a t i n e kinase i n e x e r c i s e - t r a i n e d r a t s a t v a r i o u s i n t e r v a l s a f t e r exposure t o 2,000 r a a s of yradiation 82 .................................................... xv PAGE Heart homogenate l e v e l s of glutamate o x a l o a c e t a t e t r a n s aminase i n e x e r c i s e - t r a i n e d r a t s a t v a r i o u s i n t e r v a l s a f t e r exposure t o 2,000 r a d s of y-radiation 85 Mitochondria1 l e v e l s of glutamate o x a l o a c e t a t e transaminase i n e x e r c i s e - t r a i n e d r a t s a t v a r i o u s i n t e r v a l s a f t e r exposure t o 2,000 r a d s of y - r a d i a t i o n 89 ................. ................................ P o s t - i r r a d i a t i o n serum l a c t a t e dehydrogenase l e v e l s i n rats maintained on s t a n d a r d P u r i n a l a b chow ...................... ,108 P o s t - i r r a d i a t i o n serum l a c t a t e dehydrogenase l e v e l s i n rats maintained on vitamin E - f o r t i f i e d l a b chow f o r two weeks prior t o irradiation ........................................ 111 Concentration of TBA r e a c t a n t s , expressed a s nmolar malon- 1 a - h . ~Y ~ I n t h e f i . 2 ~ 1 .~--penlat.nnt, of h e a r t , homogenates fr~;;;r a t s fed ~ t ~ y d a rIf&i chew zyd t e c @ e r o l - f o r t i f i p d d i e t s before irradiation -&--*A J. -- .................................... 117 CHAPTER I INTRODUCTION Radiation i s not a new phenomenon, b u t i s an o l d hazard t h a t has s i l e n t l y e x i s t e d through t h e ages. ' Upon t h e i n i t i a l discovery of X-rays by Roentgen i n 1895 and radium by Curie i n 1897, new v i s t a s f o r science and technology were opened and, a s a r e s u l t , new and unknown dangers were exposed. I o n i z i n g r a d i a t i o n , i n c l u d i n g a l p h a and b e t a p a r t i c l e s , gamma r a y s , X-rays, neutrons and p r o t o n s , soon became n o t o r i o u s f o r f a r reaching harm- f u l e f f e c t s t o b i o l o g i c a l systems. Although t h e s e forms comprise only a p o r t i o n of t h e t o t a l r a d i a t i o n spectrum, t h e i r unique hazard l i e s i n t h e i r , i n n a t e a b i l i t y t o e n e r g i z e m a t t e r by i o n i z a t i o n . I n b i o l o g i c a l systems t h i s can produce numerous p h y s i c a l and chemical e f f e c t s which can u l t i m a t e l y l e a d t o massive biochemical breakdown and r e s u l t a n t death of t h e t a r g e t tissue. The r e p o r t s of Marcuse i n 1896 a r e t h e f i r s t documented d e s c r i p t i o n s of t h e i n j u r i o u s e f f e c t s of X - i r r a d i a t i o n on t h e s k i n . Lesions c o n s i s t i n g of e p i l a t i o n , erythema and r a d i o d e r m a t i t i s were slow t o h e a l , e x c r u c i a t i n g l y p a i n f u l , and were prone t o develop s k i n tumors. P i e r r e Curie i n 1900 r e p o r t e d r a d i o d e r m a t i t i s and r e s u l t a n t deep t i s s u e d e s t r u c t i o n a f t e r applying radium t o a small a r e a of h i s forearm, and i n handling a c t i v e products, Mme. Curie developed erythema, d e r m a t i t i s , and severe b l i s t e r i n g of t h e f i n g e r s . S i m i l a r l y , through t h e y e a r s numer- ous massive i n j u r i e s and a c c i d e n t a l deaths have occured from major mishaps w i t h i n l a b o r a t o r i e s and i n d u s t r i a l o r g a n i z a t i o n s . The i n t e r a c t i o n s of i o n i z i n g r a d i a t i o n w i t h m a t t e r occurs by d i r e c t o r i n d i r e c t action. D i r e c t a c t i o n i s t h e i n t e r a c t i o n of r a d i a t i o n with t a r g e t molecules, r e s u l t i n g i n an energy t r a n s f e r t o t h e molecule. This absorbed energy can r a i s e o r b i t a l e l e c t r o n s t o higher quantum l e v e l s , r e s u l t i n g i n highly e x c i t e d and u n s t a b l e molecules, o r can cause complete e j e c t i o n of an e l e c t r o n from an o r b i t a l s h e l l . Processes of s t a b i l i z a t i o n may r e s u l t i n d i s s o c i a t i o n of t h e molecule i n t o f r e e r a d i c a l s , i n i o n i z a t i o n , o r i n lower l e v e l s of e x c i t a t i o n , t h e u l t i m a t e r e s u l t being t h e formation of s t a b l e products which may d i f f e r from t h e o r i g i n a l molecule. I n d i r e c t a c t i o n i s t h e r e a c t i o n between s o l u t e molecules and t h e r e a c t i v e s p e c i e s formed by d i r e c t a c t i o n of r a d i a t i o n . I n the living c e l l , which i s an extremely complex s t r u c t u r e , water i s t h e u n i v e r s a l solvent. Therefore, when c e l l s a r e i r r a d i a t e d , most of t h e d i r e c t energy t r a n s f e r occurs with water molecules simply because water p r e s e n t s t h e g r e a t e s t number of t a r g e t s . When i r r a d i a t e d , water l i k e any o t h e r m a t e r i a l i s i o n i z e d , r e s u l t i n g i n t h e formation of u n s t a b l e intermediates which quickly d i s s o c i a t e i n t o various r a d i o l y t i c products, such a s t h e extremely r e a c t i v e hydrogen aqd hydroxyl f r e e r a d i c a l s . The r e a c t i o n sequence can b e expressed a s Free r a d i c a l s , once formed, d i f f u s e through t h e i r r a d i a t e d system r e a c t i n g randomly with neighbouring molecules and thereby i n f l i c t damage t o t h e i n t a c t components of t h e t a r g e t c e l l . The b i o l o g i c e f f e c t s of i o n i z i n g r a a i a t i o n r e p r e s e n t t h e e f f o r t s of l i v i n g t h i n g s t o d e a l w i t h energy l e f t i n them a f t e r an i n t e r a c t i o n of one of t h e i r atoms w i t h an i o n i z i n g r a y o r p a r t i c l e . For any l i v i n g system, t h i s energy w i l l b e i n excess of t h e system's requirements f o r normal f u n c t i o n ; it w i l l be a d e v i a t i o n from t h e proper energy r e l a t i o n s h i p s w i t h i n t h a t system. 1 D e t e c t i b l e i n j u r y t o l i v i n g systems as a consequence of such i n t e r a c t i o n s i s t h e r e s u l t of a long and complex sequence of events i n i t i a t e d by r a d i o l o g i c a l damage t o b i o l o g i c a l l y p e r t i n e n t molecules, and culminating i n t h e m a n i f e s t a t i o n of major p h y s i o l o g i c a l and biochemical a l t e r a t i o n s . According t o L a t a r j e t and Grey (1954) t h e development of observable i n j u r y i n an i r r a d i a t e d l i v i n g c e l l occurs i n four steps. The f i r s t s t e p involves t h e i n t e r a c t i o n between t h e i o n i z i n g r a d i a t i o n and t h e component molecules of t h e c e l l ; t h e second c o n s i s t s of r e a c t i o n s between s h o r t - l i v e d r a d i c a l s and molecules of b i o l o g i c a l importance. I n t h e t h i r d s t e p chemical chain r e a c t i o n s amplify t h e primary damage r e s u l t i n g from t h e previous s t a g e s t o t h e p o i n t where i n t h e f i n a l s t e p "observable" i n j u r y i s a p p a r e n t , involving c y t o l o g i c a l l e s i o n s , g e n e t i c damage, and major biochemical changes. It i s g e n e r a l l y f e l t t h a t t h i s development of expression of t h e i n i t i a l i n j u r y occurs through t h e i n c o r p o r a t i o n of t h e i n j u r y i n t o t h e ongoing metabolism of t h e c e l l , and may s i m i l a r l y b e compared t o t h e e v e n t u a l breakdown of a machine which i s o p e r a t e d i n a s l i g h t l y damaged c o n d i t i o n . ID. J. P i z z a r e l l o and R.L. Witcofski. Lea and Febiger, P h i l a d e l p h i a , 1967, p. 3. Basic Radiation Biology, IMPORTANCE OF THE STUDY Although t h e h e a r t has o f t e n been regarded a s one of t h e most r a d i o r e s i s t a n t organs of t h e body ( ~ l l i n g e r1 9 5 7 ) , t h e o n s e t of r a d i a t i o n induced h e a r t d i s e a s e has been recognized a s an important m a n i f e s t a t i o n of t h o r a c i c exposure ( s t e w a r t and Fajardo 1 9 7 1 ) . There i s evidence t h a t t h e h e a r t may, i n f a c t , be s e r i o u s l y damaged by i o n i z i n g r a d i a t i o n ( s t e w a r t 1967) . The r a d i o l o g i c a l re-treatment of Hodgkins ' disease i n t h e t h o r a x was found by Stewart and Fajardo (1971) t o c a r r y an exceedingly h i g h r i s k of subsequent i n j u r y t o t h e h e a r t . Although it has been shown t h a t t h e myocardium i s most f r e q u e n t l y i n j u r e d ( F e r r i and Dosi 1 9 6 5 ) , a l l components of t h e h e a r t show apparent p o s t - i r r a d i a t i o n damage. Radiation-induced e l e c t r o c a r d i o g r a p h i c a l t e r a t i o n s have been observed i n humans f ~ o n e sand Wedgwood and r o d e n t s ( F u l t o n and Sudak 1954). 1 9 6 0 ) ~dogs ( ~ h i l l i -~ e ts a l . 1964) S a l e t (1971) r e p o r t e d evidence of i n c r e a s e d p u l s a t i o n f r e q u e n c i e s of r a t c a r d i a c c e l l s i n t i s s u e c u l t u r e w i t h i n minutes of exposure t o m i c r o - i r r a d i a t i o n by l a s e r . I n addition, congestive h e a r t f a i l u r e induced by l a r g e r a d i o l o g i c a l doses i n both r a b b i t s ( ~ f s k i n d1954) and dogs ( ~ i s h -oe t~ a l . 1965) i n d i c a t e s t h a t t h e h e a r t i s indeed s u c c e p t i b l e t o severe r a d i a t i o n i n j u r y . The c l i n i c a l i n d i c a t i o n s t h a t t h e s u r v i v a l of p a t i e n t s undergoing r a d i a t i o n t r e a t m e n t f o r carcinoma of t h e l e f t lung was poorer t h a n t h a t of p a t i e n t s t r e a t e d f o r r i g h t lung cancer, prompted a study by Takaoka (1969) involving t h e i n v e s t i g a t i o n of c a r d i a c damage by t h e r a p e u t i c radiation. The r e s u l t s showed t h a t t h e degree of myocardial damage was r e l a t e d t o t h e s i z e of t h e i r r a d i a t e d a r e a and t o t h e r a d i o l o g i c a l dose given. S i m i l a r l y , t h e prognosis of p a t i e n t s r e c e i v i n g i n t r a t h o r a c i c r a d i o t h e r a p y may be i n f l u e n c e d by t h e i n c i d e n t a l l y induced myocardial damage. Cardiac s t r u c t u r a l a l t e r a t i o n s i n p a t i e n t s r e c e i v i n g t h e r a p e u t i c r a d i a t i o n t o t h e mediastinum ( ~ a j a r d o-e t a l . 1968) showed p r o l i f e r a t i o n of connective t i s s u e w i t h p e r i c a r d i t i s and e x t e n s i v e f i b r o s i s of t h e myocardium. I n a l a t e r study of t h e mechanism of radiation-induced myocardial f i b r o s i s i n r a b b i t s , Fajardo and Stewart (1973) determined t h a t immediate i n jury causes an a c u t e , t r a n s i e n t inflammatory exudate i n a l l t i s s u e s of t h e h e a r t . I n a d d i t i o n , t h e experiments c l e a r l y i n d i c a t e d t h e c a p i l l a r y e n d o t h e l i a l c e l l a s an important t a r g e t of radiation. An e x t e n s i v e study on t h e m a n i f e s t a t i o n of chronic c a r d i a c i n j u r y induced by r a d i a t i o n h a s been r e p o r t e d by Burch -e t a l . (1968). The p a t i e n t , a 37 y e a r o l d male p h y s i c i a n , underwent post-operative r a d i a t i o n t r e a t m e n t f o r t h y r o i d f o l l i c u l a r carcinoma, r e c e i v i n g a dose of 4,800 r a d s t o t h e t h y r o i d bed w i t h an a d d i t i o n a l dose of 5,200 r a d s t o t h e mediastinum through t h e c h e s t w a l l . Although t h e r e was no r e c u r r e n c e of t h e carcinoma, t h e p a t i e n t d i e d seven y e a r s l a t e r of congestive h e a r t failure. Microscopic o b s e r v a t i o n r e v e a l e d d i s r u p t i o n of t h e m y o f i b r i l s and c e l l o r g a n e l l e s w i t h p o s s i b l e cytoplasmic l e a c h i n g . Mitochondria1 damage was c h a r a c t e r i z e d by s w e l l i n g and r e d u c t i o n of i n t e r n a l c r i s t a e concomitant w i t h a l o s s of o r d e r l y arrangement. Although i t - w a s not p o s s i b l e t o d e f i n e a s p e c i f i c s u b c e l l u l a r l e s i o n , it appears t h a t t h e changes seen were r e l a t e d t o t h e i n i t i a l r a d i a t i o n damage. Evidently l a r g e t h e r a p e u t i c r a d i a t i o n doses can cause e x t e n s i v e damage t o t h e h e a r t t h a t may not manifest i t s e l f u n t i l y e a r s a f t e r t r e a t m e n t . The wealth of c l i n i c a l and p a t h o l o g i c evidence i n d i c a t i n g t h a t i o n i z i n g r a d i a t i o n can produce myocardial damage shows t h e importance of t h e e a r l y d e t e c t i o n of such i n j u r y ( ~ u g g i a-e t a l . 1970). Since t h e u l t i m a t e m a n i f e s t a t i o n of r a d i a t i o n i n j u r y t o l i v i n g systems i s r e l a t e d t o t h e degree of i n i t i a l damage, t h e q u a n t i t a t i v e e s t i m a t e s of such damage may provide a u s e f u l c l i n i c a l p r e d i c t i o n of t h e long term e f f e c t s . Q u a n t i t a t i v e understanding of t h e biochemical and morphologic e f f e c t s of c a r d i a c i r r a d i a t i o n i s e s s e n t i a l f o r t h e development of any preventa t i v e schemas. Determination of enzyme leakage from t h e t a r g e t organ may t h e r e f o r e provide e f f e c t i v e means of e v a l u a t i n g t h e i n i t i a l damqe and t h u s s e r v e a s a u s e f u l r a d i o b i o l o g i c a l i n d i c a t o r . A t p r e s e n t , t h e r e i s s u r p r i s i n g l y l i t t l e information r e l a t i n g r a d i a t i o n damage of t h e h e a r t t o e l e v a t i o n of serum enzymes. However, Kubota (1969) has r e p o r t e d e l e v a t i o n s of l a c t a t e dehydrogenase, g l u t a mate o x a l o a c e t a t e transaminase and g l u t m a t e pyruvate transaminase a f t e r s u b j e c t i n g r a b b i t s t o p r e c o r d i a l b e t a i r r a d i a t i o n of 500 - 4000 R . S i m i l a r l y , Mochalova -e t a l . (1969) found sharp i n c r e a s e s i n l a c t a t e dehydrogenase, a l d o l a s e and c r e a t i n e k i n a s e i n blood serum of r a b b i t s exposed t o l o c a l i z e d i r r a d i a t i o n of t h e h e a r t . within These i n c r e a s e s occured 60 hours of exposure and were accompanied by marked morpholo- g i c a l changes i n t h e myocardial t i s s u e . The study of radiation-induced leakage of enzymes from t h e h e a r t should, i n a d d i t i o n , y i e l d valuable information on t h e p o s t - i r r a d i a t i o n i n t e g r i t y of c e l l u l a r and s u b - c e l l u l a r membranes. D i f f e r e n t i a l per- m e a b i l i t y of c e l l u l a r membranes c o n t r o l s enzyme leakage i n t o t h e plasma. Under normal p h y s i o l o g i c a l conditions t h e c e l l membrane r e t a i n s biol o g i c a l l y a c t i v e m a t e r i a l i n high c o n c e n t r a t i o n s , t h e maintenance of which r e q u i r e s a considerable expenditure of energy ( ~ e s s1963). Retention of b i o l o g i c a l l y a c t i v e molecules may be a r e s u l t of a c t i v e t r a n s p o r t , t h e s i z e and geometry of t h e membrane pores, and t h e elect r o s t a t i c charge on t h e membrane s u r f a c e . It i s t h e r e f o r e c l e a r t h a t p a t h o l o g i c a l m a n i f e s t a t i o n s of a l t e r a t i o n s i n permeability characteri s t i c s may r e s u l t e i t h e r from i n t e r r u p t i o n of t h e energy supply t o t h e membrane a s a r e s u l t of metabolic l e s i o n s (Schade 1953; WE 1959; Binkley 1961) o r from d i r e c t damage t o t h e s t r u c t u r a l components of t h e membrane. The enzyme-release hypothesis proposed by Bacq and Alexander (1961) suggests t h a t many of t h e d e l e t e r i o u s e f f e c t s of r a d i a t i o n on c e l l s a r e caused by damage t o t h e macromolecules c o n s t i t u t i n g t h e c e l l u l a r and s u b - c e l l u l a r membranes, r e s u l t i n g i n t h e f a i l u r e of t h e i r s e l e c t i v e c h a r a c t e r i s t i c s , with t h e consequent leakage of i o n s , c o f a c t o r s and o t h e r b i o l o g i c a l m a t e r i a l out of t h e c e l l and i t s o r g a n e l l e s . Although much e f f o r t has been devoted t o f i n d i n g t h e exact causes of t h e s e a l t e r a t i o n s i n membrane p e r m e a b i l i t i e s of i r r a d i a t e d systems, no c l e a r l y def i n e d s o l u t i o n i s a t hand. Much of t h e evidence accumulated t o date i m p l i c a t e s l i p i d p e r o x i d a t i o n , and although many workers have-reported -- permeability a l t e r a t i o n s r e s u l t i n g from i n v i t r o peroxide formation ( w i l l s and Wilkinson 1967; W i l l s 1 9 7 0 ) ~no c l e a r c u t evidence h a s y e t been o b t a i n e d t h a t l i p i d peroxides a r e produced i n s i g n i f i c a n t amounts i n i r r a d i a t e d animals ( ~ e a d1961). OBJECTIVES OF THE STUDY The p r e s e n t i n v e s t i g a t i o n i s an attempt t o determine t h e e f f e c t s of t h e r a p e u t i c l e v e l s of i o n i z i n g r a d i a t i o n on t h e c a r d i a c muscle of rats. The p r i n c i p l e o b j e c t i v e i s t o e s t a b l i s h whether r a d i a t i o n damage does cause s i g n i f i c a n t serum e l e v a t i o n s i n c e r t a i n key enzymes. t h e enhancement, nf sprilm P I ~ Z ~ertiyities P m q he r 2 1 3 t c d t~ G I f so, ZGGZ~;;;I- t a n t decrease i n t h e t i s s u e l e v e l s of t h e enzymes. One of t h e biochemical i n d i c a t o r s i n a c u t e r a d i a t i o n i n j u r y i s an e l e v a t i o n of serum l a c t a t e dehydrogenase (LDH) a c t i v i t y following t o t a l body exposure ( ~ o r ei t a l . 1968). LDH, found i n most organs, e n t e r t a i n s an important f u n c t i o n i n carbohydrate metabolism and under normal condit i o n s remains a t a f a i r l y c o n s t a n t l e v e l . Glutamate o x a l o a c e t a t e t r a n s - aminase (GOT) and c r e a t i n e k i n a s e ( C K ) a r e b o t h found i n r e l a t i v e l y high c o n c e n t r a t i o n s i n c a r d i a c muscle. GOT, involved i n p r o t e i n metabolism and CK i n t h e replenishment of t h e phosphate moiety of ATP f o r muscular c o n t r a c t i o n , p l a y important r o l e s a s biochemical markers f o r t h e c l i n i c a l d e t e c t i o n of myocardial i n j u r y ( ~ r e y f u s-e t a l . 1960; Schmidt e t a l . 1965) and were t h e r e f o r e s e l e c t e d a s p o t e n t i a l i n d i c a t o r s of t h e degree of r a d i a t i o n i n j u r y t o t h e c a r d i a c muscle. S i n c e it i s known t h a t t h e ongoing metabolism of t h e c e l l i n f l u e n c e s t h e development of major p o s t - i r r a d i a t i o n l e s i o n s , t h e e f f e c t of e x e r c i s e i n p r e v i o u s l y t r a i n e d animals was a l s o i n v e s t i g a t e d t o determine i f r a d i a t i o n damage i s modified by t h i s s t r e s s c o n d i t i o n . I n a d d i t i o n , l i p i d per- o x i d a t i o n i n h e a r t t i s s u e w a s measured i n v i v o , i n an attempt t o c o r r e l a t e s t r u c t u r a l damage of t h e c e l l membranes t o a l t e r a t i o n s i n p e r m e a b i l i t y . The f u n c t i o n of vitamin E a s a p o t e n t i a l r a d i o p r o t e c t i v e . agent was a l s o examined. The s p e c i f i c o b j e c t i v e s a r e l i s t e d below. 1. Does i r r a d i a t i o n of r a t c a r d i a c muscle r e s u l t i n i n c r e a s e d serum l e v e l s of t h e t h r e e metabolic enzymes, l a c t a t e deh y d r n p n a s e ; cree-tine k i f i s c e , zcfi g>~t=+n ~ x ~ ~ z c c t ~ ~ c + , , , , , : . . . ? . 9 "I LWI.,OILlllllalJG. 2. Is such an i n c r e a s e accompanied by decreases of t h e enzyme i n t h e t a r g e t organ o r i s it caused by i n c r e a s e d leakage r a t e s due t o e l e v a t i o n s of t h e enzyme w i t h i n t h e t i s s u e ? 3. Does p o s t - i r r a d i a t i o n e x e r c i s e i n t r a i n e d animals a l t e r t h e degree of enzyme leakage w i t h r e s p e c t t o i r r a d i a t e d s e d e n t a r y animals? Does e x e r c i s e t h e r e f o r e appear harmf u l o r beneficial i n exercise-trained, irradiated subjects? 4. Does t h e r a p e u t i c r a d i a t i o n induce -i n vivo l i p i d peroxidat i o n i n c a r d i a c muscle? I f s o , can t h e changes i n enzyme e f f l u x i n p o s t - i r r a d i a t e d s u b j e c t s b e r e l a t e d t o t h e degree of p e r o x i d a t i o n ? 5. Does vitamin E , a s a d i e t a r y supplement, a f f e c t t h e posti r r a d i a t i o n serum enzyme p a t t e r n ? CHAPTER I1 LITERATURF: REVIEW For t h e sake of c l a r i t y , t h e following d i s c u s s i o n w i l l be divided i n t o f o u r sub-sections. The f i r s t s e c t i o n w i l l p r e s e n t contemporary c l i n i c a l and experimental works involving enzymological determinations of r a d i a t i o n damage, t h e second s e c t i o n w i l l cover important works rel a t i n g r a d i a t i o n i n j u r y t o a l t e r a t i o n s i n membrane p e r m e a b i l i t y , and t h e t h i r d s e c t i o n w i l l propound evidence of t h e p a r t i c i p a t i o n of autoc a t a l y t i c l i p i d p e r o x i d a t i o n i n membrane damage. Section four w i l l review l i t e r a t u r e i m p l i c a t i n g vitamin E a s a b i o l o g i c a l l i p i d a.ntr.inxidant and i t s p o s s i b l e involvement a s a n a t u r a l r a d i o p r o t e c t i v e agent. < Enzymological Considerations Experimental and c l i n i c a l i n v e s t i g a t i o n s have r e v e a l e d t h a t s t u d i e s of enzyme a c t i v i t i e s a r e u s e f u l i n d i c a t o r s of t h e e f f e c t s of i o n i z i n g r a d i a t i o n on l i v i n g systems. A s such, "the e s t i m a t i o n of enzymes i n t i s s u e homogenates, i n t h e i n t e r c e l l u l a r f l u i d , i n t h e serum, and i n e f f u s i o n s , adds considerably t o our knowledge of t h e e f f e c t s of i o n i z i n g r a d i a t i o n on t h e homothermal organism. 1 1 1 Ludewig and Chanutin ( 1950) r e p o r t e d t h a t serum a l k a l i n e phosphat ase l e v e l s decreased following whole-body i r r a d i a t i o n of r a t s . I n a study of u r i n a r y deoxyribonuclease , Kowlessar and c o l l a b o r a t o r s (1953) observed an ~ K . N . Karcher. Enzymological examinations : An i n d i c a t i o n of r a d i a t i o n e f f e c t s i n experiments and c l i n i c a l p r a c t i c e , I n : Biochemical I n d i c a t o r s of Radiation I n j u r y i n Man, proceedings of t h e I n t e r n a t i o n a l Atomic Energy Agency, D.H. H i l l ( e d i t o r ) , Unipub, New York, 1971, p . 277. i n c r e a s e i n t h e u r i n e a c t i v i t y i n r a t s exposed t o 700 r a d s of whole-body irradiation. S i m i l a r l y , Roth and E i c h e l (1959) observed a g e n e r a l l o s s of r i b o n u c l e a s e a c t i v i t y from mitochondria1 , n u c l e a r and microsomal p a r t i c l e s of r a t s p l e e n , w i t h a concomitant i n c r e a s e i n t h e cytoplasmic activity. I n a biochemical and e l e c t r o n microscopic study of i r r a d i a t e d mitochondria i s o l a t e d from r a t l i v e r , Okada and Peachey (1957) p r e s e n t e d evidence i n support of t h e hypothesis t h a t t h e noted i n c r e a s e i n deoxyr i b o n u c l e a s e I1 a c t i v i t y i s c a u s a l l y r e l a t e d t o s t r u c t u r a l damage i n t h e mitochondria. Kawasaki and Sakurai (1969), i n a s t u d y of i r r a d i a t e d mouse l i v e r mitochondria, noted an i n c r e a s e i n ATPase a c t i v i t y w i t h a p a r a l l e l decrease i n o x i d a t i v e phosphorylation w i t h i n t h r e e t o s i x hours a f t e r whole-body exposure t o s u b l e t h a l X-radiation. Experiments on -E coli by B i l l e n and co-worker~ (1953) demonstrated a l o s s of ATP from t h e organi s m s i n t o t h e media following exposure t o r a d i a t i o n . The r e s u l t s in- d i c a t e d t h a t i n j u r e d c e l l s r e l e a s e more enzymes i n t o t h e f l u i d t h a n c e l l s killed instantly. The damaged c e l l s continue t o produce m e t a b o l i t e s b u t l o s e t h e m a t e r i a l through t h e i n j u r e d membrane, whereas dead o r r u p t u r e d c e l l s can r e l e a s e only t h e i r immediate c o n t e n t s . Various workers have i n v e s t i g a t e d t h e e f f e c t of r a d i a t i o n on a l t e r a t i o n s i n t h e a c t i v i t y of numerous enzymes i n c o n c e r t . Wills and Wilkinson i n 1966 noted a r e l e a s e of a c i d phosphatase, c a t h e p s i n and B-glucuronidase from r a t l i v e r lysosomes following i r r a d i a t i o n i n v i t r o . Concomitant w i t h t h e r e l e a s e of enzymes, formation of l i p i d peroxides was noted, i n d i c a t i n g t h a t l i p i d p e r o x i d a t i o n may mediate r u p t u r e of t h e lysosome membrane, allowing t h e r e l e a s e of m a t e r i a l . Although Klein-Szanto and C a b r i n i (1970) found i n c r e a s e s i n t h e mean enzyme conc e n t r a t i o n s of NADP cytochrome c r e d u c t a s e and glucose-6-phosphate de- hydrogenase, l a c t a t e dehydrogenase and s o r b i t o l dehydrogenase concentrat i o n s decreased i n i r r a d i a t e d epidermis. It w a s suggested t h a t t h e r a d i a t i o n response might r e s u l t from widespread metabolic adjustments. I n a r e c e n t c l i n i c a l i n v e s t i g a t i o n Muggia and co-workers (1970) s t u d i e d t h e serum responses of a s e r i e s of enzymes i n twenty-one p a t i e n t s r e c e i v i n g i n c i d e n t a l c a r d i a c exposure i n comparison t o twenty-four p a t i e n t s r e c e i v i n g non-cardiac i r r a d i a t i o n . The serum l a c t a t e dehydrogenase (LDH) and g l u t a - mate o x a l o a c e t a t e transaminase (GOT) l e v e l s d i d not appear u s e f u l i n d e t e c t i n g radiation-induced myocardial i n j u r y , due t o t h e i r frequent inherent abnormalities. Serum c r e a t i n e k i n a s e ( C K ) however, appeared e l e v a t e d i n 33% of t h e p a t i e n t s r e c e i v i n g c a r d i a c i r r a d i a t i o n and may r e f l e c t r a d i a t i o n damage t o t h e myocardium. et al. Hori and Nishio (1962) and Hori - (1964) found t h a t i n r a b b i t s and mice exposed t o 300 R of X-rays, plasma LDH a c t i v i t y reached a peak e l e v a t i o n i n about s i x h o u r s , r e t u r n i n g t o normal by 24 hours. Transient i n c r e a s e s were found two and seven days a f t e r i r r a d i a t i o n and have a l s o been noted by Kgrcher and Kato (1964). I n a l a t e r study Hori -e t a l . (1968) found i n c r e a s e d plasma LDH w i t h i n hours of whole body exposure of mice t o X-radiation of 600 - 900 R. The e x t e n t of e l e v a t i o n appeared p r o p o r t i o n a l t o i r r a d i a t i o n exposure i n t h e range below 900 R. Analysis of v a r i o u s organs showed a marked l o s s of LDH only i n thymus and s p l e e n . Radio- r e s i s t a n t organs showed no s i g n i f i c a n t changes, supporting t h e contention t h a t i n c r e a s e d plasma LDH l e v e l s a r e d e r i v e d from p o s s i b l e c e l l d e s t r u c t i o n and membrane p e r m e a b i l i t y changes i n r a d i o s e n s i t i v e t i s s u e s . Further support f o r t h e c e l l d e s t r u c t i o n hypothesis was obtained by Takamori et al. - (1969) using i s o l a t e d mouse thymocytes and e r y t h r o c y t e s . Numerous r e p o r t s of e l e v a t i o n s i n serum glutamate o x a l o a c e t a t e transaminase l e v e l s a s a r e s u l t of exposure t o i o n i z i n g r a d i a t i o n have appeared. Milch and Albaum (1956) showed t h a t serum GOT l e v e l s r o s e w i t h i n a few hours following whole-body exposure of r a b b i t s , and P e t e r s e n e t al. -- (1957) found t h a t serum GOT v a l u e s i n r a b b i t s were 223% of normal f i v e hours a f t e r exposure t o 644 r a d s . Out of 1 4 enzymes s t u d i e d , Albaum (1960) found GOT t o b e t h e b e s t e a r l y index of r a d i a t i o n in.jurv. However, d a t a from Brent -e t a l . (1958) suggested t h a t t h e response i s v a r i e d between s p e c i e s . Although serum transaminase l e v e l s i n r a b b i t s r o s e s h a r p l y on t h e f i r s t p o s t - i r r a d i a t i o n day, no s i g n i f i c a n t e l e v a t i o n s could be found i n r a t s e i t h e r a f t e r whole-body exposure o r f o c a l irr a d i a t i o n of t h e l i v e r w i t h 5,000 r a d s . Becker -e t a l . (1962), i n c o n t r a s t , r e v e a l e d s t r i k i n g b u t t r a n s i e n t e l e v a t i o n s of serum GOT following total-body i r r a d i a t i o n of Sprague-Dawley r a t s . Elevation occured between t h e t h i r d and n i n t h hours and appeared t o be r e l a t e d t o c e l l destruction i n radiosensitive tissues. From t h e l i t e r a t u r e it i s apparent t h a t c e l l u l a r r a d i a t i o n damage does e l i c i t changes i n t h e enzyme p a t t e r n s w i t h i n c e l l s and o r g a n e l l e s which can cause s i g n i f i c a n t a l t e r a t i o n s of t h e serum enzyme l e v e l s . Although c e l l death and d i s i n t e g r a t i o n have been a t t r i b u t e d a s t h e 11 r g i s o n d l $ t r e " f o r p o s t - i r r a d i a t i o n e l e v a t i o n s i n serum enzymes, it must be emphasized t h a t many of t h e s t u d i e s noted above involved wholebody exposure i n which r a d i a t i o n damage would r e f l e c t i n j u r y t o t h e most r a d i o s e n s i t i v e organs. I n systems such a s t h e s p l e e n and thymus c e l l d i s r u p t i o n may, i n f a c t , p l a y a c r u c i a l r o l e i n t h e m a n i f e s t a t i o n of radiation injury. However, biochemical and h i s t o l o g i c a l examinations have a l s o confirmed t h e view t h a t r a d i a t i o n administered i n t h e r a p e u t i c l e v e l s does cause a l t e r a t i o n s i n membrane p e r m e a b i l i t i e s i n s u b c e l l u l a r o r g a n e l l e s a s w e l l a s changes i n t h e c e l l u l a r membrane ( ~ g r c h e r1971), which could a l s o account f o r t h e noted e l e v a t i o n s of enzymes i n t h e blood. Conceivably, both mechanisms a r e f u n c t i o n i n g and t h o s e c e l l s t h a t a r e not l e t h a l l y damaged continue t o f u n c t i o n i n t h e i r damaged s t a t e , l e a k i n g out b i o l o g i c a l l y a c t i v e m a t e r i a l from t h e cytoplasm. Evidence of Radiation I n j u r y t o Membranes A number of i n v e s t i g a t i o n s have r e v e a l e d t h a t changes occur i n membrane p e r m e a b i l i t i e s a f t e r exposure t o i o n i z i n g r a d i a t i o n ( ~ c h r e k 1948; L e s s l e r 1959; Barer and Joseph 1960; Novack and Shapiro 1960). I n 1959 Noyes and Smith observed q u a n t i t a t i v e changes i n r a t l i v e r mitochondria following whole-body i r r a d i a t i o n . I t was concluded t h a t r a d i a t i o n damage i n v o l v e s a p r e f e r e n t i a l fragmentation of small mitochondria, l e a d i n g t o t r a n s i e n t depression i n t h e t o t a l mitochondria1 count. S i m i l a r a l t e r a t i o n s were r e p o r t e d by Bahr i n 1971. Hugon and co-workers ( 1 9 6 5 ) , i n a study of r a d i a t i o n damage t o t h e duodenal c r y p t s i n mice, noted expansion, c l a r i f i c a t i o n and r u p t u r e of t h e mitochondrial m a t r i x i n stem c e l l s w i t h i n 30 minutes of exposure, and P o r t e l a etc. 15 (1963) proposed t h a t one of t h e primary e f f e c t s of r a d i a t i o n exposure i s damage t o t h e membrane o r g a n i z a t i o n a t t h e l e v e l of t h e mitochondrial cristae. Although S c a i f e and Alexander (1961) found no evidence t o support t h e i d e a of a l t e r a t i o n i n t h e p e r m e a b i l i t y of mitochondria1 membranes, t h e i r conclusion c o n t r a s t s w i t h f i n d i n g s of Mukerjee and Goldfeder (1972), who noted i n c r e a s e d p r o t e i n and RNA s y n t h e s i s i n mouse l i v e r mitochondria s u b j e c t e d t o 2,000 R of X-radiation. Enhanced s y n t h e s i s was explained by i n c r e a s e d t r a n s p o r t of RNA and p r o t e i n p r e c u r s o r s due t o changes i n t h e mitochondrial membrane p e r m e a b i l i t y following exposure. e t a 1. -- Work by Desai (1964) r e v e a l e d t h a t lysosomal p r e p a r a t i o n s exposed t o i n c r e a s i n g doses of gamma r a d i a t i o n showed r e l e a s e of i n d i c a t o r enzymes, w i t h each enzyme having a d i f f e r e n t p a t t e r n of r e l e a s e and i n a c t i v a t i o n . Such leakage was a t t r i b u t e d t o damage and l y s i s of t h e lysosomal membrane. R e l a t e d damage and a l t e r a t i o n s i n t h e endoplasmic r e t i c u l u m of h e p a t i c parenchymal c e l l s of mice were observed by Hendee and Alders (1968) w i t h i n two minutes a f t e r exposure t o gamma r a d i a t i o n . The r a p i d develop- ment of t h e s e changes suggests t h a t membrane damage may be c l o s e l y r e l a t e d t o i n i t i a l radiation injury. A study of t h e mechanism of radiation-induced enhancement of sodium accumulation i n e r y t h r o c y t e s ( ~ h a p i r oand Kollman 1968) r e v e a l e d t h a t membrane s u l f h y d r y l groups appear t o be t h e major t a r g e t i n r a d i a t i o n a l t e r a t i o n of c e l l p e r m e a b i l i t y . There was no d i r e c t evidence suggesting t h e appearance of a membrane h o l e , b u t i n s t e a d , r a d i a t i o n damage appeared t o induce a very s p e c i f i c ~ h e m i c a l ~ c h a n gien t h e membrane. I n c o n t r a s t , Sutton and Rosen's study i n 1968 of t h e e f f e c t $ of X-rays on t h e e l e c t r i c a l conductance of phospholipid b i l a y e r s produced d a t a which was c o n s i s t e n t w i t h a model i n which r a d i a t i o n exposure induces t h e formation of temporary h o l e s through t h e membrane, l a r g e enough t o permit t h e f r e e d i f f u s i o n of i o n s p r e s e n t . Petkau (1971), u s i n g a model l i p i d membrane system, r e p o r t e d a scavenging of superoxide i o n s by t h e system a f t e r r a d i a t i o n t r e a t m e n t . It was e v i d e n t a l s o t h a t radiation-induced r e a c t i o n s i n t h e aqueous phase were somehow i n f l u e n c e d by t h e o r g a n i z a t i o n of t h e membrane phospholipids. Much of t h e r e c e n t u l t r a s t r u c t u r a l and cytochemical evidence f u r t h e r e l u c i d a t e s t h e mode of r a d i a t i o n damage t o membranes. Various workers have independently shown a l t e r a t i o n s i n u n i t membrane c h a r a c t e r i s t i c s w i t h marked breaks i n membranes o f t e n occuring i n e a r l y s t a g e s following i r r a d i a t i o n ( ~ o l f e d e rand M i l l e r 1963 ; Hugon e t a l . 1965; Nair and Bhakthan 1969; Bhakthan and Dharamraj 1972). I n vivo -- and in v i t r o i r r a d i a t i o n of c e l l o r g a n e l l e s has f u r n i s h e d evidence of l o s s of i n t e g r i t y and changes i n t h e physico-chemical c h a r a c t e r i s t i c s of t h e l i p o p r o t e i n membranes ( ~ e s a -ei t a l . 1964; Zyss and Michalska-Kaszczynska 1972) . E l e c t r o n microscopic s t u d i e s ( ~ h i d o n i1967) of i r r a d i a t e d primate l i v e r r e v e a l e d a l o s s of i n t e g r i t y and i n t e r n a l rearrangement of t h e component macromolecules i n v a r i o u s s t r u c t u r a l membranes. Mitochondria1 o b s e r v a t i o n s r e v e a l e d c o n s i s t e n t a l t e r a t i o n s , d i s t o r t i o n and s w e l l i n g , w i t h an apparent l e a c h i n g of m a t r i x m a t e r i a l . S i m i l a r observations by Hugon and c o l l a b o r a t o r s (1965) support t h e enzyme r e l e a s e t h e o r y a s proposed by Bacq and Alexander (1961). Other morphological and arch- i t e c t u r a l s t u d i e s a r e c o n s i s t e n t w i t h t h e s e views ( ~ c h e r e rand Vogell . 1958; Bencosme -e t a 1 1962; Morgenroth and Themann 1964) . There i s a c l e a r r e l a t i o n s h i p between r a d i a t i o n i n j u r y and a l t e r a t i o n s i n s t r u c t u r e and p e r m e a b i l i t y of o r g a n e l l e and c e l l membranes. The e x t e n t t o which damage t o membranes i s a r e s u l t of i n i t i a l r a d i a t i o n i n j u r y o r i s due t o establishment of metabolic l e s i o n s i s a s y e t unresolved. However, t h e r e has accumulated a wealth of evidence suggesting t h a t radiation-induced l i p i d p e r o x i d a t i o n may be r e s p o n s i b l e f o r t h e observed l o s s of membrane i n t e g r i t y . L i p i d P e r o x i d a t i o n and Damage t o Membranes A / General Considerations Lipid peroxidation i s t h e deterior- a t i v e o x i d a t i o n of p o l y u n s a t u r a t e d l i p i d s and involves a r e a c t i o n of molecular oxygen o r neighbouring f r e e r a d i c a l s w i t h t h e a c t i v a t e d a l l y l i c hydrogens on t h e alpha methylene carbons of t h e u n s a t u r a t e d l i p i d double bond ( ~ e m o p o u l o s1973; Tappel 1973). Because of t h e i r unpaired e l e c t r o n s , l i p i d f r e e r a d i c a l s , once formed, w i l l r e a c t v i g o r o u s l y , i n t i t i a t i n g a chain propagation of hydrogen a b s t r a c t i o n s and a d d i t i o n r e a c t i o n s t h a t can proceed a u t o c a t a l y t i c a l l y a s long a s there are available active s i t e s . Termination of t h i s chain r e a c t i o n can, however, occur by t h e binding of t h e f r e e r a d i c a l s formed o r v i a quenching by a n t i o x i d a n t s . I n g e n e r a l , u n s a t u r a t e d f a t t y a c i d s occur p r i n c i p a l l y i n phosphol i p i d s which a r e i n h e r e n t components of biomembranes. Because peroxida- t i o n of t h e f a t t y a c i d s of such l i p i d s i s i n f l u e n c e d not only by t h e i r degree of u n s a t u r a t i o n b u t a l s o by t h e n a t u r e of t h e moiety e s t e r i f i e d t o t h e phosphate, it i s c l e a r t h a t t h e c o i t e n t of t h e u n s a t u r a t e d l i p i d , degree of u n s a t u r a t i o n and t h e s u b s t i t u t i o n p r o c e s s p r e s e n t , p l a y an important r o l e i n determining t h e likelyhood of p e r o x i d a t i o n damage t o s b i o l o g i c a l membranes ( ~ e m o ~ o u l o1973). Many r e p o r t s have documented t h e c a t a l y t i c e f f e c t of m e t a l c a t i o n s ( c a s h -e t a l . 1966), especially . i n o r g a n i c i r o n , on membrane l i p i d p e r o x i d a t i o n ( ~ t t o l e n g h iet a 1 1955 ; Hunter -e t a l . 1963; W i l l s 1969). Bernheim (1963) suggests t h a t i n i r o n a s c o r b a t e mediated p e r o x i d a t i o n t h e p r o c e s s i s i n i t i a t e d by f e r r o u s i o n s , which i n t h e p r o c e s s a r e oxidized t o f e r r i c i o n s . t h e n reduces t h e s e back t o t h e f e r r o u s s t a t e . by Skrede and Christopherson Ascorbate o x i d a t i o n It was f u r t h e r progosed (1966) t h a t i n t e r m e d i a t e s i n t h i o l oxida- t i o n may b e involved. The importance of haematin compounds, mainly haemoglobin, myog l o b i n and cytochrome 2, a s b i o c a t a l y s t s of l i p i d p e r o x i d a t i o n h a s a l s o been e s t a b l i s h e d . Haematin compounds may, i n f a c t , be t h e primary endo- genous c a t a l y s t s f o r l i p i d o x i d a t i o n i n animal t i s s u e s ( ~ a p p e 1953b) l . Biomembranes such a s occur i n mitochondria, endoplasmic reticulum and lysosomes, c o n t a i n r e l a t i v e l y l a r g e amounts of u n s a t u r a t e d l i p i d s . Although t h e a c t i v e a l l y l i c hydrogens of t h e l i p i d a r e b u r i e d i n t h e hydrophobic r e g i o n of t h e membrane and a r e t h u s afforded p r o t e c t i o n (~emopoulos1 9 7 3 ) , t h e c l o s e a s s o c i a t i o n w i t h t h e s e known b i o c a t a l y s t s arouses i n t e r e s t i n t h e l a b i l i t y of such membranes t o p o s s i b l e damage by l i p i d peroxidation. I n a s e r i e s of i n v e s t i g a t i o n s Hunter and co-workers (1963, 1.964, 1964) s t u d i e d t h e e f f e c t s of f e r r o u s ion-induced l i p i d p e r o x i d a t i o n i n r a t l i v e r mitochondria. It was found t h a t changes i n t h e p e r m e a b i l i t y and s t r u c t u r a l c h a r a c t e r i s t i c s of t h e membrane accompanied t h e o n s e t of l i p i d p e r o x i d a t i o n , l e a v i n g l i t t l e doubt t h a t p e r m e a b i l i t y a l t e r a t i o n s and s w e l l i n g were c a u s a l l y r e l a t e d t o l i p i d peroxide formation. McKnight and c o l l a b o r a t o r s i n 1965 found t h a t f e r r o u s i o n p e r o x i d a t i o n of l i p i d s l e d t o a l o s s of mitochondria1 p r o t e i n and l i p i d i n t o t h e surrounding medium. The r e l e a s e d m a t e r i a l was thought t o c o n s i s t of t h e bulk of i n t e r c r i s t a l s u b s t a n c e , t o g e t h e r w i t h s o l u b i l i z e d p r o t e i n s and elements of t h e e l e c t r o n t r a n s p o r t chain. Similar alterations i n the integrity of p e r o x i d i z i n g microsomes were noted by Bidlack and Tappel (1973). Loss - of membrane bound NADPH cytochrome c r e d u c t a s e a c t i v i t y and r e l e a s e of p r o t e i n were found t o b e r e l a t e d t o a l t e r a t i o n s i n t h e l i p o p h i l i c region of t h e membrane. Evidence of i n c r e a s e d p e r m e a b i l i t y i n b r a i n microsome p r e p a r a t i o n s induced by l i p i d peroxide formation has a l s o been observed ( ~ o b i n s o n1965) as documented by changes i n t u r b i d i t y of t h e system -i n v i t r o , and was accompanied by an i n c r e a s e i n t h e r e a c t i v e s u l f h y d r y l groups i n t h e membrane. Compounds which bound t h e s u l f h y d r y l groups were found t o i n c r e a s e p e r m e a b i l i t y and a c c e l e r a t e l i p i d p e r o x i d a t i o n . This suggests t h a t i n i t i a t i o n of p e r o x i d a t i o n may involve t h e a l t e r a t i o n of a r e l a t i o n s h i p between t h e s e membrane p r o t e i n s and t h e double bonds of t h e phosphol i p i d s , unmasking t h e double bonds and i n i t i a t i n g s t r u c t u r a l changes. A s i m i l a r r e l a t i o n s h i p between p r o t e i n s u l f h y d r y l m o i e t i e s and u n s a t u r a t e d l i p i d s h a s been proposed by S c o t t e t a l . (1.964) t o account f o r s i m i l a r changes occuring a f t e r i r r a d i a t i o n . P e r o x i d a t i o n damage t o membrane p r o t e i n s and enzymes h a s been w e l l described. P r o t e i n s and enzymes i n aqueous s o l u t i o n s , when s u b j e c t e d t o l i p i d p e r o x i d a t i o n , undergo polymerization, chain s c i s s i o n and chemical changes ( ~ o u b a land Tappel 1966a, 1966b). I n an attempt t o determine t h e mechanism of damage t o p r o t e i n by l i p i d p e r o x i d a t i o n Desai and Tappel (1963) found c o n s i d e r a b l e damage t o cytochrome c a s measured by i t s decreased s o l u b i l i t y . Linkages between l i n o l e n i c a c i d and t h e p r o t e i n were found and i d e n t i f i e d a s mainly peroxy o r e t h e r . This l i p i d - p r o t e i n l i n k a g e phenomenon was a l s o observed by Chio and Tappel (1969b) i n a s t u d y of peroxide i n a c t i v a t i o n of r i b o n u c l e a s e A. Loss of enzyme a c t i v i t y was concomitant w i t h t h e formation of i n t r a and inter-molecular crossl i n k a g e s between t h e peroxide degradation p r o d u c t , malonaldehyde and ribonuclease A. C r o s s l i n k i n g a p p a r e n t l y involves r e a c t i o n of malon- aldehyde w i t h t h e primary amino groups of amino a c i d s and p r o t e i n s t o form a S c h i f f base product RN = CH - CH = CH - NH - R which displays f l u o r e s c e n c e maxima i n t h e 450 t o 470 nm region ( c h i 0 and Tappel 1969a). This polymerization of u n s a t u r a t e d l i p i d s w i t h a v a i l a b l e p r o t e i n s may be one of t h e main mechanisms of i r r e p a r a b l e damage t o enzymes and membranes. V i s u a l i z e t h e molecular havoc t h a t occurs when enzymes c r o s s - l i n k w i t h t h e i r molecular neighbours i n such a random d e s t r u c t i v e r e a c t i o n ! The normal p r e c i s i o n arrangement of p r o t e i n s and enzymes i n s u b c e l l u l a r membranes and o r g a n e l l e s would be badly d i s r u p t e d and t h e i r b i o l o g i c a l a c t i v i t e s - would be l o s t o r impaired. 2 The p o s s i b i l i t y t h a t i o n i z i n g B/ R a d i o l o g i c a l Considerations r a d i a t i o n may induce a u t o x i d a t i o n of l i p i d s i n t h e l i v i n g organism h a s occupied i n v e s t i g a t o r s i n t e r e s t e d i n t h e e f f e c t s of r a d i a t i o n exposure on animals. ;n s t u d i e s w i t h t i s s u e homogenates and i s o l a t e d systems it has been observed t h a t i n exposure t o i o n i z i n g r a d i a t i o n peroxides a r e formed t h a t can cause e x t e n s i v e d e s t r u c t i o n of l i p i d s ( ~ a u g a a r d1968). However, t h e a b i l i t y of t h e l i v i n g organism t o d e s t r o y peroxides h a s made t h e search d i f f i c u l t and of many attempts t o f i n d peroxides i n l i v i n g organisms, few have been s u c c e s s f u l . Propagative o x i d a t i o n of l i p i d s induced by i r r a d i a t i o n i s unique only i n t h e d e t a i l s of i n i t i a t i o n and t e r m i n a t i o n ( ~ e a d1961). Promo- t i o n of a u t o x i d a t i o n by r a d i a t i o n may proceed v i a d i r e c t f r e e r a d i c a l formation of t h e t a r g e t molecule o r through e x t r a c t i o n of a l l y l i c hydrogens from f r e e r a d i c a l s formed i n t h e c e l l water. INITIATION : RH PROPAGATION : R .A + 0 ROO* TERMINATION : R or Re >-. > R* B + RH >- C >-. + H * >- + R D + H* ROO AUTOCATALYTIC ROOH + R * R :R R:H from Harmon 1968 I n t h e above diagram r e a c t i o n A i s i n i t i a t e d by e i t h e r d i r e c t o r i n d i r e c t a c t i o n of i o n i z i n g r a d i a t i o n , forming a l i p i d f r e e r a d i c a l which 2 ~L.. Tappel P r o c . , 3 2 ( 8 ) : 1870 L i p i d P e r o x i d a t i o n Damage t o C e l l Components, Fed. 1874, 1973 - combines w i t h oxygen ( r e a c t i o n B ) t o form a l i p i d peroxide r a d i c a l . This s p e c i e s can t h e n r e a c t with neighbouring l i p i d s t o form l i p i d peroxide and newly formed f r e e r a d i c a l s which can s e r v e t o c a t a l y z e t h e propagat i o n sequence a g a i n , u n l e s s t e r m i n a t e d by f r e e r a d i c a l binding o r hydrogen quenching ( r e a c t i o n D) . Work by Dubouloz and c o l l a b o r a t o r s (1950, 1952) has shown t h a t l i p i d peroxides a r e formed i n r a t s k i n following X - i r r a d i a t i o n . However, t h e f a c t t h a t t h e peroxides were not d e t e c t e d u n t i l t h e f o u r t h day suggests t h a t t h e y could not have been primary products of i r r a d i a t i o n . Barber and Ottolenghi ( 1 9 5 7 ) ~ i n demonstrating t h e p r o t e c t i v e a c t i o n of EDTA i n i r r a d i a t e d mitochondria, showed t h a t t h i s p r o t e c t i v e a b i l ' t y was p r o p o r t i o n a l t o t h e i n h i b i t i o n of peroxide formation. An i n t e r e s t i n g suggestion was t h a t r a d i a t i o n may r e l e a s e c a t i o n s , known f o r t h e i r c a t a l y t i c p r o p e r t i e s , from normal b i o l o g i c a l c h e l a t i n g a g e n t s , t h u s i n i t i a t i n g t h e chain propagation. E a r l i e r experiments on mice by Horgan and P h i l p o t (1954, 1955) i n d i c a t i n g t h a t a u t o c a t a l y t i c peroxide product i o n may be o p e r a t i n g i n t h e p o s t - i r r a d i a t e d animal were supported by Bernheim and c o l l a b o r a t o r s (I-956), who found t h a t exposure of r a b b i t s t o 1400 r a d s of X-radiation produced s i g n i f i c a n t e l e v a t i o n s i n peroxide v a l u e s i n t h e bone marrow. I n add:-tion, evidence of p a r t i a l d e s t r u c t i o n o f a n t i o x i d a n t s s u p p o r t s t h e c o n t e n t i o n t h a t a n t i o x i d a n t d e s t r u c t i o n may be involved i n r a d i a t i o n i n j u r y . A l t e r a t i o n of t h e membrane l i p i d s l e a d i n g t o i n c r e a s e d s e n s i t i v i t y t o p e r o x i d a t i o n , o r an i n c r e a s e d c a t a l y t i c a b i l i t y of b i o l o g i c a l pro-oxidants such a s non-haem i r o n , have a l s o been proposed by W i l l s (1970) a s a l t e r n a t e modes inducing p e r o x i d a t i o n . S t u d i e s by W i l l s and Wilkinson (1967) on t h e r a d i a t i o n e f f e c t i n s u b c e l l u l a r f r a c t i o n s of r a t l i v e r -i n v i t r o provide f u r t h e r evidence of r a d i a t i o n induced l i p i d p e r o x i d a t i o n . The a u t h o r s suggested t h a t t h e formation of l i p o i d a l peroxides may be r e s p o n s i b l e f o r t h e primary biochemical l e s i o n i n i r r a d i a t e d animals. S i m i l a r r e s u l t s were obtained by W i l l s (1970) i n i r r a d i a t e d microsomal systems i n which p o s t - i r r a d i a t i o n peroxide formation produced e x t e n s i v e degradation of t h e microsomal l i p i d , accompanied by a r e l e a s e of malonaldehyde o r r e l a t e d di-aldehydes. Although Bacq and co-workers d e t e c t e d peroxides i n t h e xylene , e x t r a c t s of mouse and r a t depot f a t following i r r a d i a t i o n (1951)~ t h e extremely small v a l u e s obtained do n o t g i v e conclusive evidence t h a t i n j u r y i n l i v i n g systems i n i t i a t e s -i n v i v o p e r o x i d a t i o n of l i p i d s . Furthermore, only n e g l i g i b l y small i n c r e a s e s i n l i p i d peroxides occured i n vivo -- i n v a r i o u s organs of r a t s i n response t o whole-body i r r a d i a t i o n , i n c o n t r a s t t o s i g n i f i c a n t amounts of peroxides formed i n incubated t i s s u e homogenates ( ~ c h i ie t al. 1 9 6 8 ) . These r e s u l t s i n d i c a t e t h a t -- l i p i d p e r o x i d a t i o n i n v i t r o does not r e p r e s e n t t h e amount formed -- in -- viva, and makes t h e e x t r a p o l a t i o n of i n v i t r o evidence t o t h e i n vivo s i t u a t i o n v e r y tenuous indeed. Although t h e r e i s no c l e a r c u t evidence t h a t peroxides a r e formed i n damaging amounts i n i r r a d i a t e d animals, it i s p o s s i b l e t h a t even extremely small amounts of peroxides may produce a c o n s i d e r a b l e radiol o g i c a l e f f e c t , a s was shown by Bernheim and co-workers (1952), s o t h a t t h e q u e s t i o n of radiation-induced peroxide damage remains open. Vitamin E: Antioxidant o r Metabolic I n t e r m e d i a t e ? The b i o l o g i c a l f u n c t i o n of vitamin E has been a t o p i c of i n t e n s i v e r e s e a r c h f o r over 30 y e a r s and t o d a t e t h e r e i s s t i l l no agreement on i t s t m e biochemical r o l e . the literature. Two schools of thought have, however, dominated The a n t i o x i d a n t h y p o t h e s i s , which has r e c e i v e d t h e widest s u p p o r t , contends t h a t vitamin E a c t s s o l e l y a s a p h y s i o l o g i c a l l i p i d a n t i o x i d a n t , a c t i v e i n t e r m i n a t i n g t h e a u t o c a t a l y t i c propagation of f r e e r a d i c a l i n t e r m e d i a t e s . The second hypothesis c o n s i d e r s t h a t a-tocopherol has some o t h e r bi ol ogi c a l r o l e ( s ! dfs t i c c t l y s e p a r z t z f s ~ x i t s possible antioxidant a c t i v i t y . Although Dam (1957) has s m a r i z e d evidence t h a t vitamin E f u n c t i o n s i n vivo a n t i o x i d a n t , t h e r e i s much accumulated evidence e n t i r e l y a s an -s u g g e s t i n g t h a t v i t a m i n E does not prevent a u t o x i d a t i o n of l i p i d s in vivo reen en - et al. 1967; Diplock et a l . 1968). Recent experimental work -- h a s been p r e s e n t e d by Diplock e t a l . (1971) which i n d i c a t e s t h a t t h e f u n c t i o n of vitamin E may b e t o p r o t e c t a reduced form of selenium from bio-oxidation. Another i d e a contends t h a t , i n s t e a d of f u n c t i o n i n g a s an a n t i o x i d a n t , vitamin E may f i l l a p h y s i o l o g i c a l r o l e i n membrane s t a b i l i z a t i o n by v i r t u e of s p e c i f i c physico-chemical i n t e r a c t i o n s between i t s p h y t y l s i d e chain and t h e f a t t y a c i d a c y l chains of polyunsaturated l i p i d s . D i f f e r e n t conclusions were drawn, however, by McCay and co-workers (1972) i n a study involving l i p i d degradation i n membranes r e s u l t i n g from f r e e energy changes i n e l e c t r o n t r a n s p o r t systems. It was found t h a t a-tocopherol preserved membrane i n t e g r i t y by scavenging f r e e r a d i c a l s formed a s a r e s u l t of e l e c t r o n t r a n s p o r t and t h u s afforded p r o t e c t i o n a g a i n s t p e r o x i d a t i v e chain cleavage by v i r t u e of i t s a n t i o x i d a t i v e c a p a b i l i t i e s . I n c o n t r a s t , Levander and Morris (1971) suggest t h a t a-tocopherol may play a r o l e i n t h e maintenance of i n t e r - c e l l u l a r c a t i o n g r a d i e n t s . To add t o t h e confusion, t h e r e i s now a l a r g e body of evidence suggesting t h a t vitamin E plays a key r o l e i n t h e r e g u l a t i o n of haem b i o s y n t h e s i s , presumably by c o n t r o l l i n g t h e mechanisms of induction-repression a t t h e enzymatic s t e p s i n t h e s y n t h e s i s of o-aminolevulinic a c i d (ALA) and yorphobilinogen (PBG) a air 1972). I n an e f f o r t t o f i n d common ground between t h e two viewpoints, Nair (1972) has proposed t h a t t h e r e g u l a t i o n of haem b i o s y n t h e s i s by a-tocopherol i n h e r e n t l y c o n t r o l s t h e conjugation of haem with t h e apoprotein of c a t a l a s e , which i n t u r n c a r r i e s out t h e c a t a l y t i c scavenging of peroxides formed by t h e b i o l o g i c a l oxidation of lipids. Hence, a metabolic f u n c t i o n of vitamin E i s proposed which i s manifested i n i t s a n t i o x i d a n t a c t i v i t y . However, Horwitt s t a t e s t h a t Since t h e mammalian organism w i l l s u r v i v e i n t h e absence of a-tocopherol i f some o t h e r a n t i o x i d a n t i s subjected, it i s most i l l o g i c a l t o continue t o a t t a c h any major import a n c e t o r e p o r t s about a-tocopherol being an i n t e g r a l p a r t of a c r i t i c a l enzyme system.3 ... Although many workers d i s a g r e e with t h e b i o l o g i c a l antioxidant concept of vitamin E reen en -e t al. -- 1967; Diplock e t a l . 1968; Green 1972; Lucy 1972; Schwarz 1972; Diplock and Lucy 1973), many workers have produced considerable evidence i n support of t h e proposal. An i n v e s t i g a t i o n 3 ~ . Horwitt, ~ . Role of vitamin E , selenium, and polyunsaturated f a t t y acids i n c l i n i c a l and experimental muscle d i s e a s e . FED PROC. 24: 68 - 72, 1965. by Tappel (1952a) of t h e o x i d a t i o n of u n s a t u r a t e d f a t t y a c i d s c a t a l y z e d by haematin compounds r e v e a l e d t h a t t h e r e a c t i o n could be i n h i b i t e d by vitamin E and o t h e r a n t i o x i d a n t s , i n d i c a t i n g t h a t a-tocopherol may f u n c t i o n -i n vivo t o i n h i b i t haematin-catalyzed o x i d a t i o n of f a t . In a d d i t i o n , chenges i n c a t a l y t i c and s t r u c t u r a l p r o t e i n s due t o vitamin E d e f i c i e n c y a r e thought by Tappel (1955) t o r e s u l t from t h e r e a c t i o n of l i p i d peroxide products w i t h t h e p r o t e i n , and support t h e c o n t e n t i o n t h a t v i t a m i n E f u n c t i o n s p r i n c i p a l l y a s an a n t i o x i d a n t . It i s l i k e l y t h a t vitamin E a c t s a s a chain-breaking a n t i c x i d a n t , i n h i b i t i n g t h e f r e e r a d i c a l p e r o x i d a t i o n v i a hydrogen a b s t r a c t i o n o r through t h e formation of a l i p i d peroxy r a d i c a l - t o c o p h e r o l complex (Tappel 1972). However, i n s t u d i e s of a- tocopherol o x i d a t i o n p r o d u c t s i s o l a t e d from animal ti ssue , t h e a b s t r a c t i o n of hydrogen appears t o be t h e dominant p r o c e s s (Tappei A s t u d y of t h e e f f e c t s of r a d i a t i o n and peroxidation-induced r a d i c a l s on a-tocopherol showed t h a t r a d i a t i o n of vitamin E i n isooctane produced many products. However, 5-exomethylenetocopher-6-one, derived from t h e e x t r a c t i o n of two hydrogen atoms, appeared t o be t h e major product formed ( ~ n a p pand Tappel 1961). The conversion of a-tocopherol t o t h i s a r r a y of degradation products i s c o n s i s t e n t w i t h observed p a r t i a l d e s t r u c t i o n of t o c o p h e r o l i n l i v i n g t i s s u e s ( ~ e a d1961) . Furthermore, t h e dehydrogenation of vitamin E t o t h e conjugated ketone product from r a d i a t i o n suggests t h a t t h e "modus operandi" of r a d i a t i o n damage may involve d e s t r u c t i o n of t h e a n t i o x i d a n t i n l i v i n g t i s s u e , allowing unc o n t r o l l e d l i p i d p e r o x i d a t i o n t o ensue. Such has been proposed by 27 Myers and Bide (19661, who suggested t h a t radiation-induced d e s t r u c t i o n of t h e membrane a n t i o x i d a n t i s c a u s a l l y r e l a t e d t o t h e formation of l i p i d peroxides i n e r y t h r o c y t e membranes. I n a d d i t i o n , t h e i r r a d i a t i o n of blood from mice p l a c e d on v a r i o u s d i e t s supplemented w i t h t h e vitamin ( p r i n c e 1973) has shown t h a t tocopherol f o r t i f i c a t i o n not only r e v e r s e s haemolytic e f f e c t s i n t o c o p h e r o l d e f i c i e n t e r y t h r o c y t e s b u t a l s o decreases haemolysis and l o s s of potassium from t h e c e l l s . It was furthermore apparent t h a t d i e t a r y l e v e l s of a n t i o x i d a n t may be an important f a c t o r i n t h e radios e n s i t i v i t y of e r y t h r o c y t e s . - Wills (1970) found vitamin E t o be an e f f e c t i v e i n h i b i t o r of i n v i t r o p e r o x i d a t i o n of i r r a d i a t e d r a t l i v e r microsomes, and i n a l a t e r s t u d y Dawes and W i l l s (1972) showed t h a t supplementation of t h e d i e t w i t h v i t a m i n E depressed t h e r a t e of p e r o x i d a t i o n i n t i s s u e homogenates of mice following exposure t o i o n i z i n g r a d i a t i o n . It was concluded t h a t t h e a n t i o x i d a n t c o n c e n t r a t i o n s a t t h e c e l l u l a r and s u b c e l l u l a r l e v e l p l a y a major r o l e i n t h e r e g u l a t i o n of p o s t - i r r a d i a t i o n p e r o x i d a t i o n of l i p i d s . Although many i n v e s t i g a t i o n s -i n v i t r o support t h e a n t i o x i d a n t h y p o t h e s i s , t h e l a c k of conclusive evidence of -i n v i v o peroxide formation o r t h e presence of peroxides i n t i s s u e s ( ~ c h w a r z1972) has s e v e r e l y hampered s t u d y of t h e a n t i o x i d a n t a c t i v i t y of vitamin E i n t h e i n t a c t , l i v i n g organism. Perhaps confusing t h e i s s u e i s t h e f a c t t h a t 2 vivo p e r o x i d a t i o n of p o l y u n s a t u r a t e d l i p i d s i s suppressed by many o t h e r ~ e l Strong evidence of mechanisms i n a d d i t i o n t o vitamin E ( ~ a ~ 1972). t h e a n t i o x i d a n t a b i l i t y of vitamin E i n i n t a c t , l i v i n g systems w i l l be r e q u i r e d i n t h e f i n a l resolvement of t h i s controversy. CHAPTER I11 RADIATI ON-INDUCED ENZYME EFFLUX FROM RAT HEART: I . SEDENTARY ANIMALS INTRODUCTION One of t h e biochemical i n d i c a t o r s of a c u t e r a d i a t i o n i n j u r y i s an i'ncrease i n serum l e v e l s of l a c t a t e dehydrogenase (LDH). This has been -- documented by Hawrylewicz and B l a i r (I-966), Hori e t a l . (1968, 1970) and Kgrcher ( 1 9 7 1 ) ~ who have independently shown t r a n s i e n t e l e v a t i o n s of t o t a l LDH and t h e v a r i o u s isoenzymes following i r r a d i a t i o n . I n addition, research i n v o l v i n g s e r u m g l 1 ~ t ~ a r n a t . oxal e o a c e t , a t . e t s r a n s a m in a s e ( G O T ) a s a r a d i o b i o l o g i c a l marker has shown t h a t i n some mammalian s p e c i e s subl e t h a l exposures l e d t o s i g n i f i c a n t , t r a n s i e n t i n c r e a s e s i n serum a c t i v i t i e s ( ~ i l c hand Albaum 1956; P e t e r s e n -e t a l . 1957; Brent -e t al. e t a l . 1962; Almonte -e t a l . 1965). 1958; Becker -e t al. -- The d a t a from Brent (1958) s u g g e s t s t h a t t h e response i s v a r i e d between s p e c i e s . I r r a d i a t e d r a b b i t s e x h i b i t e d s i g n i f i c a n t e l e v a t i o n s of serum GOT w i t h i n twenty-four hours of t r e a t m e n t , while r a t s s u b j e c t e d t o e i t h e r wholebody o r l o c a l i r r a d i a t i o n of t h e l i v e r d i d not show any s u b s t a n t i a l GOT e l e v a t i o n a f t e r one day. Although l i t t l e i s known about t h e p o t e n t i a l of c r e a t i n e k i n a s e ( C K ) a s a r a d i o b i o l o g i c a l marker, observable serum e l e v a t i o n s occured i n p a t i e n t s ( p o s t - t r e a t m e n t ) r e c e i v i n g i n c i d e n t a l c a r d i a c i r r a d i a t i o n ( ~ u g g i a1970). Since CK i s l o c a t e d i n s k e l e t a l and c a r d i a c muscle i n high c o n c e n t r a t i o n , i t s appearance i n t h e blood may - indicate radiation injury t o these tissues. \ Much of t h e work t o d a t e has involved t h e enzymological e f f e c t s of whole-body i r r a d i a t i o n , where c e l l death and d i s i n t e g r a t i o n of radios e n s i t i v e t i s s u e s may c o n t r i b u t e g r e a t l y t o t h e observed serum e l e v a t i o n . L i t t l e work, however, has been published o u t l i n i n g t h e e f f e c t s of l o c a l i z e d i r r a d i a t i o n of r a d i o r e s i s t a n t t i s s u e s , where t h e r a p e u t i c doses do not involve massive c e l l d i s r u p t i o n . The p r e s e n t s t u d y w a s undertaken t o i n v e s t i g a t e p o s s i b l e changes i n serum l e v e l s of LDH, GOT and CK a s p o s s i b l e i n d i c a t o r s of r a d i a t i o n i n j u r y t o t h e h e a r t , and t o attempt t o c o r r e l a t e t h e s e changes w i t h a l t e r a t i o n s i n t i s s u e l e v e l s of t h e enzyme. I r r a d i a t i o n Procedure S p r a m e Dawley, male r a t s of 150 t o 200 grams were p l a c e d under l i g h t e t h e r a n a e s t h e s i a twenty-four hours p r i o r t o i r r a d i a t i o n and marked l a t e r a l l y a c r o s s t h e t o p of t h e s c a p u l a t o d e f i n e t h e t a r g e t a r e a . At t h e time of i r r a d i a t i o n t h e animals were p l a c e d i n t o v e n t i l a t e d p l e x i g l a s s t u b e s t o r e s t r i c t movement. The f i e l d exposure a r e a was a d j u s t e d t o cover 3 cm p o s t e r i o r t o t h e s c a p u l a markings, a s t h i s was found t o be optimal i n minimizing r a d i a t i o n damage t o p e r i p h e r a l t i s s u e s and organs, while allowi n g i r r a d i a t i o n of t h e e n t i r e h e a r t . Rats were i r r a d i a t e d i n groups of f o u r , u s i n g an Eldorado 8 ( ~ t o m i cEnergy of Canada) t h e r a p e u t i c c o b a l t unit. The dose r a t e was 281 r a d s p e r minute a t t h e s u r f a c e and exposure time was c o r r e c t e d f o r an absorbance l o s s of 15.7% a t an average depth of 3 cm t o g i v e an a c u t e dosage of 2,000 r a d s . S h a m - i r r a d i a t e d - c o n t r o l s were t r e a t e d i n an i d e n t i c a l manner t o t h e experimental animals. A l l animals were t r e a t e d i n accordance w i t h t h e g u i d e l i n e s e s t a b l i s h e d i n Care of Experimental Animals -A Guide f o r Canada, published by t h e Canadian Council on Animal Care, Ottawa. Sampling Procedure I n o r d e r t o minimize serum t u r b i d i t y t h e r a t s were f a s t e d f o r s i x A t pre-determined i n t e r v a l s r a t s were p l a c e d hours p r i o r t o s a c r i f i c e . under mild e t h e r a n a e s t h e s i a and an i n c i s i o n was made a c r o s s t h e abdomen. Blood was withdrawn from t h e i n f e r i o r vena cava u s i n g a non-heparinized s y r i n g e and immediately t r a n s f e r r e d t o s e a l e d r ~ n t . r i f i l g et.ll'hes - S%cnl r--u were allowed t o c l o t f o r 30 minutes a t 2 5 ' ~ and were t h e n p l a c e d on i c e f o r approximately 30 minutes u n t i l c e n t r i f u g i n g a t 2,000 x g f o r 1 5 minutes ( ~ i s n i e w s k a1970). Serum was c o l l e c t e d and d i v i d e d i n t o i n d i v i d u a l v i a l s f o r t h e enzyme a s s a y s . A l l samples f o r l a c t a t e dehydrogenase (LDH) determina- t i o n s were s t o r e d a t 4 - 6 ' ~ and assays were run w i t h i n 40 - 48 hours. LDH samples were n o t f r o z e n due t o known i n a c t i v a t i o n of t h e enzyme ( ~ o l i m a nand Van Den Berg 1 9 7 1 ) . Samples f o r c r e a t i n e k i n a s e ( C K ) and glutamate o x a l o a c e t a t e transaminase (GOT) determinations were f r o z e n i n l i q u i d n i t r o g e n and s t o r e d on dry i c e u n t i l assayed. It has been shown t h a t CK and GOT a c t i v i t y l e v e l s remain s t a b l e f o r s e v e r a l weeks when s t o r e d ' at - 2 0 ' ~ (Lederle D i a g n o s t i c s , American Cyanamid Co., B u l l e t i n 27819). Heart Muscle P r e p a r a t i o n Rat h e a r t s were e x i s e d , trimmed of f a t t y and connective t i s s u e and plunged i n t o i c e - c o l d 0.15 M K C 1 . q u i c k l y b l o t t e d dry and weighed. A f t e r r i n s i n g , t h e h e a r t s were The t i s s u e was f i n e l y minced w i t h s c i s s o r s and washed f i v e times i n ice-cold 0.15 M K C 1 and twice i n a m u l t i p l e s a l t s b u f f e r modified from Chappell and P e r r y (1954). This medium contained 0 . 1 M K C 1 , 0.005 M MgS04 and 0.001 M ethylenediamine t e t r a a c e t a t e (EDTA) i n 0.05 M TRIS H C 1 b u f f e r , pH 7.4. The minced muscle was t h e n homogenized i n two volumes of t h e above medium using a ground-glass, Ten-Broeck t y p e homogenizer, and a p p r o p r i a t e l y d i l u t e d t o make a 10% homogenate. Homogenate samples were c e n t r i f u g e d a t 650 x g f o r f i v e minutes a f t e r which t h e s u p e r n a t a n t was c o l l e c t e d and t h e o p e r a t i o n r e p e a t e d t o remove c e l l u l a r d e b r i s ( ~ r n s t e rand Nordenbrand 1967). The r e s u l t a n t s u p e r n a t a n t was c e n t r i f u g e d a t 6,000 x g f o r 1 5 minutes t o o b t a i n a crude mitochondrial p e l l e t , which was resuspended i n f r e s h b u f f e r and c e n t r i f u g e d a s b e f o r e . Although h i g h e r c e n t r i f u g e speeds i n c r e a s e t h e product y i e l d , it was found t h a t 6,000 x g o f f e r e d considerably p u r e r f r a c t i o n s . This has been independently shown by Holton -e t a1 (1957) and Hedman (1965). Supernatant r e s u l t i n g from t h e f i r s t mitochondrial f r a c t i o n was c o l l e c t e d , d i v i d e d i n t o ind i v i d u a l v i a l s and s t o r e d i n t h e same manner a s were serum samples. The washed mitochondrial p e l l e t was r i n s e d t h r e e t i m e s i n 0.15 M K C 1 and suspended i n 1 . 0 m l of t h i s s o l u t i o n . The f i n a l mitochondrial suspension was f r o z e n i n l i q u i d n i t r o g e n and s t o r e d on dry i c e u n t i l I n t h e above procedure a l l manual o p e r a t i o n s were c a r r i e d out on i c e and c e n t r i f u g a t i o n s were performed a t c e n t r i f u g e using a JA-20, OOC i n a Beckman model 521 fixed-angle r o t o r . Enzyme Assays C r e a t i n e k i n a s e assays employed t h e forward r e a c t i o n o r Rosalki technique ( ~ o s a l k i1967) using t h e following r e a g e n t s ( g i v e n a s f i n a l c o n c e n t r a t i o n s i n t h e assay medium) : M magnesium s a l t , 1.45 x loa2 M c r e a t i n e phosphate, 1.1 x M PIPES b u f f e r , 11.5 x 5 x M glucose, 9 . 1 x M ADP, 8.67 x M AMP, 1 . 8 x M reduced I M NAIF, 3 g l u t a t h i o n e , 5 .O x TTT p e r a s s a y n f hexnkinase, 1 IU p e r assay of g l ~ c o s e - 6 - ~ h o s p h a t edehydrogenase ( ~ lr ela g e n t s were prepackaged by Calbiochem, San ~ i e g o ) . Serum assays were run using f r e s h l y thawed, u n d i l u t e d samples. Homogenate samples were d i l u t e d t o 0.2% a f t e r thawing, u s i n g modified Chappell-Perry medium. Measurement of background u t i l i z e d NADP, u s i n g c r e a t i n e phosphate-free c o n t r o l s o l u t i o n s , (Calbiochem) was pre-determined f o r both serum and homogenate p r e p a r a t i o n s , and was found t o be n e g l i g i b l e . Since t u r b i d i t y e r r o r s f o r both assays were a l s o found n e g l i g i b l y s m a l l , a s s a y s were c a l i b r a t e d a g a i n s t a d i s t i l l e d water blank a t 340 nm and run f o r twelve minutes a t 3 0 ' ~ by a d d i t i o n of 10 - 20 vl of enzyme s o l u t i o n t o 3.0 m l of assay mixture. L a c t a t e dehydrogenase a s s a y s were performed u s i n g t h e r e v e r s e r e a c t i o n developed by Wroblewski and LaDue (1955) i n which t h e s u b s t r a t e , p y r u v a t e , i s reduced t o l a c t a t e . The assay system contained 0.08 M potassium phosphate b u f f e r , pH 7 . 5 , 7 . 5 x lo-' M sodium pyruvate, and 1.1 x lom4 M NADH. Prepared r e a g e n t s w e r e purchased from Calbiochem. Serum was assayed i n u n d i l u t e d form; homogenate samples were d i l u t e d t o 1.0% w i t h modified c h a p p e l l - ~ e r r y b u f f e r . Background e r r o r was pre- determined, u s i n g a s u b s t r a t e - f r e e c o n t r o l s o l u t i o n of 1.1 x ( ~ a l b i o c h e m )i n 0.08 M potassium phosphate b u f f e r , pH 7.5. lo-' M NADH The a n a l y s i s showed no d e t e c t i b l e u t i l i z a t i o n of NADH, i n d i c a t i n g no need f o r p a r a l l e l c o n t r o l runs. T u r b i d i t y e r r o r s i n serum and homogenate were found t o be n e g l i g i b l y s m a l l , allowing assays t o be c a l i b r a t e d a t 340 nm, a g a i n s t a d i s t i l l e d water b l a n k . adding 1 0 - Assays were run f o r 2 - 3 minutes a t 30•‹c, a f t e r 20 p1 of enzyme s o l u t i o n t o 3.0 m l of assay mixture. Glutamate o x a l o a c e t a t e transaminase was determined by t h e u l t r a v i o l e t method of Karmen (1955) on serum, homogenate and h e a r t mitochond r i a l fractions. pH 7.4, 4.0 x The assay system contained 0 . 1 M phosphate b u f f e r , M L-aspartate, 1 . 2 x loe2 M NADH, 0.25 mg malate dehydrogenase p e r m l , 0.25 mg l a c t a t e dehydrogenase p e r m l and 0.25 M a-oxoglutarate. Prepared r e a g e n t s were purchased from Boehringer Mannheim Corporation. To 3.2 m l of assay mixture was added 0.5 m l of enzyme s o l u t i o n , and t h e degradation of NADH was follwed at 366 nm f o r 4 t o 6 minutes a t 25'~. Serum was assayed i n u n d i l u t e d form; homogen- a t e samples, however, were d i l u t e d w i t h b u f f e r t o 0.1%. Due t o t h e impermeability of b i o l o g i c a l membranes to-many s u b s t r a t e s and c o f a c t o r s ( ~ y c o c kand Nahorski 1 9 7 1 ) , mitochondrial samples were r u p t u r e d by a d d i t i o n of 1% TRITON X -100 i n 0 . 1 M t r i s - a c e t a t e b u f f e r , pH 6.8 ( ~ b o o dand Alexander 1957; G r e v i l l e and Chappel 1959; Wainio 1 9 7 0 ) . Although t h i s assay employs an ammonia-free system, p o s s i b l e contamina- ti on by g l u t m a t e dehydrogenase ( GLDH ) i n homogenate and m i tochondri a 1 p r e p a r a t i o n s was checked. Enzyme a n a l y s i s by t h e method of Schmidt (1965) r e v e a l e d only n e g l i g i b l e l e v e l s of t h e enzyme i n r a t h e a r t . This has been -- f u r t h e r shown by Kochakian e t a.. ( 1 9 5 9 ) , who found attempts t o determine GLDH l e v e l s i n mice and r a t h e a r t s y i e l d e d q u e s t i o n a b l e r e s u l t s . Back- ground degradation of NADH, using s u b s t r a t e - f r e e c o n t r o l s f o r t h e GOT system, i n d i c a t e d an average e r r o r of l e s s t h a n 3% i n serum. No de- t e c t a b l e background a c t i v i t y was found i n homogenate and mitochondrial preparations. Due t o considerable serum t u r b i d i t v . s m g l e s were c a l j - b r a t e d a g a i n s t a serum blank c o n t a i n i n g 0.50 m l u n d i l u t e d serum i n 3.2 m l of 0 . 1 M phosphate b u f f e r , pH 7.4. Because t u r b i d i t y e r r o r s f o r homogenate and mitochondrial samples were n e g l i g i b l e , t r a n s m i t t a n c e was c a l i b r a t e d a g a i n s t a blank of 0 . 1 M phosphate b u f f e r . P r o t e i n Determination I n o r d e r t o r e l a t e t h e c a l c u l a t e d mitochondrial enzyme a c t i v i t i e s t o t h e c o n c e n t r a t i o n of mitochondria, determinations of t o t a l mitochondrial p r o t e i n were o b t a i n e d u s i n g t h e b i u r e t method ( ~ a ~ 1957). n e 0.8 m l of m i t o c h o n d r i a l suspension, 0.6 - - 0.2 m l of 5% deoxycholate ( ~ a c o b set a l . 1956) was added t o remove t u r b i d i t y . 4 To 0.4 A f t e r t e n minutes -- m l of b i u r e t r e a g e n t ( ~ o r n a l el t a l . 1949) was added and t h e mixture was allowed t o s t a n d f o r 30 minutes a t room temperature. Absorbance v a l u e s were recorded a t 550 nm a g a i n s t a blank c o n t a i n i n g 4 reagent w i t h 1 . 0 m l of d i s t i l l e d water. ml of b i u r e t P r o t e i n c o n c e n t r a t i o n s were o b t a i n e d by r e f e r e n c e t o a c a l i b r a t i o n curve e s t a b l i s h e d by s e r i a l d i l u t i o n of bovine serum albumin. I Data Analysis Reaction o r d e r k i n e t i c s f o r each enzyme system were p r e v i o u s l y determined and r e a c t i o n r a t e s were followed on a Beckman DB-GT s p e c t r o photometer f i t t e d w i t h a P h i l l i p s model PM 8100 f l a t - b e d r e c o r d e r . Reaction r a t e d a t a was t h e n f i t t e d t o t h e e q u a t i o n f o r t h e corresponding o r d e r , and r a t e s were computed by a l e a s t s q u a r e s f i t u s i n g a D i g i t a l Equipment Company PDP-8 computer. Mean v a l u e s and i n d i v i d u a l v a r i a n c e s were determined f o r each sample group a f t e r s u b j e c t i n g t h e s a m ~ l e st o a Q-test analysis. A p p l i c a t i o n of t h e F - t e s t f o r an a n a l y s i s of v a r i a n c e between groups showed no s i g n i f i c a n t d i f f e r e n c e s i n t h e p o p u l a t i o n v a r i a n c e s , and warranted t h e d e t e r m i n a t i o n o f a pooled e s t i m a t e of v a r i a n c e ( ~ i x o nand Massey 1957). T - t e s t s between c o n t r o l and e x p e r i - mental v a l u e s were r u n f o r a o n e - t a i l e d , d i r e c t i o n a l h y p o t h e s i s , u s i n g t h e pooled e s t i m a t e of v a r i a n c e ( ~ o w n i eand Heath 1 9 7 0 ) . RESULTS Serum Assays I n a l l c a s e s serum enzyme l e v e l s reached maximal v a l u e s w i t h i n twenty-four hours f o l l o w i n g t h o r a c i c i r r a d i a t i o n . s i x t o twelve hours p o s t - i r r a d i a t i o n , t r e n d t o r e t u r n t o normal l e v e l s . Peak e l e v a t i o n s a r o s e a f t e r which was noted a g e n e r a l These r e s u l t s a r e i n agreement with -- o t h e r s t u d i e s i n v o l v i n g whole-body i r r a d i a t i o n ( ~ e c k e re t a l . 1962; et al. Almonte et a l . 1965; Hori -e t a l . 1969; Hori -e t al. 1968; ~ a k & n o r i-1970) . L a c t a t e dehydrogenase (LDH) serum l e v e l s r o s e 139% above c o n t r o l l e v e l s s i x hours a f t e r exposure ( ~ i g .1 ) . t h i s increase t o be significant (p < .05). S t a t i s t i c a l a n a l y s i s showed Twelve and twenty-four hours a f t e r exposure, serum LDH a c t i v i t y decreased r e s p e c t i v e l y t o 48% and 21% above c o n t r o l l e v e l . Although t h e twelve hour sample shows s i g n i f i c a n t e l e v a t i o n , t h e tyenty-four hour l e v e l i s not s t a t i s t i c a l l y d i f f e r e n t On day t h r e e a second i n c r e a s e i n serum LDH a c t i v i t y from c o n t r o l l e v e l . t o 52% above c o n t r o l showed marginal s i g n i f i c a n c e a t t h e 5% l e v e l , and r e t u r n e d t o normal on days s i x and n i n e . This g e n e r a l p a t t e r n has a l s o been observed by Hori and Nishio (1962). A t h i r d transient increase t o \ 79% above c o n t r o l a c t i v i t y occurred twelve days a f t e r i r r a d i a t i o n . The mean LDH a c t i v i t y on day f i f t e e n does not show s i g n i f i c a n t d e v i a t i o n from the control able 1). C r e a t i n e k i n a s e (CK) serum a c t i v i t y r o s e 131% above t h e c o n t r o l v a l u e s i x Bours a f t e r i r r a d i a t i o n ( p < . 0 5 ) . A t twelve hours a 68% e l e v a t i o n was observed ( p < . 0 5 ) , which decreased t o w i t h i n c o n t r o l l e v e l by twenty-four hours a able 2). A secondary e l e v a t i o n t o 110% above c o n t r o l a c t i v i t y occurred on day t h r e e ( P < . 0 5 ) , b u t r e t u r n e d t o normal by day s i x . A t h i r d s i g n i f i c a n t e l e v a t i o n occurred on day twelve which, a s i n t h e case of t h e serum LDH p a t t e r n , remained e l e v a t e d a t day f i f t e e n . However, due t o t h e s m a l l sample s i z e of day f i f t e e n , t h e e l e v a t i o n i s not s i g n i f i c a n t l y d i f f e r e n t from t h e c o n t r o l ( ~ i g .2 ) . - TABLE 1 SERUM UVELS OF LACTATE DEHYDROGENASE AT VARIOUS INTERVALS AFTER EXPOSURE TO 2,000 RADS OF y-RADIATION. SIGNIFICANT DIFFERENCES BETWEEN CONTROL AND TEST MEANS WERE DETERMINED BY t-TEST, USING A POOLED ESTIMATE OF VARIANCE Me an Activity mU/ml Group Number of Samples Control 5 1.31 x f u 3.16 x io7 1 2 Hour 6 1.94 lo3 24 Hour 5 1.59 x lo3 3 Day 4 2.00 x lo5 6 Day 4 1.27 x lo3 9 Day 3 1.36 x 103 1 2 Day 3 2.35 x lo3 1 5 Day 2 1.89 x lo3 6 I I ~ ~ ~ - Pooled Variance : lo3 356561 Pooled Standard Deviation : 597 Significant Difference From C o n t r o l @ p < .05 % Elevation From Control Figure 1. Serum l e v e l s of l a c t a t e dehydrogenase a t v a r i o u s i n t e r v a l s a f t e r ~ ~ ~ m t i. 2~~, Qr Kp rads nf Y-radiatf cs . ACTIVITY l ~ ( m ~ / r nserum)xlo3 l SERUM LEVELS OF CREATINE KINASE AT VARIOUS INTERVALS AFTER EXPOSURE TO 2,000 RADS OF GAMMA RADIATION. SIGNIFICANT DIFFERENCES BETWEEN CONTROL AND TEST MEANS WRE DETERMINED BY t-TEST, USING A POOLED ESTIMATE OF VARIANCE Group Number of Samples Me an Activity mu/& Control 77 -...- u nuur' 1 2 Hour 24 Hour 3 Day 6 Day 9 Day 1 2 Day 1 5 Dw Pooled Variance: 13812 Pooled Standard Deviation: 118 Significant Difference From C o n t r o l @ p < .05 % Elevation From C o n t r o l Figure 2. Serum l e v e l s of c r e a t i n e k i n a s e a t v a r i o u s i n t e r v a l s a f t e r exposure t o 2,000 r a d s of Y - r a d i a t i o n . ACTIVITY mU/mI serum Assays of serum glutamate o x a l o a c e t a t e transaminase (GOT) a c t i v i t i e s r e v e a l e d an i n c r e a s e of 54% a t s i x hours p o s t - i r r a d i a t i o n ( p < .05). Maximal e l e v a t i o n occurred a f t e r twelve h o u r s , showing an a c t i v i t y i n c r e a s e of 66% ( p < . 0 5 ) . l e v e l s r e t u r n e d t o normal able 3 ) . A f t e r twenty-four hours serum GOT An unexpected drop i n a c t i v i t y t o 59% of t h e c o n t r o l l e v e l on day s i x was n o t c o n s i s t e n t with t h e d i r e c t i o n a,l h y p o t h e s i s . However, s i n c e t h e p r o b a b i l i t y v a l u e f o r a non-direction- a 1 t e s t showed s i g n i f i c a n c e a t t h e 5% l e v e l , a p o s s i b l e r a t i o n a l e f o r t h i s observed decrease w i l l b e p r e s e n t e d elsewhere i n t h i s c h a p t e r . Serum GOT l e v e l s f o r days n i n e and twelve following exposure do not show s i g n i f i c a n t d e v i a t i o n s from c o n t r o l v a l u e s ( ~ i g .3 ) . However, a g e n e r a l t r e n d of e l e v a t i o n does occur from day s i x t o day f i f t e e n , showi n g d e f i n i t i v e i n c r e a s e s i n enzyme l e v e l s . Such secondary i n c r e a s e s , a s noted i n a l l enzyme systems s t u d i e d , may be i n d i c a t i v e of t h e manifestat i o n of major biochemical l e s i o n s induced by t h e ongoing metabolism of the injured tissue cells. Homogenate Assays L a c t a t e dehydrogenase a c t i v i t y i n h e a r t muscle homogenates 4 ) decreased 36% by twelve hours p o s t - i r r a d i a t i o n ( p < .05). a able This de- c r e a s e remained s t a t i s t i c a l l y s i g n i f i c a n t a f t e r twenty-four hours, showi n g a 33% mean l o s s , r e t u r n i n g t o normal a f t e r t h r e e days. Activity l e v e l s from t h r e e t o s i x days a f t e r exposure d i s p l a y e d a g e n e r a l dec r e a s i n g t r e n d , however, were not s t a t i s t i c a l l y d i f f e r e n t w i t h r e s p e c t . .Day n i n e showed a secondary l o s s of t o t h e c o n t r o l a c t i v i t y ( ~ i4 )~ TABLE 3 SERUM LEVELS OF GLUTAMATE OXALOACETATE TRANSAMINASE AT VARIOUS INTERVALS AFTER EXPOSURE TO 2,000 RADS OF +f-RADIATION. SIGNIFICANT DIFFERENCES BETWEEN CONTROL AND TEST MEANS WERE DETERMINED BY t-TEST, USING A POOLED ESTIMATE OF VARIANCE --- Group Number of Samples Me an Activity m~/ml Significant Difference From C o n t r o l ep - % Elevation From C o n t r o l < .05 Control 6 Ecxr 1 2 Hour 24 Hour 3 Day 6 Day 9 Day 1 2 Day 1 5 Day Pooled Variance: Pooled S t a n d a r d Deviation: 10.3 *Where a c t i v i t y l e v e l s d i f f e r e d s i g n i f i c a n t l y from c o n t r o l l e v e l s and d i d not a g r e e w i t h t h e d i r e c t i o n a l h y p o t h e s i s , a n o n - d i r e c t i o n a l , twot a i l e d t - t e s t was used t o determine t h e l e v e l o f s i g n i f i c a n c e . Figure 3. Serum l e v e l s of glutamate oxaloacetate transaminase a t v a r i o u s i n t e r v a l s a f t e r expo;;-iii.-ct u 2,GOG r-aiis ui' y - r . a r i i a i i u n . ACTIVITY rnU/m 1 ser urn HEART HOMOGENATE LEVELS OF LACTATE DEHYDROGENASE AT VARIOUS INTERVALS AFTER EXPOSURE TO 2,000 RADS OF -RADIATION. SIGNIFICANT DIFFERENCES BETWEEN CONTROL AND TEST MEANS WERE DETERMINED BY t-TEST, USING A POOLED ESTIMATE OF VARIANCE Group Number of Samples Control 3 Me an Activity mU/mg Muscle 6 Hour 12 Hour 24 Hour 3 Day 6 Day 9 Day 1 2 Day 1 5 Day Pooled Variance : 2414 Pooled Standard Deviation: 49.1 Significant Difference From Control @ p .05 % Decrease From Control Figure 4. Heart homogenate l e v e l s of l a c t a t e dehydrogenase a t v a r i o u s i n t e r v a l s a f t e r exposure t o 2,000 r a d s of Y-radiation. ACTIVITY mU/mg muscle homogenate a c t i v i t y s i g n i f i c a n t l y d i f f e r e n t from t h e c o n t r o l a t t h e 5% level. However, a c t i v i t i e s r e t u r n e d t o normal by day twelve. C r e a t i n e k i n a s e l e v e l s i n h e a r t homogenates a able 5 ) reflected s i m i l a r changes w i t h an observed l o s s of 21% from c o n t r o l l e v e l a t twelve hours p o s t - i r r a d i a t i o n . A c t i v i t y l e v e l s a f t e r twenty-four hours r e f l e c t - e d a 25% mean l o s s which was not s t a t i s t i c a l l y d i f f e r e n t from t h e twelve hour measurement. Although enzyme l e v e l s r e t u r n e d t o normal during day t h r e e , a secondary drop i n homogenate a c t i v i t y , occuring during day s i x and day n i n e , showed s t a t i s t i c a l l y s i g n i f i c a n t l o s s e s of 17% and 25% r e s p e c t i v e l y ( ~ i g .5 ) . Glutamate o x a l o a c e t a t e transaminase (GOT ) l o s s from homogenate p r e p a r a t i o n s shows a p a t t e r n s i m i l a r t o t h e previous system s t u d i e d . The mean p o s t - i r r a d i a t i o n a c t i v i t y l o s s a f t e r twelve hours i s 30% ( p < . 0 5 ) , b u t r e t u r n s t o w i t h i n c o n t r o l l i m i t s by twenty-four hours (p > - 0 5 ) . Homogenate GOT l e v e l s from day t h r e e t o day f i f t e e n f l u x u a t e w i t h i n c o n t r o l l i m i t s , and do not d i s p l a y s t a t i s t i c a l l y s i g n i f i c a n t a l t e r a t i o n s with respect t o control a c t i v i t i e s ( ~ i g 6 . ). Mitochondria1 Assays Loss of mitochondria1 GOT a c t i v i t y , induced by an a c u t e radio- * l o g i c a l dosage of 2,000 r a d s , i s not s i g n i f i c a n t a t t h e 5% l e v e l of probability a able 7 ) . Although a mean a c t i v i t y l o s s of 36% occurred a f t e r s i x hours p o s t - i r r a d i a t i o n , t h e l a r g e sample v a r i a n c e l i m i t s t h e p r e c i s i o n of measurement and may obscure t h e s i g n i f i c a n c e of such small * alterations ( ~ i g 7 . ). TABLE 5 HEART HOMOGENATE LEVELS OF CREATINE KINASE AT VARIOUS INTERVALS AFTER EXPOSURE TO 2,000 RADS OF y -RADIATION SIGNIFI CANT DIFFERENCES BETWEEN CONTROL AND TEST MEANS WERE DETERMINED BY t-TEST, USING A POOLED ESTIMATE OF VARIANCE . Group Number of Samples Me an Activity mU/m Muscle Control 6 Holm 1 2 Hour 24 Hour 3 Day 6 Day 9 Day 1 2 Day 1 5 Day Pooled Variance : 2712 Pooled Standard Deviation: 52.1 Significant Difference From Control @ p < .05 $ Decrease From Control Figure 5. Heart homogenate l e v e l s of c r e a t i n e k i n a s e at v a r i o u s i n t e r v a l s a f t e r exposure t o 2,000 r a d s of Y-radiation. 6 CONTROL 24 ' 3 DAY INTERVALS a HOUR INTERVALS 12 HOURS 6 9 DAYS TABLE 6 HEART HOMOGENATE LEVELS OF GLUTAMATE OXALOACETATE TRANSAMINASE AT VARIOUS INTERVALS AFTER EXPOSURE TO 2,000 RADS OF Y-RADIATION. SIGNIFICANT DIFFERENCES BETWEEN CONTROL AND TEST MEANS WERE DETERMINED BY t-TEST, USING A POOLED ESTIMATE OF VARIANCE - Group Control L TI-.., w I L V U I Number of Samples Me an Activity m11/mg Mus c l e 3 132 -, 9 fif IUV 3 1 2 Hour 3 24 Hour 3 114 3 Day 3 142 6 Day 3 156 9 Day 2 107 1 2 Day 3 134 1 5 Day 2 149 Pooled Variance: 92.3 414 Pooled Standard Deviation: 20.3 Significant Difference From Control @ p < -05 - -- % Decrease From Control Figure 6. Heart homogenate l e v e l s of glutamate o x a l o a c e t a t e transaminase a t various i n t e r v a l s a f t e r exposure t o 2,000 rads of Y-radiation. ACTIVITY mU/mg muscle TABLE 7 MITOCHONDRIAL LEVELS OF GLUTAMATE OXALOACETATE TRANSAMINASE AT VARIOUS INTERVALS AFTER EXPOSURE TO 2,000 RADS OF Y.-RADIATI ON. SIGNIFICANT DIFFEIiENCES BETWEEN CONTROL AND TEST MEANS WERE DETERMINED BY t-TEST, USING A POOLED ESTIMATE OF VARIANCE Number of Samples Mean A c t i v i t y mU/mg Biuret Protein 6 Hour 3 0.87 x 10- 1 2 Hour 3 1.09 24 Hour 3 1 . 1 4 x 1 03 3 Day 3 1.64 x lo3 6 Day 3 3 1.34 x 1 0 9 Day 3 1.49 x lo3 1 2 Day 3 1.11 lo3 1 5 Day 3 1.30 x lo3 Group Control Pooled Variance: 2 lo3 133812 Pooled Standard Deviation: 366 Significant Difference From C o n t r o l @ p < .05 % Decrease From Control Figure 7. Mitochondria1 l e v e l s of glutamate o x a l o a c e t a t e transaminase a t various i n t e r v a l s a f t e r exposure t o 2,000 ra.ds of Y-radiation. A C T I V I T Y ( ~ U / rng biuret p r o t e i n ) ~ 1 0 3 DISCUSSION Although t h e h e a r t has o f t e n been regarded a s one of t h e most r a d i o r e s i s t a n t organs of t h e body ( ~ u r c h-e t a l . 1968), t h e onset of radiation-induced h e a r t d i s e a s e h a s been recognized a s an important m a n i f e s t a t i o n of t h o r a c i c exposure ( s t e w a r t and Fajardo 1971). The p r e s e n t i n v e s t i g a t i o n documents biochemical evidence of i n i t i a l c a r d i a c i n j u r y i n response t o t h e a c u t e a d m i n i s t r a t i o n of i o n i z i n g r a d i a t i o n t o t h e t h o r a c i c a r e a of r a t s . One of t h e biochemical i n d i c a t o r s i n a c u t e r a d i a t i o n i n j u r y i s an ---- -- -1 .L2 G L ~ ; V ~ ~ , L W L ~ uf i a c i a i e ciehydrogenase a c t l v l t y Sollowing whole-body ~ ~ L . L U I I exposure ( ~ o r -ei t a l . 1968). L a c t a t e dehydrogenase, l o c a t e d i n most organs, has an important f u n c t i o n i n carbohydrate metabolism, and under normal c o n d i t i o n s remains a t a f a i r l y c o n s t a n t l e v e l . Glutamate oxalo- a c e t a t e transaminase and c r e a t i n e k i n a s e a r e both found i n r e l a t i v e l y h i g h c o n c e n t r a t i o n s i n c a r d i a c muscle. GOT, involved i n t h e mediation of p r o t e i n metabolism, and CK i n t h e r e s t o r a t i o n of a v a i l a b l e energy f o r muscular c o n t r a c t i o n , p l a y important r o l e s a s biochemical markers f o r t h e e t a l . 1960; Schmidt et c l i n i c a l d e t e c t i o n of myocardial i n j u r y ( ~ r e y f u s-al. - 1965) and were t h e r e f o r e s e l e c t e d a s p o t e n t i a l i n d i c a t o r s f o r the study of r a d i a t i o n i n j u r y t o c a r d i a c muscle. Serum l e v e l s of a l l t h r e e enzymes r e v e a l e d t r a n s i e n t e l e v a t i o n s w i t h i n twelve hours of t h o r a c i c i r r a d i a t i o n , r e t u r n i n g t o w i t h i n c o n t r o l l e v e l s by twenty-four hours. S i m i l a r response p a t t e r n s have been docu- -- -- mented i n whole-body exposure ( ~ e c k e re t a l . 1962; Almonte e t a l . 1965; Takamori -e t a l . 1969; Hori -e t a l . 1970) , i n d i c a t i n g t h a t such p a t t e r n s appear t o be r e p r e s e n t a t i v e of a g e n e r a l r a d i o l o g i c a l response and a r e not r e l a t e d t o t h e r a d i o s e n s i t i v i t y of t h e system s t u d i e d . Lactate dehydrogenase and c r e a t i n e k i n a s e serum l e v e l s d i s p l a y e d g r e a t e r than two-fold i n i t i a l e l e v a t i o n s while GOT showed an i n c r e a s e of only 50% above normal. remarkable. Although t h e s e e l e v a t i o n s a r e s i g n i f i c a n t , t h e y a r e not Because of t h e smallness of t h e changes and t h e sample v a r i a n c e w i t h i n a p o p u l a t i o n , c l i n i c a l a p p l i c a t i o n of t h e s e systems a s biochemical markers f o r r a d i a t i o n i n j u r y t o t h e c a r d i a c muscle does not appear l i k e l y u n l e s s one had p r e - i r r a d i a t i o n serum l e v e l s on t h e s u b j e c t . i n a d d i t i o n , s t u d i e s by Brent and co-workers (1938j r e v e a l t h a t no apparent c o r r e l a t i o n e x i s t s between induced serum e l e v a t i o n s and t h e l i k e l y h o o d of d e a t h . A l l serum enzyme p a t t e r n s i n d i c a t e a t r e n d toward normality a f t e r reaching i n i t i a l maximal l e v e l s . Such a p a t t e r n suggests a p o s s i b l e re- i n s t a t e m e n t of membrane i n t e g r i t y following a t r a n s i e n t a l t e r a t i o n of membrane p e r m e a b i l i t y . However, t h e e f f e c t might e q u a l l y w e l l be mediated by a lowering of t h e e f f l u x r a t e of enzymatic m a t e r i a l from t h e c e l l due t o a d e c r e a s e of t h e c o n c e n t r a t i o n g r a d i e n t between c e l l u l a r and e x t r a c e l l u l a r l e v e l s caused by t h e d e p l e t i o n of t h e c e l l u l a r c o n s t i t u e n t s . Such f a c t o r s , p o s s i b l y o p e r a t i n g i n c o n c e r t , combined w i t h t h e r a p i d removal of t h e e x t r a c e l l u l a r enzymes through a c t i v e uptake i n t h e e x t r a c e l l u l a r f l u i d ( ~ c h m i d tet a l . 1965) may account f o r a "pseudo" t r a n / s i e n t n a t u r e of t h e i n i t i a l e l e v a t i o n s . Note t h a t t h e r e s t o r a t i o n of t i s s u e enzyme l e v e l s t o c o n t r o l v a l u e s on day t h r e e (due p o s s i b l y t o enhanced s y n t h e s i s of t h e enzymes) tends t o r e s t o r e t h e c o n c e n t r a t i o n gradient. This could subsequently l e a d t o enhanced leakage and a secondary e l e v a t i o n of serum LDH and CK i f t h e normal p e r m e a b i l i t y of t h e c e l l membrane had not y e t been r e s t o r e d . Although t i s s u e homogenate GOT l e v e l s r e t u r n t o normal on day t h r e e , t h e serum l e v e l of GOT, u n l i k e LDH and CK, d i d not i n c r e a s e s i g n i f i c a n t l y above normal a t t h a t time. This may i n d i c a t e a s i g n i f i c a n t r e s t o r a t i o n of membrane p e r m e a b i l i t y w i t h r e s p e c t t o GOT. Some overcompensatory r e p a i r mechanism f o r GOT p e r m e a b i l i t y , whether a t t h e c e l l u l a r o r hormonal l e v e l , o r an enhanced i n a c t i v a t i o n of t h e serum enzyme could conceivably account f o r t h e noted t r a n s i e n t r e d u c t i o n i n serum GOT l e v e l s a s shown i n Figure 3. Trends i n t h e serum enzyme l e v e l s occuring a f t e r i n i t i a l e l e v a t i o n s suggest t h e p o s s i b l e m a n i f e s t a t i o n of secondary r a d i a t i o n e f f e c t s r e s u l t i n g from metabolic o r biochemical l e s i o n s i n t h e t a r g e t organ. However, a s t r i c t i n t e r p r e t a t i o n of t h e serum e l e v a t i o n s w i t h r e s p e c t t o changes i n t h e h e a r t must be approached w i t h extreme c a u t i o n s i n c e r a d i a t i o n damage t o p e r i p h e r a l t i s s u e s cannot be e l i m i n a t e d . I n a d d i t i o n , physio- l o g i c a l a l t e r a t i o n s mediated by hormonal a c t i o n may f u r t h e r d i s t o r t t h e relationship. The s i g n i f i c a n t decreases i n t h e homogenate l e v e l s of t h e enzymes p a r a l l e l t h e i n i t i a l serum e l e v a t i o n s and i n d i c a t e t h a t t h e observed serum e l e v a t i o n s a r e not a r e s u l t of enhanced t i s s u e l e v e l s of t h e enzymes, b u t r a t h e r a r e a consequence of radiation-induced leakage of b i o l o g i c a l l y a c t i v e m a t e r i a l o u t of t h e i n j u r e d c e l l s . Similar a l t e r a t i o n s i n t h e c e l l u l a r l e v e l s of b i o l o g i c a l l y a c t i v e molecules i n p o s t - i r r a d i a t e d c e l l s and o r g a n e l l e s have been recorded (0kada and Peachey 1957; Roth and E i c k e l 1959; Kawasaki and Sakurai 1969). Secondary serum e l e v a t i o n s , however, do not appear t o be r e l a t e d t o any s i g n i f i c a n t secondary d e p l e t i o n s of homogenate a c t i v i t i e s . It i s u n l i k e l y t h a t d i r e c t i n a c t i v a t i o n of t h e enzymes could account f o r t h e noted i n i t i a l decreases i n t h e homogenate a c t i v i t i e s s i n c e it has been demonstrated t h a t most enzymes a r e r e l a t i v e l y r a d i o r e s i s t a n t ( ~ c h l e n k-e t a l . 1946; Ord and Stocken 1953 ; Winstead and Reece 1 9 7 0 ) , r e q u i r i n g s u b s t a n t i a l l y l a r g e r doses t o i n i t i a t e any signif icant inactivation. i n vivo i n j u r y t o t h e It appears, a t t h e biochemical l e v e l , t h a t -mitochondria with 2,000 r a d s of gamma r a d i a t i o n i s not s i g n i f i c a n t a t t h e 5% confidence l e v e l . The apparent r e s i s t a n c e of t h e mitochondria1 membrane t o damage, i n comparison b i t h t h e c e l l membrane, may r e s u l t from t h e double membrane c h a r a c t e r of t h e mitochondria o r physicochemical d i f f e r e n c e s i n t h e s t r u c t u r e of t h e membrane systems. It i s , moreover, probable t h a t t h e GOT concentration g r a d i e n t between mitochondria and cytoplasm i s not n e a r l y a s g r e a t a s t h e cytoplasm-plasma gradient, Thus, t h e motive f o r c e and r e s u l t a n t leakage of t h e enzyme from t h e damaged mitochondria would not r e f l e c t a s a c c u r a t e l y t h e i n j u r y s u s t a i n e d from r a d i a t i o n damage t o t h e o r g a n e l l e . \ CHAPTER I V RADIATION-INDUCED ENZYME EFFLUX FROM RAT HEART: I1 EXERCISE-TRAINED ANIMALS INTRODUCTION Apart from v a r i o u s long-term performance s t u d i e s . o ones e t a l . 1967; Belksy -e t a l . 1972) s u r p r i s i n g l y l i t t l e i s known about t h e e f f e c t s of e x e r c i s e on i r r a d i a t e d s u b j e c t s . S i n c e it i s g e n e r a l l y known t h a t t h e ongoing metabolism o f a c e l l i s damaged by r a d i a t i o n , it i s l o g i c a l t o propose t h a t a d d i t i o n a l consequences of r a d i a t i o n exposure may become apparent under c o n d i t i o n s of p h y s i o l o g i c a l s t r e s s . The determination of such consequences would allow an assessment of t h e i r r a d i a t e d animal's f u n c t i o n a l s t a t u s and may u l t i m a t e l y prove important i n t h e development of c l i n i c a l t h e r a p e u t i c t r e a t m e n t programs. The p r e s e n t s t u d y was, t h e r e f o r e , undertaken t o e v a l u a t e t h e e f f e c t of e x e r c i s e a s an added metabolic s t r e s s i n r a t s s u b j e c t e d t o l o c a l i z e d thoracic irradiation. The i n v e s t i g a t i o n involved an a n a l y s i s of serum LDH, CK and GOT, w i t h r e s p e c t t o a l t e r a t i o n s of t h e s e enzymes i n t h e t a r g e t organ, a s i n d i c a t o r s of r a d i a t i o n i n j u r y t o t h e h e a r t . The r e s u l t s com- p i l e d i n t h i s c h a p t e r were a l s o s t a t i s t i c a l l y compared t o t h e d a t a comp i l e d i n t h e p r e v i o u s c h a p t e r i n an e f f o r t t o r e l a t e t h e e x t e n t of r a d i a t i o n i n j u r y between e x e r c i s e d and s e d e n t a r y animals. MATERIAL AND METHODS Training Procedure Many i n v e s t i g a t o r s have demonstrated t h a t e x e r c i s e s t r e s s of u n t r a i n e d s u b j e c t s r e s u l t s i n sharp e l e v a t i o n s of plasma enzymes ( ~ l t l a n dand Highman 1961; Halonen. and Konttinen 1962; Fowler -e t al. 1962). However, such e l e v a t i o n s a r e temporary and r a p i d l y r e t u r n t o e t a 1 1968). normal l e v e l s (schlang 1961; Papadopoulos -- Changes i n serum enzyme l e v e l s a f t e r e x e r c i s e of t r a i n e d and u n t r a i n e d s u b j e c t s s t u d i e d by Fowler et al. (1962) revealed t h a t serum enzyme e l e v a t i o n s viduals. S i m i l a r observations have been made i n man ( ~ u t t a l and l Jones 1968) and o t h e r animals co-workers e eat on 1966). Evidence compiled by Garbus and (1964) i n d i c a t e s t h a t e x e r c i s e t r a i n i n g e f f e c t i v e l y p r o t e c t s a g a i n s t a r i s e i n serum enzymes. S i m i l a r conclusions were a l s o drawn by Highman and A l t l a n d (1963), who revealed t h a t r a t s t r a i n e d f o r s i x hours d a i l y f o r seventeen t o twenty days showed no s i g n i f i c a n t changes i n serum enzymes immediately following e x e r c i s e s t r e s s . I n order t o minimize serum e l e v a t i o n s due t o e x e r c i s e i t s e l f , male Sprague-Dawley r a t s of an average weight of 65 grn and an average age of t h i r t y days were placed on an exhaustive e x e r c i s e t r a i n i n g program. The age of t h e r a t s was chosen t o correspond a f t e r t h i r t y days of t r a i n i n g t o t h e average age of t h e animals u t i l i z e d i n t h e previous t e s t s . After i n i t i a l o r i e n t a t i o n t h e r a t s were e x e r c i s e d d a i l y on a v a r i a b l e speed t r e a d m i l l a t speeds between 25 - 40 meters/minute f o r 30 - 50 minutes u n t i l f a t i g u e was e v i d e n t . Following t h e l a s t day of t r a i n i n g , twenty- f o u r hours p r i o r t o i r r a d i a t i o n , t h e animals were p l a c e d under l i g h t e t h e r a n a e s t h e s i a and marked l a t e r a l l y a c r o s s t h e t o p of t h e s c a p u l a t o define t h e t a r g e t area. I r r a d i a t i o n Procedure Exercised r a t s were i r r a d i a t e d i n an i d e n t i c a l manner a s r e p o r t e d i n Chapter 111. Sham-irradiated, e x e r c i s e d c o n t r o l animals were t r e a t e d accordingly. A s soon a s p o s s i b l e following i r r a d i a t i o n a l l animals ( i n c l u d i n g t h e sham-irradiated c o n t r o l s ) were e x e r c i s e d i n t h e normal manner and t h e r e a f t e r a t twenty-four hour i n t e r v a l s approximately s i x t o twelve hours previous t o s a c r i f i c e . I r r a d i a t e d animals were s a c r i f i c e d a t i n t e r v a l s of s i x , twelve, and twenty-four hours and t h e n a t d a i l y i n t e r v a l s of t h r e e , s i x , n i n e , and twelve days. The blood sampling procedure, p r e p a r a t i o n of h e a r t homo- genate , m i t o c h o n d r i a l i s o l a t i o n , methods of enzyme a n a l y s i s , mitochondri a 1 p r o t e i n determinations and methods of d a t a a n a l y s i s were a l l c a r r i e d out i n t h e manner p r e v i o u s l y r e p o r t e d . RESULTS E f f e c t s of Y-Radiation on Exercised Rats Serum Assays The mean a c t i v i t y of LDH i n serum i n c r e a s e d 238% from c o n t r o l l e v e l s i x hours a f t e r exposure t o 2,000 r a d s of gamma radiation. This e l e v a t i o n was s i g n i f i c a n t beyond t h e .05 confidence l e v e l and remained s o a f t e r twelve hours p o s t - i r r a d i a t i o n , showing a 67 mean i n c r e a s e of 166% able 1 ~ ) . A f t e r twenty-four hours serum LDH a c t i v i t y r e t u r n e d t o w i t h i n normal l i m i t s . Although t h e mean a c t i v i t y was 90.5% h i g h e r t h a n t h e c o n t r o l v a l u e , t h i s e l e v a t i o n w a s not s t a t i s t i c a l l y d i f f e r e n t a t t h e .05 l e v e l of confidence. No f u r t h e r s i g n i f i c a n t d e v i ~ t i o n sabove t h e c o n t r o l value were recorded; however, t h e r e does occur a secondary e l e v a t i o n between sampling days t h r e e t o twelve ( ~ i ~ u r e Serum CK a c t i v i t y e x h i b i t e d an i n i t i a l i n c r e a s e t o 182% above t h e mean c o n t r o l a c t i v i t y s i x hours following exposure ( p < . 0 5 ) . After twelve hours t h e serum CK a c t i v i t y of i r r a d i a t e d animals remained significantly elevated a able 2 ~ ) b, u t l e v e l s r e t u r n e d t o w i t h i n c o n t r o l l i m i t s by twenty-four hours ( ~ i g u r e2.A). This i n i t i a l response i s s t r i k - i n g l y congarable t o t h e observed e l e v a t i o n s of LDH, a s was r e p o r t e d i n Chapter 111. Serum CK l e v e l s remained w i t h i n c o n t r o l l i m i t s on days t h r e e and s i x , b u t d i d show a marginally s i g n i f i c a n t e l e v a t i o n on day nine ( p < .05). Enzyme l e v e l s d i d not show s i g n i f i c a n t e l e v a t i o n s on day twelve. The mean GOT a c t i v i t y i n t h e serum of i r r a d i a t e d , e x e r c i s e d r a t s e x h i b i t e d a moderate i n c r e a s e of 50.6% a t t h e s i x hour i n t e r v a l ( p < . 0 5 ) . The enzyme a c t i v i t y remained s i g n i f i c a n t l y e l e v a t e d twelve hours a f t e r exposure, showing a mean i n c r e a s e of 31.3%, b u t r e t u r n e d t o c o n t r o l l e v e l a f t e r twenty-four hours (p > - 0 5 ) . Although serum GOT a c t i v i t y of r a t s sampled t h r e e and s i x days a f t e r i r r a d i a t i o n demonstrated decreases of 31.3% and 25.5% r e s p e c t i v e l y , t h e s e f l u c t u a t i o n s were not s i g n i f i c a n t a t TABLE 1A SERUM LEVELS OF LACTATE DEIIYDROGENASE I N EXERCISE-TRAINED RATS AT VARIOUS INTERVALS AFTER EXF'OSURE TO 2 , 0 0 0 RADS OF y-RADIATION. SIGNIFICANT DIFFERENCES BETWEEN CONTROL AND TEST MEANS WERE DETERMINED BY t-TEST, USING A POOLED ESTIMATE OF VARIANCE Group Number of Samples Me a n Activity mU/ml Control 6 Hour 12 Hour 24 H o u r 3 Day 6 Day 9 Day 1 2 Day POOLED VARIANCE: 322717 POOLED STANDARD DEVIATION : 568 Significant Difference From C o n t r o l @ p < .05 % Increase From C o n t r o l Figure 1 A . Serum l e v e l s of l a c t a t e dehydrogenase i n e x e r c i s e - t r a i n e d r a t s a t various i n t e r v a l s a f t e r exposure t o 2,000 r a d s of Y-radiati on - ACTIVITY IN (mu /ml serum)xlo3 TABLE 2A SERUM LEVELS OF CREATINE KINASE I N EXERCISE-TRAINED RATS AT VARIOUS INTERVALS AFTER EXPOSURE TO 2 , 0 0 0 RADS OF ?-RADIATION. SIGNIFICANT DIFFERFNCES BETWEEN CONTROL AND TEST MEANS WERE DETERMINED BY t-TEST, USING A POOLED ESTIMATE OF VARIANCE Number Group 0f Samples Control C V n u- u r rr 1 2 Hour 24 H o u r 3 Day 6 Day 9 Day 1 2 Day POOLED VARIANCE: 3 5284 POOLED STANDARD DEVIATION: Mean Activity mU/ml Significant Difference From C o n t r o l @ p < .05 % Increase From C o n t r o l Figure 2.A. Serum l e v e l s of c r e a t i n e k i n a s e i n e x e r c i s e - t r a i n e d r a t s a t various i n t e r v a l s a f ' t e r exposure t o 2,000 r a d s of Y-radiation. ACTIVITY IN mlJ/ml serum t h e .05 l e v e l of confidence able 3 ~ ) . Serum GOT a c t i v i t i e s remained w i t h i n c o n t r o l l i m i t s f o r t h e remaining sampling p e r i o d s . However, t h e r e occurred a demonstrable e l e v a t i n g t r e n d from day t h r e e t o day twelve (Figure 3 ~ ) . Homogenate Assays LDH a c t i v i t y i n prepared h e a r t homogenates of i r r a d i a t e d animals showed a mean decrease of 32.3% a t s i x hours following exposure ( p < . 0 5 ) . Although LDH l e v e l s r e t u r n e d t o normal a t t h e twelve hour i n t e r v a l , a subsequent l o s s of 19.6% i n a c t i v i t y occurred a f t e r twenty-four hours able 4 ~ ) . Rats s a c r i f i c e d t h r e e days following i r r a d i a t i o n d i d not show s i g n i f i c a n t alt.ernt.ions i n t h e hnmcgenate level of t h e enzymes. However, animals sampled on days s i x , n i n e and twelve showed r e s p e c t i v e l o s s e s of 29.6%, 24.3% and 15.92, which were a l l found s t a t i s t i c a l l y s i g n i f i c a n t a t t h e 5% l e v e l ( F i g u r e & A ) . I n c o n t r a s t t o t h e observed l o s s e s of c e l l u l a r LDH, h e a r t homogena t e l e v e l s of CK i n i r r a d i a t e d r a t s d i d not e x h i b i t s i g n i f i c a n t v a r i a t i o n s from sham-irradiated c o n t r o l 'animals w i t h i n t h e f i r s t t h r e e days able 5 ~ ) . Although a temporary l o s s of CK a c t i v i t y was observed on day s i x ( P < . 0 5 ) , homogenate l e v e l s r e t u r n e d t o normal on days nine and twelve ( F i g u r e 5 ~ ) . The mean GOT a c t i v i t i e s of p o s t - i r r a d i a t e d r a t s showed a p a t t e r n s t r i k i n g l y s i m i l a r t o t h e homogenate CK p a t t e r n discussed above. No s i g n i f i c a n t a l t e r a t i o n s i n mean GOT l e v e l s , w i t h r e s p e c t t o t h e c o n t r o l v a l u e , were found w i t h i n t h e f i r s t t h r e e days a able 6 ~ ) . Despite a s i g n i f i c a n t l o s s of 17.5% i n enzyme a c t i v i t y on day s i x , GOT l e v e l s remaine d s t a t i s t i c a l l y i d e n t i c a l t o t h e mean c o n t r o l l e v e l f o r t h e remaining TABLE 3A SERUM LEVELS OF GLUTAMATE OXALOACETATE TRANSAMINASE EXERCISE-TRAINED RATS AT VARIOUS INTERVALS AFTER EXPOSURE TO 2,000 RADS OF y-RADIATION. SIGNIFICANT DIFFERENCES BETWEEN CONTROL AND TEST MEANS WERE DEliRMINED BY t-TEST, USING A POOLED ESTIMATE OF VARIANCE. Group Number of Samples Mean Activity mu/ml Control 6 Hour 1 2 Hour 24 Eiour 3 Day 6 Day 9 Day 1 2 Day POOLED VAX POOLED STANDARD DEVIATION: 9.15 Significant Difference From q o n t r o l ti! p < .05 % Increase From Control Figure 3A. Serum l e v e l s of glutamate oxaloacetate transaminase i n e x e r c i s e - t r a i n e d rats a t various i n t e r v a l s a f t e r exposure t o 2,000 rads of Yradiation. ACTIVITY IN m ~ / m lserum TABLE 4~ HEART HOMOGENATE LEVELS OF LACTATE DEHYDROGENASE I N EXERCISE-TRAINED RATS AT VARIOUS INTERVALS AFTER EXPOSURE: TO 2,000 RADS OF Y-RADIATION. S I G N I F I C A N T DIFFERENCES BETWEEN CONTROL AND T E S T MEANS WERF: DETERMINED BY t - T E S T , USING A P O O U D ESTIMATE OF VARIANCE. Group Number of Samples Me a n Activity d/mg Muscle Control 3 622 6 Hour 3 4 21 our 3 548 24 H o u r 3 500 3 Day 3 548 6 Day 3 438 9 Day 3 471 12 Day 3 523 12 POOLED VARIANCE: 2234 POOLED STANDARD DEVIATION : 47.3 Significant Difference From C o n t r o l @ p < .05 % Decrease From C o n t r o l + 19.6 Figure 4 ~ . Heart homogenate l e v e l s of l a c t a t e dehydrogenase i n e x e r c i s e - t r a i n e d rats at. v a r i o u s i n t e r v a l s a..ft.er e u p s u r e ts 2,000 rads of Y-radiation. ACTIVITY IN m ~ / m gmuscle HEART HOMOGENATE LEVELS OF CREATINE KINASE I N EXERCISETRAINED RATS AT VARIOUS INTERVALS AFTER EXPOSURE: TO 2 , 0 0 0 RADS OF Y-RADIATION. SIGNIFICANT DIFFERENCES BETWEEN CONTROL AND TEST MEANS WERE DETERMINED BY t-TEST, USING A POOLED ESTIMATE OF VARIANCE. Group Number of Samples Me an Activity mU/mg Muscle 24 Hour 3 734 3 Day 3 807 6 Day 3 646 9 Day 3 745 1 2 Day 3 754 POOLED VARIANCE: 3199 POOLED STANDARD DEVIATION : 56.6 Significant Difference From C o n t r o l @ p < .05 % Decrease From C o n t r o l Figure 5A. Heart homogenate Levels of c r e a t i n e k i n a s e i n e x e r c i s e - t r a i n e d r a t s a t various i n t e r v a l s a f t e r exposure t o 3,000 rads of y-radiation. ACTIVITY IN mU/mg muscle TABLE 6~ HEART HOMOGENATE LEVELS OF GLUTAMATE OXALOACETATE TRANSAMINASE I N EXERCISE-TRAINED RATS AT VARIPUS INTERVALS AFTER EXPOSURE TO 2,000 RADS OF y-RADIATION. SIGNIFICANT DIFFERENCES BETWEEN CONTROL AND TEST MEANS WERE DETERMINED BY t-TEST , USING A POOLED ESTIMATE OF VARIANCE. Group Number of Samples Me an Activity mU/mg Muscle Control 6 Hour 1 2 Hour 24 Hour 3 Day 6 Day 9 Day 1 2 Day POOLED VARIANCE: 111.1 POOLED STANDARD DEVIATION: 10.5 Significant Difference From Control @ p < .05 % Decrease From C o n t r o l F i g u r e 6 ~ .Heart homogenate l e v e l s of glutamate o x a l o a c e t a t e transaminase i n e x e r c i s e - t r a i n e d r u i s ai various i n t e r v a l s a f t e r exposure t o 2,000 r a d s of y - r a d i a t i o n . ACTIVITY IN m ~ / m gmuscle sampling i n t e r v a l s . Mitochondrial Assays GOT enzyme l e v e l s of h e a r t mitochondria i s o l a t e d at t h e s t a t e d i n t e r v a l s d i d not show s i g n i f i c a n t a l t e r a t i o n s u n t i l twenty-four hours a f t e r i r r a d i a t i o n a able 7 ~ ) .Samples isolated at twenty-four hours demonstrated a 36.8% nean l o s s w i t h r e s p e c t t o t h e mean c o n t r o l v a l u e ( p < . 0 5 ) . Mitochondrial enzyme l e v e l s r e t u r n e d t o normal by day t h r e e and showed no f u r t h e r s i g n i f i c a n t d e v i a t i o n s ( ~ i g u r e 7A). The E f f e c t of E x e r c i s e T r a i n i n g on Sham-irradiated Control Rats i n o r d e r t o determine t h e e f f e c t of t h e e x e r c i s e t r a i n i n g procedure on t h e enzyme l e v e l s i n serum, h e a r t homogenate and h e a r t mitochondria of sham-irradiated c o n t r o l animals, t h e mean enzyme l e v e l s of t h e e x e r c i s e d samples were s t a t i s t i c a l l y compared t o t h e l e v e l s of sedentary c o n t r o l s . To o b t a i n a pooled v a r i a n c e between t h e e x e r c i s e d and sedentary groups, v a r i a n c e s p r e v i o u s l y pooled f o r each enzyme system were s u b j e c t e d t o a t e s t of homogeniety, using t h e f ratj.0. Degrees of freedom were d e t e r - mined u s i n g t h e t o t a l population u t i l i z e d i n c a l c u l a t i n g t h e o r i g i n a l pooled v a r i a n c e s i n each system. The r a t i o s obtained c l e a r l y showed t h a t t h e v a r i a n c e s w i t h i n - e x e r c i s e d and s e d e n t a r y groups were homogeneous and were t h e r e f o r e pooled t o o b t a i n a s i n g l e v a r i a n c e f a c t o r . Mean enzyme l e v e l s were s u b j e c t e d t o a t w o - t a i l e d t - t e s t f o r a non-directional h y p o t h e s i s and s i g n i f i c a n c e l i m i t s were s e t a t t h e 5% l e v e l of confidence. Serum LDH and CK l e v e l s demonstrated s l i g h t r e d u c t i o n s as a consequence of e x e r c i s e t r a i n i n g . However, t h e decreased a c t i v i t i e s were not TABLE 7A MITOCHONDRIAL LEVELS OF GLUTAMATE OXALOACETATE TRANSAMINASE I N EXERCISE-TRAINED RATS AT VARIOUS INTERv ALS AFTER EXPOSURE TO 2,000 RADS O F Y-RADIATION. S I G N I F I C A N T DIFFERENCES BETWEEN CONTROL AND T E S T MEANS WERE DETERMINED BY t - T E S T , USING A POOLED ESTIMATE O F VARIANCE. Group Number of Samples Me an Activity mU/mg. Biuret Protein Control 6 Hour 12 H o u r 24 H o u r 3 Day 6 Day 9 Day 12 D a y POOLED VARIANCE : 56836 POOLED STMJDARD DEVIATION: 238 Significant Difference From C o n t r o l @ p < .05 % Decrease From C o n t r o l Figure 7A. Mitochondria1 l e v e l s of glutamate o x a l o a c e t a t e transaminase i n e x e r c i s e - t r a i n e d rats at v a r i o u s i n t e r v a l s a f t e r exFosure t.o 2,000 r a d s of Y-radiation. ACTIV ITY IN ( m ~ / m gbiuret protein)x103 s i g n i f i c a n t l y d i f f e r e n t from sedentary v a l u e s a t t h e .05 l e v e l of a able 8 ~ ) . Serum confidence GOT, s i m i l a r l y , d i d not e x h i b i t s i g n i f i c a n t changes between t h e groups ( 2 >~ . 0 5 ) . Although h e a r t homogenate l e v e l s of GOT and CK d i d n o t demonstrate any s i g n i f i c a n t a l t e r a t i o n s , homogenate LDH of t h e e x e r c i s e d animals d i d e x h i b i t a 36.1% mean i n c r e a s e i n a c t i v i t y (2p < .05). The mean a c t i v i t y of mitochondria1 GOT i n e x e r c i s e d animals was not s i g n i f i c a n t l y d i f f e r e n t from t h a t of s e d e n t a r y animals. Comparison of Radiation-Induced A l t e r a t i o n s i n Enzyme Concentrations i n Serum, Heart Homogenate and Heart Mitochondria i n Exercised and Sedentary Rats. -r A n ur&r i u u b i a i a cunridence i n t e r v a l s f o r t h e percentage changes i n enzyme a c t i v i t i e s p r e v i o u s l y r e p o r t e d , t h e pooled s t a n d a r d d e v i a t i o n s f o r t h e previous d a t a were d i v i d e d by t h e known c o n t r o l a c t i v i t i e s i n each t a b l e and m u l t i p l i e d by 100. The r e s u l t a n t f a c t o r s r e p r e s e n t e d t h e s t a n d a r d d e v i a t i o n ( s ) f o r t h e recorded percentage changes. The r e s u l t i n g v a r i a n c e s ( s 2 ) were s u b j e c t e d t o an f r a t i o t e s t and were found t o b e homogeneous. The v a r i a n c e s of t h e e x e r c i s e d and sedentary groups were t h e r e f o r e pooled t o o b t a i n a s i n g l e pooled v a r i a n c e . Percentage i n c r e a s e s were s u b j e c t e d t o a n o n - d i r e c t i o n a l , t w o - t a i l e d t - t e s t s e t a t t h e 5% l i m i t of confidence. Serum Enzyme E l e v a t i o n s S i g n i f i c a n t i n c r e a s e s i n t h e percentage e l e v a t i o n of serum LDH i n e x e r c i s e d , i r r a d i a t e d r a t s occurred a t s i x and twelve hours following exposure i n comparison with i r r a d i a t e d , sedentary animals a able 9 ~ ) . No s i g n i f i c a n t d i f f e r e n c e s i n LDH e l e v a t i p n s between TABLE 8 A ENZYME LEVELS OF SHAM-IRRADIATED, EXERCISED AND SEDENTARY CONTROLS. A COMPARISON OF EXERCISE-INDUCED CHANGES I N ENZYME ACTIVITIES OF SERUM ( s ) , HEART HOMOGENATE ( H ) , AND HEART MITOCHONDRIAL ( M ) FRACTIONS. Assay System S-LDH S-CK S-CZT , Sedentary Level E x e r c i s e d Level Pooled S 1,310 mu/ml 714 mu/ml 586 208 mu/ml 152 mU/ml 104 . Ian 0 c -7 1-1 ulu 1 HIJ. -TT zh. 6 i ~ / n i l 9.88 H-LDH 457 mU/mg 622 mU/mg 48.3 H-CK 690 mu/mg 757 mU/mg 54.4 H-GOT 132 m~/mg 160 mU/mg 16.3 M-GOT 1,310 1,080 mU/mg mU/mg 313 Significant Difference 8 2p < .05 + - Mean enzyme l e v e l s were s u b j e c t e d t o a t w o - t a i l e d t - t e s t f o r a nond i r e c t i o n a l h y p o t h e s i s . S i g n i f i c a n c e l i m i t s were s e t a t t h e .05 l e v e l of confikence. TABLE gA COMPARISON OF ALTERATIONS I N SERUM ENZYME LEVELS OF POST-IRRADIATED SEDENTARY AND EXERCISED RATS. PostIrradiation Time % Enzyme System Activity in Sedentary Rats % Activity in Exercised Rats Sig n i f i cant Difference @ 2p < .05 LDH CK GOT 1 2 Hours LDH CK GOT LDE CK GOT 3 Days LDH CK GOT 6 Days LDH CK GOT LDH CK GOT 103 (3) 131 (3) (3) 74.0 216 111 91.2 (3) (3) (3) 1 2 Days LDH POOLED STANDARD DEVIATION: CK POOLED STANDARD DEVIATION: GOT POOLED STANDARD DEVIATION: 58.4 53.5 19.5 F i g u r e s i n p a r e n t h e s i s r e p r e s e n t t h e number of r a t s sampled, Values a r e expressed a s p e r c e n t a c t i v i t y w i t h r e s p e c t t o c o n t r o l v a l u e s of 100%. - e x e r c i s e d and s e d e n t a r y animals occurred during t h e remaining sampling intervals. Although no s t a t i s t i c a l l y s i g n i f i c a n t d i f f e r e n c e s i n serum CK e l e v a t i o n s between e x e r c i s e d and s e d e n t a r y groups occurred during t h e f i r s t twenty-four h o u r s , a temporary d e c r e a s e was found i n e x e r c i s e d animals s a c r i f i c e d a f t e r t h r e e days ( 2 p < . 0 5 ) . No f u r t h e r d i f f e r e n c e s i n serum e l e v a t i o n s were found d u r i n g t h e remaining sampling times. P o s t - i r r a d i a t i o n serum GOT e l e v a t i o n s showed no s i g n i f i c a n t d i f f e r e n c e s between s e d e n t a r y and e x e r c i s e d animals a t t h e 5% l e v e l of confidence. Heart Homogenate Enzyme Levels Although t h e percentage decrease of LDH enzyme a c t i v i t y i n t h e s i x hour post-exposure samples d i d n o t d i f f e r s i g n i f i c a n t l y between e x e r c i s e d and s e d e n t a r y animals, t h e r e was an i n c r e a s e d percentage a c t i v i t y i n e x e r c i s e d r a t s a t twelve hours ( 2 p < . 0 5 ) , s u g g e s t i n g a more r a p i d recovery p r o c e s s t o t h e i n i t i a l enzyme l o s s . Except f o r a temporary decrease i n t h e LDH a c t i v i t y of t h e e x e r c i s e d samples on day s i x , no f u r t h e r s i g n i f i c a n t d i f f e r e n c e s a r e apparent a able 10~). Homogenate CK a c t i v i t i e s i n t h e e x e r c i s e d r a t s g e n e r a l l y remained s i g n i f i c a n t l y h i g h e r i n most p o s t - i r r a d i a t i o n samples and, i n c o n t r a s t t o t h e t r a n s i e n t leakage demonstrated i n i r r a d i a t e d s e d e n t a r y r a t s , d i d not show an i n i t i a l l o s s of a c t i v i t y ( ~ a b l e s5 & 5 ~ ) . The mean a c t i v i t y of GOT i n h e a r t homogenates was g e n e r a l l y g r e a t e r i n e x e r c i s e d r a t s d u r i n g t h e i n i t i a l twenty-four hour p o s t - i r r a d i a t i o n TABLE: 1OA COMPARISON OF ALTERATIONS I N HOMOGENATE ENZYME LEVELS OF POST-IRRADIATED SEDENTARY AND EXERCISED RATS. - -- PostIrradiation Time 6 Hours % Enzyme Systern Activity in Sedentary Rats LDH CK GOT 79.9 1 2 Hours LDH CK GOT 63.7 79.1 70.0 (3) (3) (3) 24 Hours T,DH CK GOT 66.8 (3) 75.3 (3) (3) 3 Days 6 Days 9 mas 1 2 Days LDH CK GOT LDH CK GOT - -- -- - % Activity in Exercised Rats - -- Significant Difference @ 2p < .05 (3) 86.1 ( 2 ) 80.4 ( 3 ) 86.8 (3) 101 89.3 (3) (3) 108 93.1 83.1 118 (3) (3) (3) LDH CK GOT 79.2 (3) LDH CK GOT 103 91.2 102 75.1 81.2 LDH POOLED STANDARD DEVIATION: CK POOLF,D STANDARD DEVIATION: GOT POOLED STANDARD DEVIATION: (3) (2) (3) (3) (3) 9.28 7.55 11.85 Figures i n p a r e n t h e s i s r e p r e s e n t t h e number of r a t s sampled. Values a r e expressed a s percent a c t i v i t y with r e s p e c t t o c o n t r o l values of 100%. . TABLE 11A COMPARISON OF ALTEFULTIONS I N MITOCHONDRIAL GOT LEVELS OF POST-IRRADIATED SEDENTARY AND EXF,RCISED RATS. PostIrradiation Time % Activity % Activity in Sedentary Rats in Exercised Rats Significant Difference @ 2p < .05 6 Hours 1 2 Hours 24 Hours 3 Days 125 (3) 111 (3) 6 Days 102 (3) 122 (3) 9 Days 113 (3) 90.7 (3) (3) 84.3 (3) 1 2 Days 84.4 POOLED STANDARD DEVIATION: 25.1 Values a r e expressed a s p e r c e n t a c t i v i t y w i t h r e s p e c t t o c o n t r o l v a l u e s of 100%. F i g u r e s i n p a r e n t h e s i s r e p r e s e n t t h e number of r a t s sampled. - i n t e r v a l , although t h e d e v i a t i o n s a r e s t a t i s t i c a l l y s i g n i f i c a n t only a t t h e twelve hour i n t e r v a l . Unlike t h e temporary decrease i n sedentary animals noted a f t e r 1 2 hours a able 6 , Chapter I I I ) , t h e r e was no s i g n i f i - cant l o s s of homogenate GOT a c t i v i t y i n i r r a d i a t e d , e x e r c i s e d r a t s a able 6 ~ ) . Except f o r a temporary decrease i n a c t i v i t y on day s i x , t h e homogena t e GOT a c t i v i t y of e x e r c i s e d r a t s d i d n o t d i f f e r s i g n i f i c a n t l y from t h e post-exposure v a l u e s of s e d e n t a r y animals f o r t h e remaining sampling intervals. Heart Mitochondria1 Enzyme Levels Mean GOT enzyme l e v e l s i n mitochondria i s o l a t e d from t h e h e a r t s of e x e r c i s e d and sedent.alry rats exposed t o r a d i a t i o n showed no s i g n i f i c a n t d i f f e r e n c e s f o r a l l sampling p e r i o d s involved a able 11~). DISCUSSION The l a r g e b u t t r a n s i e n t serum enzyme e l e v a t i o n s e x h i b i t e d by LDH and CK r e v e a l e d a s i g n i f i c a n t p o s t - i r r a d i a t i o n response which was maximal s i x hours following r a d i a t i o n exposure, r e t u r n i n g t o c o n t r o l l e v e l s by twenty-four hours. Such a p a t t e r n suggests a r a p i d b u t temporary leakage of b i o l o g i c a l m a t e r i a l o u t of t h e damaged t a r g e t t i s s u e s . Similar biolo- g i c a l responses have been r e p o r t e d i n s t u d i e s i n v o l v i n g whole-body exposure -- -- Takamori e t a l . 1969; Hori e t a l . 1970) , and i n t h e previous study conducted i n t h i s l a b o r a t o r y involving t h o r a c i c i r r a d i a t i o n of s e d e n t a r y male r a t s ( ~ a c ~ i l l i aand m Bhakthan, submitted f o r p u b l i c a t i o n ) . Although serum LDH showed no f u r t h e r s t a t i s t i c a l l y s i g n i f i c a n t e l e v a t i o n s during t h e remaining sampling p e r i o d s , both LDH and CK were, i n g e n e r a l , e l e v a t e d beyond day t h r e e (F'igure 3 , Chapter I11 and Figure 3 ~ ) i,n d i c a t i n g t h e p o s s i b l e development of secondary i n j u r y processes, a s was suggested i n t h e previous work. The small i n c r e a s e i n t h e post-exposure serum GOT a c t i v i t i e s of e x e r c i s e d r a t s i s a l s o s i m i l a r t o t h e response noted prev i o u s l y i n sedentary animals, and i n d i c a t e s enhanced leakage of t h e enzyme from t h e damaged t i s s u e s . The r e s u l t a n t r e t u r n t o normal i n serum GOT l e v e l s a f t e r twenty-four hours i n d i c a t e s t h e p o s s i b l e re-instatement of membrane i n t e g r i t y . Although no f u r t h e r s i g n i f i c a n t serum GOT eleva- t i o n s occurred during t h e remaining sampling i n t e r v a l s , an e l e v a t i n g trend s i m i l a r t o t h e LDH and CK p a t t e r n s occurred from day t h r e e t o day twelve. This evidence adds f u r t h e r support t o t h e suggested development of seconda r y r a d i a t i o n e f f e c t s , which may include t h e development of major biochemical l e s i o n s o r metabolic a l t e r a t i o n s . The p a t t e r n of temporary reductions i n LDH a c t i v i t y of h e a r t homogenates w i t h i n t h e twenty-four hour p e r i o d following r a d i a t i o n exposure i n d i c a t e s an i n i t i a l leakage of enzyme m a t e r i a l from t h e t a r g e t organ, which i n v e r s e l y p a r a l l e l s t h e observed t r a n s i e n t serum e l e v a t i o n s . Such a r e l a t i o n s h i p has been previously observed i n sedentary animals and lends f u r t h e r support t o t h e suggestion t h a t r a d i a t i o n induces changes i n membrane p e r m e a b i l i t y , r e s u l t i n g i n an e f f l u x of b i o l o g i c a l m a t e r i a l o u t of t h e i n j u r e d c e l l . Although samples taken twelve hours and t h r e e days following exposure do not demonstrate any marked reduction i n LDH enzyme a c t i v i t y , all remaining sampling times e x h i b i t s i g n i f i c a n t l o s s of t h e enzyme. The l a c k of normalization a f t e r twelve days following exposure suggests t h a t t h e permeability of t h e damaged membrane with r e s p e c t t o LDH has not been r e s t o r e d . An a l t e r n a t e , b u t l e s s l i k e l y , suggestion i s t h a t r a d i a t i o n exposure may have reduced o r a l t e r e d t h e normal metabolic requirements f o r t h e enzyme, r e s u l t i n g i n a decreased c e l l u l a r l e v e l . S i m i l a r l o s s e s of b i o l o g i c a l l y a c t i v e m a t e r i a l from i r r a d i a t e d systems have been independently observed (0kada and Peachey 1957; Kawasaki and Sakurai 1969). I n c o n t r a s t t o t h e LDH e f f e c t s , homogenate l e v e l s of CK and GOT i n i r r a d i a t e d , e x e r c i s e d r a t s d i d not e x h i b i t s i g n i f i c a n t decreases i n a c t i v i t y w i t h i n t h e f i r s t twenty-four hours. These observations c o n t r a s t w i t h t h e r e s u l t s obtained with sedentary r a t s ( c h a p t e r demonstrable l o s s e s i n homogenate a c t i v i t i e s occurred. III), i n which The d a t a suggest t h a t exposure of e x e r c i s e d r a t s t o 2,000 r a d s of gamma r a d i a t i o n does not cause s i g n i f i c a n t a l t e r a t i o n s i n t h e permeability of t h e s e enzymes i n t h e t a r g e t organ. It may be t h a t e x e r c i s e s t r e s s p r o t e c t s a g a i n s t t h e l o s s of b i o l o g i c a l m a t e r i a l from t h e damaged c e l l . This proposal i s , however, i n disagreement with t h e observed leakage of homogenate LDH and, a s w e l l , t h e noted enhancement i n serum enzyme l e v e l s of CK and GOT. A second and more p l a u s i b l e suggestion i s t h a t e x e r c i s e , a s a p h y s i o l o g i c a l s t r e s s , may induce s p e c i f i c metabolic adjustments such a s increased s y n t h e s i s of p r o t e i n s . Recent evidence of s t i m u l a t e d s y n t h e s i s of nuclear base p r o t e i n s following exposure of i s o l a t e d r a b b i t lymphocytes t o 1,000 R of X-radiation has been r e p o r t e d ( ~ h o s h1971) . The observed temporary l o s s of mitochondria1 GOT from samples i s o l a t e d twenty-four hours a f t e r i n vivo exposure suggests t h a t r a d i a t i o n may induce t r a n s i e n t m o d i f i c a t i o n s i n t h e membrane p e r m e a b i l i t y of h e a r t mitochondria i n e x e r c i s e - s t r e s s e d r a t s , r e s u l t i n g i n a leakage of t h e enzyme o u t of t h e s u b c e l l u l a r o r g a n e l l e and i n t o t h e cytoplasm. Evidence of secondary p e r m e a b i l i t y changes could not be found. Sham-irradiated e x e r c i s e d r a t s , s a c r i f i c e d a f t e r t h i r t y days of e x h a u s t i v e t r a i n i n g , do n o t e x h i b i t s i g n i f i c a n t d i f f e r e n c e s i n serum l e v e l s of t h e t h r e e enzymes w i t h r e s p e c t t o t h e s e d e n t a r y sham-irradiated animals. The r e s u l t s i n d i c a t e t h a t t h e animals were w e l l adapted, physio- l o g i c a l l y , t o t h e t r a i n i n g procedure and suggest t h a t t h e r e were no f a l s e serum enzyme e l e v a t i o n s i n t h e i r r a d i a t e d animals due t o e x e r c i s e . Similar r e s u l t s i n d i c a t i n g t h e p r o t e c t i v e e f f e c t of e x e r c i s e t r a i n i n g a g a i n s t a r i s e i n serum enzymes have been r e p o r t e d arbus us -e t al. 1964). Although exercise-induced m o d i f i c a t i o n s i n h e a r t homogenate l e v e l s of CK and GOT were n e g l i g i b l e , t h e s i g n i f i c a n t l y i n c r e a s e d a c t i v i t y of t i s s u e LDH i n t h e t r a i n e d animals i n d i c a t e s a metabolic a d a p t a t i o n t o t h e imposed physiological s t r e s s . I n comparing t h e r a d i a t i o n response of e x e r c i s e d and sedentary r a t s , s i g n i f i c a n t i n c r e a s e s i n t h e percentage e l e v a t i o n of serum LDH i n e x e r c i s e d animals were noted w i t h i n t h e f i r s t twenty-four hours following exposure. The d a t a suggests t h a t e x e r c i s e , a s an added pos t - i r r a d i a t i o n s t r e s s , f u r t h e r modifies t h e a l t e r e d p e r m e a b i l i t y of t h e damaged t a r g e t c e l l s , r e s u l t i n g i n an enhanced e f f l u x i n response t o t h e i n i t i a l i n j u r y . Such d i f f e r e n c e s may, however, be p a r t i a l l y a t t r i b u t a b l e t o an i n c r e a s e i n t h e cell-serum enzyme g r a d i e n t caused by t h e noted enhancement of t h e c e l l u l a r enzyme l e v e l a s a r e s u l t of t h e t r a i n i n g procedure. I n contrast, the d a t a f o r serum CK and GOT r e v e a l t h a t no s i g n i f i c a n t enhancement i n post-exposure serum e l e v a t i o n occurred during t h e e n t i r e sampling p e r i o d , suggesting t h a t t h e metabolic s t r e s s of e x h a u s t i v e e x e r c i s e i n i r r a d i a t e d animals d i d not compound t h e i n i t i a l r a d i o l o g i c a l i n j u r y noted i n sedent a r y r a t s w i t h r e s p e c t t o t h o s e enzymes. I n a d d i t i o n , it i s i n t e r e s t i n g t o n o t e t h a t u n l i k e LDH, homogenate l e v e l s of CK and GOT d i d not i n c r e a s e s i g n i f i c a n t l y as a r e s u l t of t h e t r a i n i n g procedure, and would n o t , t h e r e f o r e , c o n t r i b u t e t o any s i g n i f i c a n t i n c r e a s e i n t h e enzyme c o n c e n t r a t i o n gradient. Hence, it appears t h a t although t h e r e i s evidence of enhanced enzyme e f f l u x due t o p o s t - i r r a d i a t i o n e x e r c i s e s t r e s s , t h i s response i s not a g e n e r a l c h a r a c t e r i s t i c of a l l enzymes s t u d i e d and may, i n s t e a d , r e f l e c t i n c r e a s e d cell-serum enzyme g r a d i e n t s of s p e c i f i c components as a r e s u l t of t h e e x e r c i s e t r a i n i n g i t s e l f . The s i g n i f i c a n t d i f f e r e n c e noted a t t h e twelve hour sampling i n t e r v a l between homogenate LDH l e v e l s of e x e r c i s e d and s e d e n t a r y s u b j e c t s i n d i c a t e s an enhanced recovery p r o c e s s t o t h e i n i t i a l enzyme l o s s may occur i n t h e e x e r c i s e - t r a i n e d animals. This proposal i s , however, very tenuous, based on t h e a v a i l a b l e d a t a , and i s meant p r i m a r i l y a s a suggestion f o r further investigation. Unlike homogenate LDH, t h e c e l l u l a r l o s s of CK g e n e r a l l y remains s i g n i f i c a n t l y r e t a r d e d i n e x e r c i s e d s u b j e c t s with respect t o t h e sedentary i r r a d i a t e d r a t s . The d a t a i n d i c a t e t h a t p o s t - exposure e x e r c i s e of t r a i n e d animals markedly i n h i b i t s t h e l o s s of CK from t h e h e a r t observed i n sedentary groups. This occurrence-does not * n e c e s s i t a t e t h e p r e s e r v a t i o n of membrane i i l t e g r i t y , which would be c o n t r a r y t o t h e observed serum e l e v a t i o n s , b u t i n d i c a t e s , i n s t e a d , t h a t e x e r c i s e may s t i m u l a t e p r o t e i n s y n t h e s i s a s a p o s s i b l e r e s u l t of a l t e r e d metabolic p r i o r i t i e s due t o t h e s t r e s s c o n d i t i o n . Recent evidence of GOT homogenate l e v e l s i n e x e r c i s e d s u b j e c t s a l s o d i s p l a y s a s i m i l a r r e t a r d a t i o n of i n i t i a l enzyme l o s s from t h e damaged t a r g e t organ. Although a s i g n i f i c a n t decrease i n t h e enzyme a c t i v i t y of e x e r c i s e d animals occurred on day s i x , t h i s t r a n s i e n t decrease could not b e c o r r o b o r a t e d i n l a t e r samples. Mitochondria1 l e v e l s of GOT, although showing a temporary reduct i o n i n e x e r c i s e d animals twenty-four hours a f t e r exposure, do not d i f f e r s i g n i f i c a n t l y between e x e r c i s e d and s e d e n t a r y animals. I t can b e con- cluded t h a t e x e r c i s e , as a metabolic s t r e s s i n animals r e c e i v i n g 2,000 r a d s of gamma r a d i a t i o n t o t h e t h o r a c i c r e g i o n , does not cause any remarkable a l t e r a t i o n s i n t h e p e r m e a b i l i t y of t h e mitochondria1 membrane w i t h r e s p e c t t o t h e enzyme system i n s t u d y . CHAPTER V RADIATION-INDUCED ENZYME EFFLUX FROM RAT HEART: 111. EFFECT OF DIETARY SUPPLEFENTATION WITH VITAMIN E ON LIPID PEROXIDE FORMATION INTRODUCTION I n s t u d i e s w i t h t i s s u e homogenates and i s o l a t e d systems it h a s been observed t h a t exposure t o i o n i z i n g r a d i a t i o n can induce t h e formation of * p e r o x i d e s , known t o cause e x t e n s i v e d e s t r u c t i o n of l i p i d s ( ~ a u ~ a a r1968) d . However, t h e a b i l i t y of l i v i n g organisms t o d e s t r o y peroxides has made t h e search f o r radiation-catalyzed l i p i d oxidation d i f f i c u l t . Evidence of in v i t r o l i p l a peroxide formation a s a r e s u l t of r a d i a t i o n exDosure has heen documented (wills and Wilkinson 1967; Wills 1 9 7 0 ) . I n a d d i t i o n , -i n vivo s t u d i e s by Bacq and co-worker~ (1951) d e t e c t e d peroxides i n e x t r a c t s of mouse and r a t depot f a t following i r r a d i a t i o n . However, t h e extremely small v a l u e s obtained d i d not f u r n i s h conclusive evidence t h a t r a d i a t i o n -- exposure i n l i v i n g systems i n i t i a t e s i n vivo p e r o x i d a t i o n of l i p i d s . Recent evidence by Wills (1970) suggests t h a t vitamin E may a c t a s an e f f e c t i v e i n h i b i t o r a g a i n s t p e r o x i d a t i o n i n i r r a d i a t e d r a t - l i v e r microsomes. It i s expected t h a t vitamin E may a c t as a chain-breaking l i p i d a n t i o x i d a n t , i n h i b i t i n g f r e e - r a d i c a l p e r o x i d a t i o n v i a hydrogen a b s t r a c t i o n o r through t h e formation of a l i p i d - t o c o p h e r o l complex ( ~ a p p e l1972). -- Although many i n v i t r o s t u d i e s support t h e a n t i o x i d a n t h y p o t h e s i s , t h e l a c k of conclusive evidence of e i t h e r peroxide formation i n vivo -9 o r presence of peroxides i n t i s s u e s ( ~ c h w a r z1972) has s e v e r e l y hampered t h e s t u d y of t h e a n t i o x i d a n t a c t i v i t y of vitamin E and i t s r e l a t i o n s h i p t o f r e e - r a d i c a l induced peroxide formation i n t h e l i v i n g organism. The p r e s e n t i n v e s t i g a t i o n attempted t o f u r n i s h evidence of in vivo peroxide formation i n i r r a d i a t e d r a t h e a r t and r e l a t e such damage t o t h e e s t a b l i s h e d leakage of b i o l o g i c a l l y a c t i v e m a t e r i a l o u t of t h e damaged t a r g e t organ. I n a d d i t i o n , t h e study attempted t o r e l a t e t h e degree of p o s t - i r r a d i a t i o n c a r d i a c damage t o t h e d i e t a r y l e v e l of a-tocopherol administered p r i o r t o t h e i r r a d i a t i o n procedure. MATERIAL AND METHODS Male Sprague-Dawley r a t s of an average weight of 300 grn were s e l e c t e d a t random and d i v i d e d i n t o two groups. The f i r s t group (normal d i e t ) was f e d s t a n d a r d P u r i n a l a b chow, known t o c o n t a i n a-tocopherol ( 1 I U = 1 mg) p e r kgm of d i e t .' 66 mg of The second group ( f o r t i f i e d d i e t ) was f e d powdered l a b chow f o r t i f i e d w i t h 13.2 gm of D-L, 01a c e t a t e ( 2 5 0 I U = 1 p) p e r kg of d i e t , a-tocopher- The v i t a m i n was purchased from N u t r i t i o n a l Biochemicals Corporation, Ohio. This gave a tocopherol c o n c e n t r a t i o n f a c t o r of approximately 50 times t h e endogenous l e v e l , known t o cause s i g n i f i c a n t v a r i a t i o n s i n t h e r a t e of -in vitro lipid peroxide format ion i n l i v e r homogenates of i r r a d i a t e d mice ( ~ a w e sand Wills 1972). Both groups were f e d and watered ad l i b i t u m f o r two weeks 'D. S h e l t o n , Ralston-Purina Co. communication. , St. Louis ; through p e r s o n a l prior t o irradiation. I r r a d i a t i o n Procedure A l l animals were prepared f o r i r r a d i a t i o n a s described previously (chapter 111). The r a t s were i r r a d i a t e d i n groups of f o u r using an . Eldorado 8 gamma u n i t ( ~ t o m i cEnergy of ~ a n a d a ) The dose r a t e was c a l c u l a t e d t o be 266 rads/minute a t t h e s u r f a c e and exposure time was c o r r e c t e d f o r an absorbance of 15.7% t o give an estimated dosage of 2,000 r a d s t o t h e h e a r t . Sham-irradiated c o n t r o l s f o r each group were t r e a t e d i n an i d e n t i c a l manner t o t h e experimental animals, excluding t t c i u a i exposure. At pre-determines i n t e r v a l s of s i x , twelve and twenty- f o u r hours following exposure, r a t s were s e l e c t e d and placed under l i g h t e t h e r anaesthesia f o r s a c r i f i c e . Heart Muscle P r e p a r a t i o n f o r T h i o b a r b i t u r a t e Analysis I m e d i a t e l y a f t e r e x t r a c t i n g t h e blood, h e a r t s were excised, trimmed of f a t t y and connective t i s s u e and r i n s e d i n ice-cold 0.15 M KC1. A f t e r quickly b l o t t i n g d r y , t h e t i s s u e w a s plunged i n t o l i q u i d n i t r o g e n u n t i l f r o z e n , weighed, wrapped i n t i n f o i l and s t o r e d on dry i c e . Samples were analyzed w i t h i n t h r e e t o f i v e days. T h i o b a r b i t u r a t e Analysis f o r L i p i d Peroxides Heart t i s s u e was thawed a t room temperature, c u t i n t o a f i n e mince and placed i n t o 2.0 m l of 0.15 K C 1 per gm of t i s s u e . K C 1 replaced t h e u s u a l sucrose medium, s i n c e it has been determined t h a t carbohydrates i n t e r f e r e with t h i s a n a l y s i s ( w i l l s 1967) . The t i s s u e was homogenized i n a manual ground-glass b l e n d e r and t o t h e r e s u l t i n g homogenate was added 1 . 0 m l of 10% t r i c h l o r o a c e t i c a c i d p e r m l of suspension. After a g i t a t i n g , t h e mixture was c e n t r i f u g e d f o r f i v e minutes and t h e res u l t a n t s u p e r n a t a n t was c a r e f u l l y e x t r a c t e d and f i l t e r e d through Whatman GF/A g l a s s paper t o remove r e s i d u a l m a t e r i a l . To 4.0 m l of t h e f i l t r a t e was added 1 . 0 m l of 1% t h i o b a r b i t u r a t e and t h e s o l u t i o n was heated a t 1 0 0 f~o r~ t e n minutes (Tappel and Zalkin 1959) . The r e s u l t a n t colour was measured a t 530 nm on a Beckman DB-GT spectrophotometer a g a i n s t a s o l u t i o n blank c o n t a i n i n g 1 . 0 m l of water p e r 4 m l of s u p e r n a t a n t . Peroxide v a l u e s ( TBA v a l u e s ) a r e expressed as m o l e s of malonalaehvde p e r l i t r e of s u p e r n a t a n t , using t h e molar e x t i n c t i o n c o e f f i c i e n t of 1.56 x lo5 M-l. cm-1 determined by Sinnhuber et a l . (1958). I RESULTS Serum Enzyme Analysis Serum LDH l e v e l s of r a t s f e d t h e normal d i e t d i d not r e v e a l a s i g n i f i c a n t e l e v a t i o n u n t i l twelve hours a f t e r exposure a able 1 ~ ) The . twelve hour i n t e r v a l , however, e x h i b i t e d a mean a c t i v i t y i n c r e a s e of 73% ( p < .05). Serum LDH l e v e l s r e t u r n e d t o normal a f t e r twenty-four hours (I?igure 1 ~ ) Although . t h e animals maintained on t h e t o c o p h e r o l - f o r t i f i e d d i e t e x h i b i t e d t h e same g e n e r a l p o s t - i r r a d i a t i o n p a t t e r n (F'igure 2 ~ ) a, t no time was t h e mean serum e l e v a t i o n s t a t i s t i c a l l y d i s t i n c t from t h e shami r r a d i a t e d c o n t r o l s of t h a t group percentage e l e v a t i o n s able 2 ~ ) . Furthermore, t h e mean fu able 3 ~ comparing ) t h e i r r a d i a t i o n response TABLE 1 B POST-IRRADIATION SERUM LACTATE DEHYDROGENASE LEVELS I N RATS MAINTAINED ON STANDARD PURINA LAB CHOW. SIGNIFICANT DIFFERENCES BETWEEN CONTROL AND TEST MEANS WERE DETERMINED BY t-TEST, USING A POOLdD ESTIMATE OF VARIANCE. Me an Activity mU/ml Serum Significant Difference From Control @ P < .05 Group Number of Samples Control 6 1.35 x 6 Hour 5 1-47 x 1 2 Hour 4 2.34 x 10 24 Hour 4 1.13 x POOLED VARIANCE: lo3 2n3 3 300022 POOLED STANDARD DEVIATION : 548 lo3 % Increase From Control F i g u r e 1B, P o s t - i r r a d i a t i o n serum l a c t a t e dehydrogenase l e v e l s i n r a t s maintained on s t a n u a r d Yurina l a b chow. ACTIVITY IN ( m ~ / m lserum)xlo3 TABLE 2B POST-IRRADIATION SERUM LACTATE DEHYDROGENASE LEVELS I N RATS MAINTAINED ON VITAMIN E - F O R T I F I E D LAB CHOW FOR TWO WEEKS P R I O R TO IRRADIATION. S I G N I F I C A N T DIFFERENCES BETWEEN CONTROL AND T E S T MEANS WERE DETERMINED BY t - T E S T , USING A P O O U D ESTIMATE OF VARIANCE. Me an Activity mU/ml Serum Group Number of Samples Control 6 611 5 736 12 H o u r 4 860 24 H o u r 4 528 6 HOW POOLED VARIANCE : 94564 POOLED STANDARD DEVIATION: 308 Significant Difference From C o n t r o l @ p < .05 % Increase From Control Figure 2B. P o s t - i r r a d i a t i o n serum l a c t a t e dehydrogenase l e v e l s i n rats maintained on vitamin E - f o r t i f i e d 1a.h chow f o r twz u z c k s prior t o irradiation. ACTIVITY IN mlJ/ml serum TABLE 3B - COMPARISON OF ALTERATIONS I N SERUM LACTATE DEHY DROGENASE LE:VELS BETWEEN RATS FE3 STANDARD LAB CHOW AND TOCOPHEROL-FORTIFIED DIETS. PostIrradiation Time POOLED VARIANCE : % Activity Normal Diet % Activity TocopherolFortified Diet Significant Difference @ p < .05 2098 POOLED STANDARD DEVIATION : 45 .8 Figures i n p a r e n t h e s i s r e p r e s e n t t h e number of r a t s sampled. Standard d e v i a t i o n s , r e p r e s e n t i n g confidence l i m i t s of t h e percentage e l e v a t i o n s , were c a l c u l a t e d by d i v i d i n g t h e pooled s t a n d a r d d e v i a t i o n s of t h e serum a c t i v i t e s by t h e c o n t r o l a c t i v i t y and m u l t i p l y i n g t h i s f a c t o r by 100. The r e s u l t a n t v a r i a n c e s ( s 2 ) were s u b j e c t e d t o an f r a t i o and were found t o be homogeneous. The v a r i a n c e s of t h e normal d i e t and vitamin E - f o r t i f i e d d i e t were, t h e r e f o r e , pooled t o o b t a i n a s i n g l e variance f a c t o r . between t h e two groups were not s i g n i f i c a n t l y d i f f e r e n t ( p > .05) and i n d i c a t e t h a t t h e d i e t a r y tocopherol f o r t i f i c a t i o n d i d not s i g n i f i c a n t l y reduce t h e p o s t - i r r a d i a t i o n leakage of enzyme i n t o t h e serum. A comparison of serum LDH l e v e l s between sham-irradiated r a t s f e d normal and f o r t i f i e d d i e t s able 4B) d i d , however, r e v e a l a s i g n i f i c a n t r e d u c t i o n i n t h e mean enzyme l e v e l of t h e t o c o p h e r o l - f o r t i f i e d group (2p < .05). The mean LDH serum a c t i v i t y of t h e c o n t r o l d i e t group w a s , i n f a c t , 121% above t h e mean l e v e l found i n t h e t o c o p h e r o l - f o r t i f i e d animals. L i pi d- Peroxide Determination - - Malonaldehyde, a major degradation product of l i p i d peroxides, allows a s e n s i t i v e e s t i m a t i o n of t h e e x t e n t of p e r o x i d a t i o n i n l i v i n g t i s s u e s by t h e formation of a coloured complex w i t h t h i o b a r b i t u r a t e . Although t h e v a l i d i t y of t h i s determination h a s been questioned ( ~ h i l p o t 1 9 6 3 ) , W i l l s and R o t b l a t (1964) and Wills (1966) found t h a t t h e t h i o b a r b i t u r a t e (TBA) method c o r r e l a t e d w e l l w i t h o t h e r contemporary e s t i m a t i o n s of peroxide determination. The mean peroxide v a l u e s (TBA v a l u e s , expressed a s malonaldehyde c o n c e n t r a t i o n ) i n t h e h e a r t homogenate p r e p a r a t i o n s of i r r a d i a t e d , normal d i e t rats d i d not d i f f e r s i g n i f i c a n t l y from t h e TBA v a l u e s of t h e shamirradiated controls a able 5 ~ ) . Although a 17.6% i n c r e a s e d i d occur a f t e r twenty-f our hours ( ~ i g u r e3B ) , t h i s e l e v a t i o n was not s t a t i s t i c a l l y s i g n i ficant. diet S i m i l a r l y , i r r a d i a t e d r a t s maintained on t h e t o c o p h e r o l - f o r t i f i e d able 6B) d i d not e x h i b i t any evidence of i n c r e a s e d t i s s u e l e v e l s of TABLE 4~ COMPARISON OF LACTATE DEHYDROGENASE SERUM ACTIVITY BETWEEN SHAM-IRRADIATED CONTROL RATS FED STANDARD LAB CHOW AND TOCOPHEROL-FORTIFIED DIETS. Serum A c t i v i t y Normal Diet ( m ~ / m lserum) Serum A c t i v i t y TocopherolF o r t i f i e d Diet (mu/ml Serum) Pooled S Significant Difference @ 2p < -05 Figures i n p a r e n t h e s i s r e p r e s e n t t h e number of r a t s sampled. Variances p r e v i o u s l y c a l c u l a t e d f o r each system were s u b j e c t e d t o a t e s t of homogeniety u s i n g t h e f r a t i o . The r a t i o i n d i c a t e d t h a t t h e v a r i a n c e s were homogeneous and were, t h e r e f o r e , pooled t o g e t h e r t o o b t a i n a s i n g l e variance f a c t o r . TABLE: 5B - CONCENTRATIONS OF TBA REACTANTS, EXPRESSED AS NMOLAR VALUES, I N THE FINAL SUPERNATANT OF HEART HOMOGENATES FROM RATS FED STANDARD PURINA LAB CHOW BEFORE IRRADIATION. SIGNIFICANT DIFFERENCES EETWEEN CONTROL AND TEST MEANS WERE DETERMINED BY t-TEST, USING A POOLED ESTIMATE OF VARIANCE Mean Concentration of Malonaldehyde (nmoles/l) Significant Difference From Control @ p < .05 Group Number of Samples control 6 6 Hour 4 1 2 Hour 6 554 - 24 Hour 6 648 - POOLED VARIANCE : 6525 POOLED STANDARD DEVIATION: 80.8 % Increase From Control 0.54 17.6 Figure 3B. Concentration of TBA r e a c t a n t s , expressed as nmolar malonaldehyde, i n t h e f i n a l s u p e r n a t a n t of h e a r t homogenates from r a t s fed s t . ~ n d a r dllh chow and t o c o p h e r o l - f o r t i f i e d d i e t s b e f o r e i r r a d iation. am 6 ti0 URS 12 HOURS 24 HOURS CONTROL DIII1':SHAM - IRRADIATED CONTROL TOCOPHEROL FORTIFIED DIET: SHAM- IRRADIATED CONTROL DIE:T: IRRADIATED CONTROL TOCOPHEROL FORTIFIED DIET: IR RADIATED CONTROLS TABLE 6~ - CONCENTRATION OF TBA REACTANTS, EXPRESSED A S NMOLAR VALUES, I N THE FINAL SUPERNATANT OF HEART HOMOGENATES FROM RATS FED TOCOPHEROL-FORTIFIED DIET. SIGNIFICANT DIFFERENCES BETWEEN CONTROL AND TEST MEANS WERE DETERMINED BY t-TEST, USING A POOLED ESTIMATE OF VARIANCE. Group Numb e r of Sample s Control 6 6 Hour 5 1 2 Hour 6 24 Hour 5 POOLED VARIANCE : Mean Concentration of Malonaldehyde (nmoles/l) 7181 POOLED STANDARD DEVIATION : 84.7 Significant Difference From Control @ p < .05 % Increase From Control COMPARISON OF WONALDEHYDE CONCENTRATIONS I N THE FINAZl SUPERNATANT OF HEART HOMOGENATES FROM SHAM-IRRADIATED CONTROL RATS FED NORMAL DIET AND VITAMIN E-FORTIFIED DIET. Mean Concentration Normal Diet (nmolesll) Mean Concentration Vitamin EF o r t i f i e d Diet (nmoles/l) Pooled S Significant Difference @ p < .05 Figures i n p a r e n t h e s i s r e p r e s e n t t h e number of r a t s samples. Variances determined were found t o be homogeneous and were, t h e r e f o r e , pooled t o o b t a i n a s i n g l e v a r i a n c e f a c t o r . malonaldehyde ( ~ i g u r e3 ~ ) . Comparison of h e a r t homogenate TBA v a l u e s between sham-irradiated r a t s fed normal and f o r t i f i e d d i e t s able 7 ~ r e) v e a l e d a n o t a b l e re- duction of 31% i n t h e malonaldehyde t i s s u e l e v e l of t h o s e animals maint a i n e d on t h e vitamin E-enriched d i e t ( 2 p < . 0 5 ) and i n d i c a t e s t h a t d i e t - ary supplementation of vitamin E may s e r v e t o decrease i n vivo peroxide f o r m a t i on. DISCUSSION The i n i t i a l r a d i a t i o n response of t h e rats maintained on t h p s t a n d a r d l a b chow d i e t i s n o t i c e a b l y d i f f e r e n t from p r e v i o u s r e s u l t s obtained i n both e x e r c i s e d and s e d e n t a r y animals. I n contrast t o the maximal s i x hour responses noted p r e v i o u s l y , t h e s i x hour response does not e x h i b i t any s i g n i f i c a n t enzyme e l e v a t i o n . I n a d d i t i o n , t h e maximal response a t twelve hours i s n o t i c e a b l y decreased w i t h r e s p e c t t o t h e maximal e l e v a t i o n s p r e v i o u s l y documented. Such d i f f e r e n c e s i n serum LDH e l e v a t i o n s may l i e i n t h e lower r a d i o l o g i c a l dose r a t e used i n t h e p r e s e n t work. However, a more l i k e l y reason may be t h e age d i f f e r e n c e s between t h e animals used i n t h e s t u d i e s . I n order t o obtain sufficient heart t i s s u e f o r t h e TBA a n a l y s i s , r a t s employed i n t h e p r e s e n t work weighed an average of 300 gms and were n e c e s s a r i l y o l d e r t h a n t h e 150 r a t s used p r e v i o u s l y . - 200 gm Such a f i n d i n g i n d i c a t e s t h e chronological age of t h e animal may s i g n i f i c a n t l y a f f e c t t h e r a d i a t i o n response observed. Although i r r a d i a t e d animals p r e v i o u s l y maintained on t h e tocopherol- 122 enriched d i e t d i d not e x h i b i t any s i g n i f i c a n t serum enzyme e l e v a t i o n s ( a s was observed i n t h e normal d i e t a n i m a l s ) , t h e comparison of percent a g e e l e v a t i o n s between groups d i d not r e v e a l any s i g n i f i c a n t p r o t e c t i v e a c t i o n of vitamin E on t h e post-exposure response. Such evidence i n d i c a t e s t h a t excessive q u a n t i t i e s of vitamin E does not s e r v e a s a r a d i o p r o t e c t i v e agent i n v i v o . However, it may b e t h a t d i f f e r e n c e s would have been noted between v i t a m i n E d e f i c i e n t r a t s and r a t s maintained on a normal d i e t . Furthermore, i t must b e noted t h a t t h e e l e v a t i o n of serum LDH a s a radiob i o l o g i c a l marker may n o t , a s a r e s u l t of l a r g e v a r i a n c e and r e l a t i v e l y low response, s e r v e a s a s e n s i t i v e enough i n d i c a t o r of damage. The s i g n i f i c a n t decrease i n serum LDH l e v e l s i n t h e sham-irradiated r a t s maintained on vitamin E i n d i c a t e s t h a t t h e d i e t a r y a d m i n i s t r a t i o n of t o c o p h e r o l decreases t h e normal serum l e v e l of t h e enzyme. Although t h e observed decrease may r e s u l t from s t i m u l a t e d i n a c t i v a t i o n of t h e serum p r o t e i n , a more p l a u s i b l e e x p l a n a t i o n involves a decreased r a t e of enzyme e f f l u x from t h e t i s s u e s a s a r e s u l t of tocopherol-induced s t a b i l i z a t i o n of membrane p e r m e a b i l i t y . This supports t h e proposal of Lucy and Dingle (1964) , Lucy (1972) and Diplock and Lucy (1973) t h a t v i t a m i n E a c t s as a stereochemical s t a b i l i z e r of c e l l u l a r membranes, without which membranes may demonstrate abnormally high p e r m e a b i l i t y . I n addition, the elevation o f serum and plasma enzymes i n c l i n i c a l l y - i n d u c e d tocopherol d e p l e t i o n has proved t o be a u s e f u l means of observing t h e development of v i t a m i n E d e f i c i e n c y ( ~ k s a n e n1970; T o l l e r s u d 1970; Hyldgaard-Jensen 1973). Studies by Boyd (1968) , u s i n g lambs w i t h experimental n u t r i t i o n a l myopathy , showed t h a t a d m i n i s t r a t i o n of a-tocopherol completely stopped t h e abnormal leakage of enzymes observed under such c o n d i t i o n s and provide f u r t h e r s u p p o r t i n g evidence t o t h e proposal of membrane s t a b i l i z a t i o n . The f a i l u r e t o secure evidence of radiation-induced l i p i d peroxide format i o n does not r u l e out t h e p o s s i b i l i t y t h a t i o n i z i n g r a d i a t i o n may i n i t i a t e a u t o c a t a l y t i c peroxide formation -i n vivo. It has been r e p o r t e d t h a t t h e amounts of peroxides formed -i n vivo a s a r e s u l t of r a d i a t i o n i n j u r y a r e very s m a l l ( ~ a -ect ~a l . 1 9 5 1 ) , which suggests t h a t t h e accumul a t i o n of peroxide products w i t h i n twenty-four hours of exposure may have been below t h e l i m i t s of experimental. s e n s i t i v i t y . vivo condition - Tn a i l d i t i c e , t h e iz - allows f o r t h e ongoing metabolism and d e s t r u c t i o n of per- oxides and by-products, s o t h a t malonaldehyde a n a l y s i s of such systems may not r e f l e c t t h e t r u e accumulation of peroxides i n t h e damaged t i s s u e s . Dawes and W i l l s (1972) have r e p o r t e d marked i n c r e a s e s i n t h e r a t e of l i p i d p e r o x i d a t i o n i n incubated l i v e r , kidney and h e a r t homogenates of r a t s exposed t o 500 - 2,000 r a d s of whole-body i r r a d i a t i o n . I n comparison t o t h e -- r e s u l t s p r e s e n t l y r e p o r t e d , it becomes e v i d e n t t h a t t h e i n vivo a n a l y s i s a s compared t o -i n v i t r o i n c u b a t i o n of homogenates may y i e l d v a s t l y d i f f e r ent results. Such i s supported i n a r e c e n t study on i r r a d i a t e d r a t s by I c h i i and co-workers (1968). It was r e p o r t e d t h a t , i n all t i s s u e s analyzed, -- t h e amount of TBA chromagen formed i n vivo was n e g l i g i b l e a t a l l p e r i o d s t e s t e d u n l e s s homogenates were incubated i n v i t r o . It i s , therefore, d i f f i c u l t t o support t h e assumption t h a t a n a l y s i s of TBA products & v i v o i s a r e a l i s t i c r e p r e s e n t a t i o n of t h e t r u e s i t u a t i o n of peroxide formation. Due t o t h e f a c t t h a t radiation-induced peroxide formation could not b e d e t e c t e d i n e i t h e r d i e t a r y group of r a t s , t h e p r o t e c t i v e f u n c t i o n of vitamin E a s a l i p i d a n t i o x i d a n t a g a i n s t r a d i a t i o n i n j u r y could n o t b e e v a l u a t e d . However, i n a s i m i l a r s t u d y u s i n g an i d e n t i c a l tocopherol c o n c e n t r a t i o n f a c t o r between c o n t r o l and f o r t i f i e d d i e t s a s used i n t h i s study awes and Wills 1 9 7 2 ) , it was r e p o r t e d t h a t t h e t i s s u e l e v e l of vitamin E c l e a r l y p l a y s an important r o l e i n determining t h e r a t e of -i n v i t r o p e r o x i d a t i o n of i r r a d i a t e d r a t t i s s u e s . Such c o n f l i c t - i n g evidence, w i t h r e s p e c t t o p e r o x i d a t i o n , s t r e s s e s t h e importance i n s e l e c t i o n of t h e method of a n a l y s i s . It t h e r e f o r e appears e s s e n t i a l t o determine whether t h e -i n vivo t i s s u e a n a l y s i s o r t h e -i n v i t r o incubation method i s most r e p r e s e n t a t i v e of t h e t r u e e s t i m a t i o n of peroxide format i o n i n t h e i n t a c t organism. The r e l a t i v e l y h i g h l e v e l s of TBA r e a c t a n t s , expressed a s nrnoles of malonaldehyde, do n o t r e p r e s e n t t h e a b s o l u t e l e v e l s of l i p i d peroxide products ( ~ a l k i nand Tappel 1960). Although t h e TBA r e a c t i o n p r i m a r i l y measures malonaldehyde formed i n p e r o x i d a t i o n , animal t i s s u e s a r e a l s o known t o c o n t a i n o t h e r TBA r e a c t a n t s ( ~ i n n h u b e r-e t a l . 1958) i n c l u d i n g aromatic aldehydes and carbohydrate condensation products which g i v e r i s e t o a s i g n i f i c a n t background e r r o r . However, t h e 31% r e l a t i v e de- c r e a s e i n t h e c o n c e n t r a t i o n of TBA r e a c t a n t s i n t h e h e a r t homogenates of tocopherol-fortified, sham-irradiated c o n t r o l animals does i n d i c a t e a n o t a b l e decrease i n t h e t i s s u e l e v e l of peroxide products. It i s apparent t h a t d i e t a r y supplementation w i t h vitamin E e f f e c t i v e l y decreases t h e h e a r t - t i s s u e l e v e l of t h e s e accumulated TBA r e a c t a n t s . Although t h i s could be mediated v i a stimulated metabolic degradation of t h e products, a more plausable explanation would be t h a t supplementation of normal d i e t a r y l e v e l s of a-tocopherol e f f e c t i v e l y reduces t h e r a t e of ongoing l i p i d peroxide formation, leading t o observable reductions i n t h e t i s s u e l e v e l s of t h e s e TBA chromatic r e a c t a n t s . Similar comparisons i n t h e t i s s u e l e v e l s of TBA r e a c t a n t s i n normal and tocopherol-deficient r a t s have been previously reported ( ~ a l k i nand Tappel 1960; Kitabchi and W i l l i a m s 1968). CHAPTER V I GENERAL CONCLUSIONS IRRADIATION EFFECTS I N SEDENTARY ANIMALS I r r a d i a t i o n of c a r d i a c muscle induces a t r a n s i e n t e f f l u x of b i o l o g i c a l l y a c t i v e m a t e r i a l o u t of t h e t a r g e t organ which c o r r e l a t e s with an i n c r e a s e of t h i s m a t e r i a l i n t h e serum. It i s , t h e r e f o r e , pro- posed t h a t enhanced serum enzyme l e v e l s following r a d i a t i o n exposure r e s u l t from leakage of t h e m a t e r i a l a c r o s s t h e damaged membrane and a r e not a consequence of i n c r e a s e d l e v e l s w i t h i n t h e h e a r t muscle. Subsequent s t a b i l i z a t i o n of b o t h serum and homogenate enzyme l e v ~ l si n d i c a t e a p o s s i b l e r e i n s t a t e m e n t of c e l l u l a r i n t e g r i t y following t h e observed i n i t i a l alterations. Secondary e l e v a t i o n s of serum enzyme l e v e l s a r e not accompanied by cytoplasmic l o s s e s and i m p l i c a t e some biochemical l e s i o n o r metabolic a l t e r a t i o n w i t h i n t h e t a r g e t organ. Although t h e p o s s i b i l i t y of c e l l u l a r death and d i s r u p t i o n cannot be discounted, t h e doses normally r e q u i r e d t o produce such e f f e c t s v i a cytoplasmic i n j u r y a r e much h i g h e r t h a n dosages used a t t h e t h e r a p e u t i c l e v e l ( ~ l t m a n-e t a l . 1970; Fajardo 1973). I n a d d i t i o n , t h e s i m i l a r i t y of serum and homogenate p a t t e r n s f o r L;DH and CK, i n c o n t r a s t t o GOT, suggests t h a t leakage from t h e myocardium i s not due t o massive c e l l d i s r u p t i o n , s i n c e such a c a t a s t r o p h e would cause simultaneous l o s s of a l l b i o l o g i c a l l y a c t i v e m a t e r i a l from t h e ruptured c e l l and t h e r e b y r e s u l t i n e s s e n t i a l l y i d e n t i c a l leakage p a t t e r n s f o r t h e enzymes s t u d i e d . It appears, i n s t e a d , t h a t t h e e f f l u x of t h e s e enzymes from t h e damaged c e l l s may be r e g u l a t e d 126 by c e r t a i n " l i m i t i n g " f a c t o r s such a s c o n c e n t r a t i o n g r a d i e n t s , molecular s i z e and geometry o r e l e c t r o s t a t i c charge. Whereas LDH and CK appear t o be c o n t r o l l e d by s i m i l a r f a c t o r s , GOT leakage may be governed by some o t h e r l i m i t i n g determinants i n f l u e n c i n g i t s membrane p e r m e a b i l i t y as i s --. suggested by t h e work of Henley e t a 1 (1959) . IRRADIATION EFFECTS I N EXERCISED ANIMALS S i g n i f i c a n t serum e l e v a t i o n s of LDH, CK and GOT following t h o r a c i c i r r a d i a t i o n of e x e r c i s e - t r a i n e d r a t s add f u r t h e r support t o t h e c o n t e n t i o n t h a t r a d i a t i o n i n j u r y causes a l t e r a t i o n s i n c e l l memhrane p e r m e l h i l i t y , l e a d i n g t o a leakage of m a t e r i a l o u t of t h e t a r g e t organ. Similar patterns r e v e a l i n g r a p i d , t r a n s i e n t e l e v a t i o n of serum enzymes have been p r e v i o u s l y observed ( ~ a k a m o r i-e t a l . 1969; Hori -e t a l . 1970). Subsequent e l e v a t i n g p a t t e r n s i n l a t e r sampling i n t e r v a l s i n d i c a t e t h e p o s s i b l e development of secondary r a d i a t i o n i n j u r y . I n c o n t r a s t t o t h e i n i t i a l decrease i n h e a r t homogenate l e v e l s of CK and GOT observed i n Chapter 111, p o s t - i r r a d i a t i o n l o s s of t h e enzymes i n h e a r t s e x i s e d from e x e r c i s e d animals was s i g n i f i c a n t l y reduced. Although it may be suggested t h a t e x e r c i s e s t r e s s i n p o s t - i r r a d i a t e d animals p r o t e c t s a g a i n s t l o s s of m a t e r i a l from t h e t a r g e t organ, t h e observed l o s s of homogenate LDH and i n c r e a s e d serum enzyme l e v e l s do n o t i m p l i c a t e a p r e s e r v a t i o n of membrane i n t e g r i t y . A more p l a u s i b l e ex- p l a n a t i o n may be t h a t e x e r c i s e induces s p e c i f i c metabolic adjustments which c o u n t e r a c t t h e e f f l u x of m a t e r i a l from t h e damaged organ. Enzyme l e v e l s of GOT i n i s o l a t e d r a t h e a r t mitochondria suggest t h a t p o s t - i r r a d i a t i o n e x e r c i s e d i d not cause s i g n i f i c a n t a l t e r a t i o n s i n membrane i n t e g r i t y w i t h r e s p e c t t o i r r a d i a t e d s e d e n t a r y animals. IRRADIATION EFFECTS I N VITAMIN E-FORTIFIED ANIMALS Comparison of percentage serum LDH e l e v a t i o n between r a t s f e d s t a n d a r d P u r i n a l a b chow and tocopherol-f o r t i f i e d d i e t s d i d not r e v e a l any s i g n i f i c a n t r a d i o p r o t e c t i v e a c t i o n of t h e vitamin. Although such evidence suggests t h a t vitamin E does not s e r v e a s a u s e f u l radioprotect i v e a g e n t , it i s f e l t t h a t t h e e l e v a t i o n of serum LDH may not b e a s e n s i t i v e enough r a d i o b i o l o g i c a l marker. S i g n i f i c a n t r e d u c t i o n of serum LDH l e v e l s i n sham-irradiated r a t s maintained on v i t a m i n E i n d i c a t e s t h a t t h e d i e t a r y a d m i n i s t r a t i o n of t o c o p h e r o l decreases t h e serum enzyme l e v e l found under normal d i e t a r y conditions. It i s known t h a t e x t r a c e l l u l a r enzymes e x i s t i n a ''steady- s t a t e " s i t u a t i o n , t h e i r c o n c e n t r a t i o n i n t h e blood dependent upon t h e r a t e of e f f l u x from t i s s u e c e l l s and t h e i r r a t e of i n a c t i v a t i o n . Sig- n i f i c a n t r e d u c t i o n s i n normal serum l e v e l s must, t h e r e f o r e , ocdur through t h e a l t e r a t i o n of e i t h e r t h e leakage r a t e o r t h e r a t e of i n a c t i v a t i o n . Although d i e t a r y supplementation w i t h a-tocopherol may i n d i r e c t l y a l t e r t h e r a t e of enzyme i n a c t i v a t i o n , a more p l a u s a b l e e x p l a n a t i o n involves a decrease i n t h e r a t e of c e l l u l a r e f f l u x a s a r e s u l t of induced s t a b i l i z a t i o n of c e l l u l a r membrane p e r m e a b i l i t i e s . Due t o t h e f a c t t h a t a u t o c a t a l y t i c peroxide formation i n vivo was not d e t e c t e d , t h e r a d i o p r o t e c t i v e f u n c t i o n of vitamin E a s a l i p i d a n t i oxidant could not be e v a l u a t e d . However, t h e f a i l u r e t o secure evidence of peroxide formation does not r u l e o u t t h e p o s s i b i l i t y t h a t i o n i z i n g r a d i a t i o n may i n i t i a t e p e r o x i d a t i o n of membrane l i p i d s . It i s q u i t e conceivable t h a t , because of minute q u a n t i t i e s o r ongoing metabolic e l i m i n a t i o n , t h e amount formed was below t h e t h r e s h o l d of experimental sensitivity. I t was, however, shown t h a t d i e t a r y supplementation with vitamin E e f f e c t i v e l y reduces t h e normal h e a r t - t i s s u e l e v e l of peroxidation products. It i s proposed t h a t d i e t a r y supplementation w i t h l a r g e amounts of a-tocopherol reduces t h e r a t e of ongoing peroxide formation i n t h e i n t a c t animal, l e a d i n g t o an observable r e d u c t i o n i n t h e t i s s u e l e v e l of t h e s e compounds. BIBLIOGRAPHY ABOOD, L.G. and L. ALEXANDER. Oxidative phosphorylation by an enzyme complex from d i s r u p t e d b r a i n mitochondria. J . B i o l . Chem. 227: 725, 1957. 717 - ALBAUM, H.G. Serum enzymes following whole-body r a d i a t i o n i n t h e r a b b i t . Radiat Res 12: 186 - 194, 1960. . . ALNONTE, T . J . , J . H . BARNES, S.C. BAUTISTA, B. DELACRUZ, L. LANSANGAN and P.A. PINEDA. Serum transaminase i n mice a f t e r whole-body X-irradiat i o n and t h e e f f e c t of a chemical p r o t e c t o r . I n t . J . R a d i a t . B i o l . 9 : 37 - 42, 1965. ALTLAND, P.D. and B. HIGHMAN. E f f e c t s of e x e r c i s e on serum enzyme v a l u e s and t i s s u e s of r a t s . Am. J . P h y s i o l . 201: 393 - 395, 1961. ALTMAN, K . I . , G.B. GERBER and S. OKADA. R a d i a t i o n e f f e c t s on molecules i n a l i v i n g c e l l . I n : R a d i a t i o n Biochemistry, Volume 1, C e l l s . S . C)ka.de.; ~ d i _ t . o r Apademfc Press New Jlork 19711 p 66 67, - ; BACQ, Z . M . , C. BURG, A. CHEVALLIER and C . HEUSGHEM. Etude p r e l i m i n a i r e du comportement des g r a i s s e s chez des animaux i r r a d i e s en t o t a l i t 6 p a r l e s rayons X. J . P h y s i o l . ( p a r i s ) 43: 640 - 643, 1951. BACQ, Z.M. and P. ALEXANDER. Fundamentals of Radiobiology, second e d i t i o n , 274. Pernlagon P r e s s , New York , 1961, p. 272 - BAHR, G.F. A u n i t mitochondrion: D.N.A. c o n t e n t and response t o Xi r r a d i a t i o n . I n : Advances i n C e l l and Molecular Biology, Volume 1, E.J. Du Praw, e d i t o r , Academic P r e s s , New York, 1971, p. 267 - 292. . BARBER, A.A. and A. OTTOLENGHI Ef f e e t of ethylenediaminetetraacetate on l i p i d peroxide formation and succinoxidase i n a c t i v a t i o n by u l t r a v i o l e t l i g h t . Proc. Soc. Exp. B i o l . Med. 96: 471 - 473, 1957. BARER, R. and S. JOSEPH. The a c t i o n of X-rays and chlorambucil on t h e cytoplasmic s o l i d c o n c e n t r a t i o n of lymphocytes. Exp. C e l l Res. 19: 51 64, 1960. - BEATON, J . R . Liver and plasma m a l i c dehydrogenase a c t i v i t i e s i n t h e e x e r c i s e d r a t . Proc. Soc. Exp. B i o l . Med. 123: 598 600, 1966. - BECKER, F . , R.B. WILLIAMS, J r . , J . BOOGD, J . DOWLING and J . ISTOCK. S t u d i e s of t h e e f f e c t of total-body X-radiation upon t h e l e v e l of serum glutamic oxalacetic-transaminase. R a d i a t . Res. 1 4 : 450, 1962. BELSKY, J . L . , I. TORANOSUKE, T. OHASHI, T.L. ROBERTSON and B. TANIGUSHI. Leukocyte response t o e x e r c i s e i n atomic bomb s u r v i v o r s . R a d i a t . R e s . 50: 699 - 707, 1972. BENCOSME, S .A. , V . I . KALNINS and H.F. STICH. Immediate and delayed e f f e c t s of i o n i z i n g r a d i a t i o n on h e p a t i c c e l l s . I n : Proceedings of t h e F i f t h I n t e r n a t i o n a l Congress f o r E l e c t r o n Microscopy, Volume 2. S.S. Breese, e d i t o r , Academic P r e s s , New York, 1962, p . W-2. BERNHEIM, F. Biochemical i m p l i c a t i o n s of pro-oxidants R a d i a t . Res. (supplement) 3: 1 7 - 32, 1963. ' and a n t i o x i d a n t s . BERNHEIM, F . , K.M. WILBUR and C.B. KENASTON. The e f f e c t of o x i d i z e d f a t t y a c i d s on t h e a c t i v i t y of c e r t a i n o x i d a t i v e enzymes. Arch. Biochem. Biophys. 38: 177 - 184, 1952. BERNHEIM, F . , A. 0TTOL;ENGHI and K.M. WILBUR. S t u d i e s on bone marrow l i p i d i n normal and i r r a d i a t e d r a b b i t s . R a d i a t . Res. 4: 132 - 138, 1956. BWWT'HUN, 1V.M.G. and K . C . DHARAMRAJ. Radiation-induced myocardial n e u r o s i s i n mice: An e l e c t r o n microscopic s t u d y . J. Histochem. Cytochem. 4: 571 - 572, 1972. BIDLACK, W.R. and A.L. TAPPEL. Damage t o microsomal membrane by l i p i d p e r o x i d a t i o n . L i p i d s , 8: 177 - 182, 1973. BILLEN, D . , L. STREHLER, E . STAPLETON and E. BRIGHAM. P o s t - i r r a d i a t i o n Arch. coli B/r. r e l e a s e of adenosine t r i p h o s p h a t e from E s c h e r i c h i a Biochem. Biophys. 43: 1 - 1 0 , 1953. BINKLEY, F. P u r i f i c a t i o n and p a r t i a l c h a r a c t e r i z a t i o n of t h e a l k a l i n e phosphatase of swine kidney. J. B i o l . Chem. 236: 735 - 742, 1961. BISHOP, V.S., H.L. STONE and J. YATES. E f f e c t s of e x t e r n a l i r r a d i a t i o n of t h e h e a r t on c a r d i a c o u t p u t , venous p r e s s u r e and a r t e r i a l p r e s s u r e . J. Nucl. Med. 6: 645 - 650, 1965. BOYD, J . W . Serum enzyme changes, muscular dystrophy and e r y t h r o c y t e a b n o r m a l i t i e s i n lambs f e d on d i e t s c o n t a i n i n g cod-liver o i l and maize o i l , and t h e t h e r a p e u t i c e f f e c t of v i t a m i n E . B r . J. Nutr. 22: 4 1 1 - 422, 1968. BRENT, R.L., M.M. McLAUGHLIN and J . N . STABILE. The e f f e c t of i r r a d i a t i o n on t h e serum g l u t a m i c - o x a l a c e t i c transaminase l e v e l . Radiat. Res. 9: 24 - 32, 1958. BURCH, G.E., R.S. SOHAL, S. SUN, G.C. MILLER and H.L. COLCOLOUGH. E f f e c t s of r a d i a t i o n on t h e human h e a r t : An e l e c t r o n microscopic 234, 1968. s t u d y . Arch. I n t e r n . Med. 121: 230 - CASH, W .D. , M. GARDY , H.E. CARLSON and E.A. EKONG. Mitochondria1 s w e l l i n g and l i p i d p e r o x i d a t i o n s t u d i e s w i t h mixtures of thyroxine and micromolar c o n c e n t r a t i o n s of c e r t a i n metal i o n s . J . B i o l . Chem. 241: 1745 - 1750, 1966. CHAPPELL, J . B . and S.V. PERRY. Biochemical and osmotic p r o p e r t i e s of s k e l e t a l muscle mitochondria. Nature, 173: 1094 - 1095, 1954. C H I O , K.S. and A.L. TAPPEL. S y n t h e s i s and c h a r a c t e r i z a t i o n of t h e f l u o r e s c e n t products d e r i v e d from malonaldehyde and amino a c i d s . Biochemistry, 8: 2821 2827, 1969a. - C H I O , K.S. and A.L. TAPPEL. I n a c t i v a t i o n of r i b o n u c l e a s e and o t h e r enzymes by p e r o x i d i z i n g l i p i d s and by malonaldehyde. Biochemistry, 8: 2827 2832, 1969b. - DAM, H. I n f l u e n c e of a n t i o x i d a n t s and redox substances on s i g n s of vitamin E d e f i c i e n t y . Pharmacol. Rev. 9: 1 - 16, 1957. DAWES, E.A. and E.D. WILLS. E f f e c t s of d i e t a r y a n t i o x i d a n t s on l i p i d peroxide formation i n animal t i s s u e s a f t e r whole-body i r r a d i a t i o n . 40, 1972. I n t . J . Radiat. B i o l . 22: 23 - The b a s i s of f r e e r a d i c a l pathology. DEMOPOULOS, H.B. 1859 - 1861, 1973. Fed. Proc. 32: DESAI, I . D . and A.L. TAPPEL. Damage t o p r o t e i n s by peroxidized l i p i d s . J . L i p i d Res. 4: 204 - 207, 1963. DESAI, I . D . , P.L. SAWANT and A.L. TAPPEL. P e r o x i d a t i v e and r a d i a t i o n damage t o i s o l a t e d lysosomes. Biochim. Biophys. Acta. 86: 277 285, 1964. DIPLOCK, A.T., M.A. CAWTHORNE, E.A. MURRELL, J . GREEN and J. BUNYAN. Measurements of l i p i d p e r o x i d a t i o n and a-tocopherol d e s t r u c t i o n i n v i t r o and -i n vivo and t h e i r s i g n i f i c a n c e i n connexion with t h e b i o l o g i c a l f u n c t i o n of vitamin E . B r i t . J. Nutr. 22: 465 - 472, 1968. -- DIPLOCK, A.T., H . BAUM and J . A . LUCY. The e f f e c t of vitamin E on t h e o x i d a t i o n s t a t e of selenium i n r a t l i v e r . Biochem. J. 123: 721 729, 1971. - DIPLOCK, A.T. and J . A . LUCY. The biochemical modes of a c t i o n of vitamin E and selenium: a hy-pothesis. Fed. Eur. Biochem. Soc. L e t t . 29: 205 210, 1973. - DIXON, W . J. and F. J . MASSEY, J r . I n t r o d u c t i o n t o S t a t i s t i c a l A n a l y s i s , 110. second e d i t i o n , McGraw-Hill, New York, 1957, p 109 - DOWNIE, N.M. and R.W. HEATH. Basic S t a t i s t i c a l Methods, t h i r d e d i t i o n , 185. Harper and Row, New York, 1970, p . 1 8 3 - DREYFUS, J . C . , G. SHAPIRA, J. RESNAIS and L. SCEBAT. La c r e a t i n e k i n a s e r e s i q u e dans l e d i a g n o s t i c de l ' i n f a r c t u s myocardique. Rev. F r . 387, 1960. Etud. C l i n . B i o l . 5: 386 - DUBOULOZ, P . , J. DUMAS and J . VIGNE. Sur l a presence de peroxydes l i p i d i q u e s dans l a peau apr8s l ' a c t i o n de d i v e r s a g e n t s physiques. C.R. Seances Soc. B i o l . F i l . 144: 1080 1081, 1950. - DUBOULOZ, P. and J . DUMAS. Sur l e s peroxydes l i p i d i q u e s form& dans l a peau sous l ' a c t i o n d ' a g e n t s physiques. C.R. Seances Soc. B i o l . F i l . 146: 1350 1351, 1952. - EFSKIND, D.. The e f f e c t of massive X-ray doses t o t h e mediastinum, e s p e c i a l l y t h e h e a r t . Norsk Hydro's I n s t i t u t e f o r Cancer Research, 1956, p. 1 3 14. Oslo, 1954 - - ELLINGER, F. Medical R a d i a t i o n Biology, Charles C . Thomas P u b l i s h e r s , S p r i n g f i e l d , I l l i n o i s , 1957. ERNSTER, L. and K. NORDENBRAND. S k e l e t a l muscle mitochondria. I n : Methods i n Enzymology, volume 1 0 , R.W. Estabrook and M.E. Pullman, e d i t o r s , Academic P r e s s , New York, 1967, p. 86 94. - FAJARDO, L.F., J . R . STEWART and K.E. COHN. induced h e a r t d i s e a s e . Arch. P a t h o l . Morphology of r a d i a t i o n 512 520, 1968. - 86: FAJARDO, L.F. and J . R . STEWART. Pathogenesis of radiation-induced myocardial f i b r o s i s . Lab. I n v e s t . 29: 244 257, 1973. - FERRI, G.G. and U . DUSI. Radiazioni i o n i z z a n t i e cuore: Quad. Radiol. 30: 1007 1032, 1965. - P a r t I. FOWLER, W.M. J r . , S.R. CHOWDHURY, C.M. PEARSON, G. GARDNER and R. BRATTON. Changes i n serum enzyme l e v e l s a f t e r e x e r c i s e i n t r a i n e d and u n t r a i n e d s u b j e c t s . J. Appl. P h y s i o l . 1 7 : 943 - 946, 1962. FULTON, G.P. and F.N. SUDAK. E f f e c t of total-body X - i r r a d i a t i o n on serum e l e c t r o l y t e l e v e l s and electrocardiograms of t h e golden hampster. Am. J . P h y s i o l . 179: 135 - 138, 1954. GARBUS, J . , B. H I G H W and P.D. ALTLAND. Serum enzymes and l a c t i c dehydrogenase isoenzymes a f t e r e x e r c i s e and t r a i n i n g i n r a t s . Am. J . P h y s i o l . 207: 467 - 472, 1964. GHIDONI, J. Light and e l e c t r o n microscopic study of primate l i v e r 36 48 hours a f t e r high doses of 32 Mev p r o t o n s . Lab. I n v e s t . 16: 268 279, 1967. - - GHOSH, M. S t u d i e s on t h e metabolism of n u c l e a r b a s e p r o t e i n s a f t e r r a d i a t i o n -i n v i t r o . Can. J . Biochem. 49: 456 - 462, 1971. GOLDFEDER, A. and L.A. MILLER. R a d i o s e n s i t i v i t y and b i o l o g i c a l p r o p e r t i e s of two tumor t y p e s indigenous t o t h e same h o s t . V I . E f f e c t s of Xi r r a d i a t i o n on s u b c e l l u l a r u n i t s . I n t . J . Radiat. B i o l . 6: 575 607, 1963. C . J . BARDAWILL and M.M. DAVID. p r o t e i n s by means of t h e b i u r e t r e a c t i o n . 751 - 766, 1949. GOHNALL, A . G . , Determination of serum J . B i o l . Chem. 177: GREEN, J . Vitamin E and t h e b i o l o g i c a l a n t i o x i d a n t theory. Acad. S c i . 203: 29 43, 1972. - Ann. N.Y. GREEN, J . , A.T. DIPLOCK, J. BUNYAN, D. McHALE and I . R . MUTHY. Vitamin E and s t r e s s 1. D i e t a r y u n s a t u r a t e d f a t t y a c i d s t r e s s and t h e metabolism of a-tocopherol i n t h e r a t . B r i t . J. Nutr. 21: 69 101,1967. GREVILU, G.D. and J . B . CHAPPELL. The l a t e n t rhodanese of i s o l a t e d r a t l i v e r mitochondria. Biochim. Biophys. Acta. 33: 267 - 269, 1959. HALONEN, P . I . and A. KONTTINEN. E f f e c t of p h y s i c a l e x e r c i s e on some enzymes i n t h e serum. Nature, 193: 942 - 944, 1962. HARMON, D. Free r a d i c a l t h e o r y of aging: E f f e c t of f r e e r a d i c a l r e a c t i o n i n h i b i t o r s on t h e m o r t a l i t y r a t e of male LAF mice. J . Gerontol. 23: 476 - 482, 1968. HAUGAARD, N . C e l l u l a r mechanisms of oxygen t o x i c i t y . 311 373, 1968. - P h y s i o l . Rev. 48: HAWRYLEWICZ, E . J . and W.M. BLAIR. E f f e c t of gamma and proton i r r a d i a t i o n on l a c t i c dehydrogenase isoenzymes. Radiat. Res. 28: 538 - 547, 1966. HEDMAN, R . P r o p e r t i e s of i s o l a t e d skeletal-muscle mitochondria. C e l l Res. 38: 1 - 1 2 , 1965. Exp. HENDEE, W.R. and M.A. ALDERS. U l t r a s t r u c t u r a l development of r a d i a t i o n i n j u r y i n h e p a t i c parenchymal c e l l s of y - i r r a d i a t e d mice. Lab. I n v e s t . 18: 1 5 1 - 158, 1968. HENLEY, K.S., 0 . SORENSEN and H.M. POLLARD. Some enzymatic p r o p e r t i e s of suspensions of parenchymatous l i v e r c e l l s . Nature, 184 ( ~ u p p l , 18) : 1400, 1959. HESS , B. Enzymes i n Blood Plasma, Academic P r e s s , New York , 1963, p. 38 - 55. HIGHMAN, B. and P.D. ALTLAND. E f f e c t s of e x e r c i s e and t r a i n i n g on serum enzyme and t i s s u e changes i n r a t s . Am. J. P h y s i o l . 205: 162 166, 1963. - HOLTON, F.A., W.C. H ~ L S W , D.K. MYERS and E.C. SLATER. A comparison of t h e p r o p e r t i e s of mitochondria i s o l a t e d f r o m , l i v e r and hea.rt., RinchemJ. 67: 579 - 594, 1957. HORGAN, V.J. and J. S t . L. PHILPOT. Attempted e s t i m a t i o n of organic peroxides i n X - i r r a d i a t e d mice. I n : The chemistry of b i o l o g i c a l a f t e r - e f f e c t s of u l t r a v i o l e t and i o n i z i n g r a d i a t i o n s : Symposium. B r . J . Radiol. 27: 63, 1954. HORGAN, V.J. and J . S t . L. PHILPOT. Nature of peroxide-like substance formed i n mice by X-rays. I n : Proceedings of t h e Radiobiology Symposium, Liege (1954). Z.M. Bacq and P. Alexander, e d i t o r s , Academic P r e s s , New York , 1955, p 26. . H O R I , Y . and K. NISHIO. E f f e c t s of X - i r r a d i a t i o n on plasma l a c t i c dehydrogenase a c t i v i t y i n r a b b i t and mouse. Annual Report, Radiation Centre, Osaka P r e f e c t u r e , 3: 130 - 132, 1962. H O R I , Y . , Y . TAKAMORI and K. NISHIO. F u r t h e r s t u d i e s on t h e changes i n l a c t a t e dehydrogenase a c t i v i t y i n t h e plasma of mice a f t e r wholebody i r r a d i a t i o n . Annual Report, Radiation Centre, Osaka P r e f e c t u r e , 5: 104 - 106, 1964. H O R I , Y . , Y . TAKAMORI and K . NISHIO. The e f f e c t of X - i r r a d i a t i o n on t h e l a c t a t e dehydrogenase l e v e l i n plasma and i n v a r i o u s organs of mice. Radiat. Res. 34: 411 - 420, 1968. H O R I , Y . , Y . TAKAMORI and K. NISHIO. The e f f e c t s of X - i r r a d i a t i o n on l a c t a t e dehydrogenase isoenzymes i n plasma and i n v a r i o u s organs of mice. R a d i a t . Res. 43: 143 - 151, 1970. HUGON, J . , J . R . MAISIN and M. BORGERS. Changes i n u l t r a s t r u c t u r e of duodenal c r y p t s i n X - i r r a d i a t e d mice. R a d i a t . Res. 25: 489 502, 1965. - HUNTER, F.E. J r . , J . M . GEBICKI, P.E. HOFFSTEIN, J . WEINSTEIN and A. SCOTT. Swelling and l y s i s of r a t l i v e r mitochondria induced by f e r r o u s i o n s . J . B i o l . Chem. 238: 828 - 835, 1963. HUNTER, F.E. J r . , A. SCOTT, P.E. HOFFSTEIN, F. GUERRA, J . WEINSTEIN, A. SCHNEIDXR, B. SCHUTZ, J . FINK, L. FORD and E. SMITH. S t u d i e s on t h e mechanism of ascorbate-induced s w e l l i n g and l y s i s of i s o l a t e d l i v e r mitochondria. J . B i o l . Chem. 239: 604 - 613, 1.964. HUNTER, F.E. J r . , A. SCOTT, P.E. HOFFSTEIN, J . M . GEBICKI, J . WEINSTEIN and A. SCHNEIDER. S t u d i e s on t h e mechanism of s w e l l i n g , l y s i s and d i s i n t e g r a t i o n of i s o l a t e d l i v e r mitochondria exposed t o mixtures of o x i d i z e d and reduced g l u t a t h i o n e . J . B i o l . Chem. 239: 614 621, 1964. .-- ---,-.--- nl~uwimu-dalusfiiu, J . . some a s p e c t s .or t h e u s e of plasma enzymes i n t h e d i a g n o s i s of v i t a m i n E-deficiency i n p i g s . Acta. Agr. Scand. Suppl. 19: 1 2 8 - 135, 1973. I C H I I , S . , N . YAGO, S . OMATA and S. KOBAYASHI. L i p i d p e r o x i d a t i o n i n t i s s u e s of whole-body X - i r r a d i a t e d r a t s and e f f e c t s of adrenalectomy J. R a d i a t . Res. 9 : 85 - 91, 1968. . JACOBS, E.E., M. JACOB, D.R. SANADI and L.B. BRADLEY. Uncoupling of o x i d a t i v e phosphorylation by cadmium i o n . J . B i o l . Chem. 223: 147 - 1 7 0 , 1956. JONES, A. and J . WEDGWOOD. E f f e c t s of r a d i a t i o n s on t h e h e a r t . R a d i o l . 33: 1 3 8 - 158, 1960. B r . J. JONES, D . C . , G.K. OSBORN and D . J . KIMELDORF. Treadmill e x e r c i s e p e r f o r mance by t h e aging i r r a d i a t e d r a t . R a d i a t . Res. 30: 714 - 724, 1967. . Enzymologi c a l examinations : An i n d i c a t i o n of r a d i a t i o n KARCHER , K .N e f f e c t s i n experiments and c l i n i c a l p r a c t i c e . I n : Biochemical I n d i c a t o r s of R a d i a t i o n I n j u r y i n Man: Proceedings, I n t e r n a t i o n a l Atomic Energy Agency, D.H. H i l l , e d i t o r , Unipub, New York, 1971, p 277 - 283. KARCHER, K.N. and H.T. KATO. Die veranderungen d e r isoenzyme d e r l a k t a t dehydrogenase nach einwirkung i o n i s i e r e n d e r s t r a h l e n . 1 M i t t e i l u n g : Das v e r h a l t e n d e r isoenzyme d e r LDH i n serum und gewebshomogenaten g a n z k o r p e r b e s t r a h l e r r a t t e n . S t r a h l e n t h e r a p i e , 125: 548 - 566, 1964. KARMEN, A. A n o t e on t h e spectrophotometric assay of glutamic-oxalacetic t r a n s m i n a s e i n human blood serum. J. C l i n . I n v e s t . 34: 131 133, 1955. - KARMEN, A . , F. WROBLEWSKI and J . S . LA DUE. Transaminase a c t i v i t y i n human blood. J . C l i n . I n v e s t . 34: 126 - 131, 1955. KAWASAKI, S. and K. SAKURAI. E f f e c t s of X - i r r a d i a t i o n on mouse l i v e r mitochondria ( p a r t I ) . Nippon Acta Radiol. 28: 1672 1676, 1969. - KITABCHI, A.E. and R.H. WILLIAMS. Adrenal gland i n vitamin E d e f i c i e n c y , l i p i d p e r o x i d a t i o n and malonaldehyde production i n v i t r o . J . B i o l . Chem. 243: 3248 - 3254, 1968. -- KLEIN-SZANTO, A.J.P. and R.L. CABRINI. Microspectrophotometric study of o x i d a t i v e enzymes i n i r r a d i a t e d epidermis. I n t . J . R a d i a t . B i o l . 18: 235 - 241, 1970. KNAPP, F.W. and A.L. TAPPEL. Some e f f e c t s of y - r a d i a t i o n o r l i n o l e a t e J. Am. O i l C h e m , S o ? , 38: 1 5 1 - 156, p e r o x i d a t i o n on a-toco;pherol. 1961. KOCHAKIAN,.C.D., B.R. ENDAHL and G.L. ENDAHL. I n f l u e n c e of androgens on t h e transaminases and glutamic dehydrogenase of t i s s u e s . Am. J . P h y s i o l . 197: 129 - 134, 1959. KOWLESSAR, O . D . , K . I . ALTMAN and L.H. HEMPLEMANN. Urinary e x c r e t i o n of desoxyribonuclease i n X - i r r a d i a t e d r a t s . Arch. Biochem. Biophys. 43: 240 - 241, 1953. KUBOTA, H. I n f l u e n c e of high energy e l e c t r o n beam f o r E.C.G., h i s t o l o g i c a l changes of h e a r t , GOT, GPT, LDH and catecholamines i n r a b b i t s . Nichidai Igaku Z a s s h i , 28: 597 - 612, 1969. LATARJET, R. and L.H. GEEY. D e f i n i t i o n of t h e terms ' p r o t e c t i o n ' and 'restoration'. Acta Radiol. 41: 61 - 62, 1954. LAYNE, E. Spectrophotometric and t u r b i d i m e t r i c methods f o r measuring p r o t e i n s . I n : Methods i n Enzymology, Volume 8, S.P. Colowick and N .O. Kaplin, e d i t o r s , Academic P r e s s , New York, 1957, p. 447 - 454. LESSmR, M.A. Low-level X-ray damage t o amphibian e r y t h r o c y t e s . 129: 1551 - 1553, 1959. Science, LEVANDER, O.A. and V.C. MORRIS. E f f e c t s of vitamin E and selenium on rubidium-86 uptake by r a t l i v e r s l i c e s . J . Nutr. 101: 1013 - 1022, 1971. F u n c t i o n a l and s t r u c t u r a l a s p e c t s of b i o l o g i c a l membranes: LUCY, J . A . A suggested s t r u c t u r a l r o l e f o r v i t a m i n E i n t h e c o n t r o l of membrane p e r m e a b i l i t y and s t a b i l i t y . I n : Vitamin E and i t s Role i n Metabolism. Ann. N.Y. Acad. S c i . 203: 5 - 11, 1972. LUCY, J . A . and J.T. DINGLE. Fat-soluble v i t a m i n s and b i o l o g i c a l membranes. Nature, 204: 156 - 160, 1964. LUDEMIG, S. and A. CHANUTIN. E f f e c t of X-ray i r r a d i a t i o n on t h e a l k a l i n e phosphatase of t h e plasma and t i s s u e s of r a t s . Am. J. P h y s i o l . 163: 648 654, 1950. - McCAY, P.B., P.M. PFEIFER and W.H. STIPE. Vitamin E p r o t e c t i o n of membrane l i p i d s during e l e c t r o n t r a n s p o r t f u n c t i o n s . I n : Vitamin E and i t s Role i n Metabolism. Ann. N.Y. Acad. S c i . 203: 62 - 73, 1972. McKNIGHT, R . C . , F.E. HUNTER, J r . , and W.H. OEHLERT. YLi.tochondria1 membrane g h o s t s produced by l i p i d p e r o x i d a t i o n induced by f e r r o u s i o n . J . B i o l . Chem. 240: 3439 - 3446, 1965. MEAD, J . F . Autoxidation induced by i o n i z i n g r a d i a t i o n . I n : Autoxidation and A n t i o x i d a n t s , W.O. Lundberg, e d i t o r , I n t e r s c i e n c e Pub., New York, 1961. MILCH, L. J . and H .G. ALBAUM. Serum transaminase a c t i v i t y i n X-irradiated r a b b i t s . Proc. Soc. Exp. B i o l . , N.Y. 93: 595 - 596, 1956. MOCHALOVA, I . N . , N.P. MIKHALEVA and 1.1. IVANOV. E f f e c t of exposing an a r e a of t h e h e a r t t o hard b r a k i n g r a d i a t i o n having a l i m i t e d energy of 4.3 Mev on t h e enzyme a c t i v i t y of t h e myocardium and blood serum o f t h e r a b b i t . Radiobiologiya, 9 : 363 - 366, 1969. MORGENROTH, K . , J r . , and H . THEMANN. Elektronemikroskopische untersuchungen d e r wirkung i o n i s i e r e n d e r s t r a h l e n auf d i e f e i n s t r u k t e r von l e b e r und m i l z von mgusen. S t r a h l e n t h e r a p i e , 124: 547 - 569, 1964. MUGGIA, F.M., N.A. GHOSSEIN and A. HANOK. C r e a t i n e phosphokinase and o t h e r serum enzymes d u r i n g r a d i o t h e r a p y . J . Am. Med. Assoc. 211: 1350, 1970. 1345 - MUKERJEE, H . and A. GOLDFEDER. Mitochondria1 p r o t e i n and RNA s y n t h e s i s of X - i r r a d i a t e d mouse l i v e r s . R a d i a t Res 49: 543 557, 1972. . . - MYERS, D.K. and R.W. BIDE. Biochemical e f f e c t s of X - i r r a d i a t i o n of e r y t h r o c y t e s . Radiat Res 270: 250 263, 1966. . . - N A I R , K.K. and N.M.G. BHAKTHAN. Preliminary s t u d i e s on t h e u l t r a s t r u c t u r a l damage i n t h e f l i g h t muscles of gamma-irradiated house-fly. I n t . 3. R a d i a t . B i o l . 16: 397 399, 1969. - N A I R , P.P. Vitamin E and metabolic r e g u l a t i o n . I n : Vitamin E and i t s Role i n Metabolism. Ann. N.Y. Acad. S c i . 203: 53 61, 1972. - NOVACK, P. and B. SHAF'IRO. The e f f e c t of S-(2-aminoethyl) thiuronium bromide hydrobromide (AET) on t h e sodium uptake of i r r a d i a t e d human e r y t h r o c y t e s . Fed. Proc. 19: 355, 1960. NOYES, P .P. and R.E. SMITH. Q u a n t i t a t i v e changes i n r a t l i v e r mitochondria f o l l o w i n g whole-body i r r a d i a t i o n . Exp. C e l l Res 16: 1 5 - 23, 1959. . NUTTALL, F.Q. and B. JONES. C r e a t i n e k i n a s e and glutamic o x a l a c e t i c transaminase a c t i v i t y i n serum: K i n e t i c s of change w i t h e x e r c i s e and e f f e c t of p h y s i c a l c o n d i t i o n i n g . J . Lab. C l i n . Med. 71: 847 854, 1968. - OKADA, S: and L.D. PEACHEY. E f f e c t of gamma i r r a d i a t i o n on t h e desoxyr i b o n u c l e a s e I1 a c t i v i t y of i s o l a t e d mitochondria. J . Biophys. Biochem. Cytol. 3: 239 251, 1957. - OKSANEN, H .E. S t u d i e s on n u t r i t i o n a l muscular degeneration (NMD) i n ruminants. Acta. Vet. Scand. 11: 452 - 480, 1970. ORD, M.G. and L.A. STOCKEN. Biochemical a s p e c t s of t h e r a d i a t i o n syndrome. P h y s i o l . Rev. 33: 356 - 386, 1953. OTTOLENGHI, A . , F. BERNHEIM and K.M. WILBUR. The i n h i b i t i o n of c e r t a i n mitochondria1 enzymes by f a t t y a c i d s o x i d i z e d by u l t r a v i o l e t l i g h t o r a s c o r b i c a c i d . Arch. Biochem. Biophys. 56: 157 - 164, 1955. PAPADOPOULOS, N.M., A.S. LZOW and C.M. BLOOR. E f f e c t s of e x e r c i s e on plasma l a c t a t e dehydrogenase and isoenzyme a c t i v i t e s i n t r a i n e d and u n t r a i n e d r a t s . Proc. Soc. Exp. B i o l . Med. 129: 232 - 234, 1968. PETERSEN, D.F., C . C . LUSHBAUGH and P. LEE. Serum glutamic-oxalacetic transaminase a c t i v i t y i n i r r a d i a t e d animals, Fed. Proc. 16: 327, 1957. PETKAU, A. Radiation e f f e c t s w i t h a model l i p i d membrane. Biochem. 49: 1187 - 1196, 1971. Can. J . PHILLIPS, S . J . , J . A . REID and R. RUGH. E l e c t r o c a r d i o g r a p h i c and p a t h o l o g i c changes a f t e r c a r d i a c X - i r r a d i a t i o n i n dogs. Am. Heart J. 63: 524 - 533, 1964. PHILPOT, J. S t . L. The e s t i m a t i o n and i d e n t i f i c a t i o n o r o r g a n i c peroxides. Radiat. Res. Suppl. 3: 55 - 70, 1963. PORTELA, A . , J . C . PEREZ, P. STEWART, M. HINES, V. REDDY. Radiation damage i n muscle c e l l membranes and r e g u l a t i o n of c e l l metabolism. Exp. C e l l Res. 29: 527 - 543, 1963. PRINCE, E.W. and J . B . LITTLE. The e f f e c t of d i e t a r y f a t t y a c i d s and t o c o p h e r o l on t h e r a d i o s e n s i t i v i t y of mammalian e r y t h r o c y t e s . R a d i a t . Res. 53: 49 - 64, 1973. PYCOCK, C . J . and NAHORSKI , S .R. The v a l i d i t y of mitochondria1 marker enzymes i n r a t h e a r t . J . Mol. C e l l C a r d i o l . 3: 229 - 241, 1971. ROBINSON, J . D . S t r u c t u r a l changes i n microsomal suspensions 111. Formation of l i p i d p e r o x i d e s . Arch. Biochem. Biophys. 112: 170 179, 1965. - ROSALKI, S.B. An improved procedure f o r serum c r e a t i n e phosphokinase d e t e r m i n a t i o n . J Lab C l i n . Med. 69: 696 - 705, 1967. . ROTH, J . S . and H . J . EICHEL. The e f f e c t of total-body X - i r r a d i a t i o n on t h e d i s t r i b u t i o n of r i b o n u c l e a s e a c t i v i t y i n s u b c e l l u a r f r a c t i o n s of r a t s p l e e n . R a d i a t . Res. 11: 572 - 581, 1959. ROUBAL, W.T. and A.L. TAPPEL. Damage t o p r o t e i n s , enzymes and amino a c i d s by p e r o x i d i z i n g l i p i d s . Arch. Biochem. Biophys. 113: 5 8, 1966a. - ROUBAL, W.T. and A.L. TAPPEL. Polymerization of p r o t e i n s induced by f r e e - r a d i c a l l i p i d p e r o x i d a t i o n . Arch. Biochem. Biophys. 113: 150 155, 1966b. - SALET, C. Acc616ration p a r m i c r o i r r a d i a t i o n s l a s e r du rythme de contract i o n de c e l l u l e s cardiaques en c u l t u r e de t i s s u . Seances Acad. S c i . S e r . D. S c i . Natur. 272: 2584 - 2586, 1971. SCAIFE, J . F . and P. ALEXANDER. I n a b i l i t y of X-rays t o a l t e r t h e permeab i l i t y of mitochondria. R a d i a t . Res. 15: 658 - 674, 1961. SCHADE, A.L. plasmas. Enzymic s t u d i e s on a s c i t i c tumors and t h e i r h o s t ' s blood Biochim. Biophys. Acta. 1 2 : 163 - 171, 1953. SCHERER, E . and W. VOGELL. S t r a h l e n t h e r a p i e , 106: Electronenopkung auf l e b e r milz und n i e r e . 202 - 211, 1958. SCHLANG, H.A. The e f f e c t of p h y s i c a l e x e r c i s e on serum transaminase. Am. J . Med. S c i . 242: 338 - 341, 1961. SCHLERK, F . , A. FISHER and E.E. SNELL. I n a c t i v a t i o n of glutamic a s p a r t i c transaminase by i r r a d i a t i o n . Poc. Soc. Exp. B i o l . Med. 61: 183, 1946. SCHMIDT, E , Glutamate dehydrogenase. I n : Methods of Enzymatic A n a l y s i s , H.U. Bergmeyer, e d i t o r , Academic P r e s s , New York, 1965, p. 752 - 756. SCHMIDT, E . , F. SCHMIDT, H.D. HORN and U. GERLACH. Measurement of enzyme a c t i v i t y . I n : Methods o f Enzymatic A n a l y s i s , H.U. Bergmeyer, e d i t o r , Academic P r e s s , New York, 1965, p. 652 693. - i n v i v o t o X-rays. SCHREK, R. Cytologic changes i n thymic glands exposed -Am. J. P a t h o l . 24: 1055 1065, 1948. - SCHWARZ, K. The c e l l u l a r mechanism of vitamin E a c t i o n : D i r e c t and i n d i r e c * e f f e c t s of a-tocopherol on mitochondria1 r e s p i r a t i o n . I n : Vitamin E and i t s Role i n Metabolism. Ann. N . Y . Acad. S c i . 203: 45 - 52, 1972. SCOTT, D.B. McN., A.B. REISKIN and A.M. PAKOSKEY. Changes i n t h i o l c o n t e n t of t h e hamster cheek pouch a f t e r X - i r r a d i a t i o n and some s p e c u l a t i o n s on t h e r e l a t i o n s h i p between phospholipids and p r o t e i n t h i o l groups. Biochem. J . 93: 16 - 36, 1964. SHAPIRO, B. and G. KOLLMAN. The n a t u r e of t h e membrane i n j u r y i n i r r a d i a t e d human e r y t h r o c y t e s . R a d i a t . Res. 34: 335 346, 1968. - SINNHUBER, R . O . , T.C. YU and TO CHANG YU. C h a r a c t e r i z a t i o n of t h e r e d pigment formed i n t h e 2 - t h i o b a r b i t u r i c a c i d determination of oxidat i v e r a n c i d i t y , Food Res. 23: 626 - 634, 1958. SKREDE, S. and B.O. CHRISTOPHERSON. E f f e c t s of cystamine and cystearnine on t h e p e r o x i d a t i o n of l i p i d s and t h e r e l e a s e of p r o t e i n s from mitochondria. Biochem. J . 101: 37 - 41, 1966. SOLIMAN, F.S. and L. VAN DEN BERG. F a c t o r s a f f e c t i n g f r e e z i n g damage of l a c t i c dehydrogenase. Cryobiology, 8: 73 - 78, 1971. STEWART, J . R . patients. R a d i a t i o n induced h e a r t d i s e a s e : Radiology, 89: 302 - 310, 1967. A study of twenty-five STEWART, J . R . and L.F. FAJARDO. Dose response i n human and experimental radiation-induced h e a r t d i s e a s e . A p p l i c a t i o n of t h e nominal s t a n d a r d dose (NsD) concept. Radiology, 99: 403 - 408, 1971. TAKAMORI, Y . , A. TAKEDA, Y . HORI and K . NISHIO. The e f f e c t of X - i r r a d i a t i o n on t h e r e l e a s e of l a c t a t e dehydrogenase from i s o l a t e d thymocytes of mice. R a d i a t . Res. 38: 551 559, 1969. - TAKACKA, A. cancer. Cardiac damage due t o r a d i o t h e r a p y of t h e primary lung 479 490, 1969. J. Kyoto P r e f e c t Univ. Med. 78: - TAPPEL. A.L. The mechanism of t h e o x i d a t i o n of u n s a t u r a t e d f a t t y a c i d s c a t a l y z e d by hematin compounds. Arch. Biochem. Biophys 44: 378 395, 1953a. . - TAPPEL, A.L. I n h i b i t i o n of hematin-catalyzed o x i d a t i o n s by a-tocopherol. 225, 1953b. Arch. Biochem. Biophys. 47: 223 - -- TAPPEL, A.L. S t u d i e s of t h e mechanism of vitamin E a c t i o n . 111. I n v i t r o copolymerization of o x i d i z e d f a t s w i t h p r o t e i n . Arch. Biochem. Biophys. 54: 266 280, 1955. - TAPPEL, A.L. Vitamin E and f r e e r a d i c a l p e r o x i d a t i o n of l i p i d s . I n : Vitamin E and i t s Role i n Metabolism. Ann. N.Y. Acad. S c i . 203: 13 27, 1972. - TAPPEL, A.L. L i p i d p e r o x i d a t i o n damage t o c e l l components. 32: 16yu 1S'(b, 19-73. - Fed. Proc. TAPPEL, A.L. and H. ZALKIN. L i p i d p e r o x i d a t i o n i n i s o l a t e d mitochondria. Arch. Biochem. Biophys. 80: 326 332, 1959. - TAPPEL, A.L. and H . ZALKIN. I n h i b i t i o n of l i p i d p e r o x i d a t i o n i n microsomes by v i t a m i n E. Nature, 185: 35, 1960. TOLLERSUD, S. S t u d i e s on some serum enzyme assays and t h e i r d i a g n o s t i c v a l u e i n n u t r i t i o n a l d i s e a s e s of ruminants and p i g s . T h e s i s , U n i v e r s i t e t s f o r l a g e t , Oslo, 1970. WAINIO, W.W. The Mammalian Mitochondria1 R e s p i r a t o r y Chain, Academic 140. P r e s s , New York, 1970, p . 129 - WILLS, E.D. Mechanisms of l i p i d peroxide formation i n animal t i s s u e s . 676, 1966. Biochem. J. 99: 667 - WILLS, E.D. The e f f e c t of i r r a d i a t i o n on l i p i d peroxide formation i n s u b c e l l u l a r f r a c t i o n s . R a d i a t . Res. 31: 732 747, 1967. - WILLS, E.D. Lipid peroxide formation i n microsomes: 332, 1969. haem i r o n . Biochem. J . 113: 325 - The r o l e of non- WILLS, E.D. E f f e c t s of i r r a d i a t i o n on s u b - c e l l u l a r components. I . L i p i d peroxide formation i n t h e endoplasmic reticulum. I n t . J . Radiat B i o l . 17: 217 228, 1970. . - WILLS, E.D. and J . ROTBLAT. The formation-of peroxides i n t i s s u e l i p i d s and u n s a t u r a t e d f a t t y a c i d s by i r r a d i a t i o n . I n t . J. R a d i a t . B i o l . 8: 551 - 567, 1964. WILLS, E.D. and A.E. WILKINSON. Release of enzymes from lysosomes by i r r a d i a t i o n and t h e r e l a t i o n of l i p i d peroxide formation t o enzyme r e l e a s e . Biochem. J . 99: 657 - 666, 1966. WILLS, E.D. and A.E. WILKINSON. The e f f e c t of i r r a d i a t i o n on l i p i d peroxide f o m a t i o n i n s u b c e l l u l a r f r a c t i o n s . Radiat Res 31: 732 747, 1967. . - . WINSTEAD, J . A . and T.C. REECE. E f f e c t of gamma r a d i a t i o n on t h e chemical and p h y s i c a l p r o p e r t i e s of l a c t a t e dehydrogenase. Radiat Res 41: 125 134, 1970. . - . WISNIEWSKA, M. T r i c h i n e l l a s p i r a l i s : Diagnostic v a l u e of c r e a t i n e k i n a s e l e v e l s i n r a t and man. Exp. P a r i s i t o l . 28: 577 - 584, 1970. WROBLEWSKI, F. and J . S . LA DUE. L a c t i c dehydrogenase a c t i v i t y i n blood. Proc. Soc, Exp. B i o l . Med. 90: 210 - 217, 1955. YU, R. Leakage of enzymes from a s c i t e s tumor c e l l s . 1-22, 1959. 1217 - Cancer Res. 19: ZALKIN, H . and A.L. TAPPEL. S t u d i e s of t h e mechanism of vitamin E a c t i o n . I V . Lipid p e r o x i d a t i o n i n t h e vitamin E d e f i c i e n t r a b b i t . Arch. Biochem. Biophys. 88: 113 - 117, 1960. ZYSS, R. and M. MICHALSKA-KASZCZYNSKA. The e f f e c t s of i o n i z i n g r a d i a t i o n on t h e s t r u c t u r e and metabolism of mitochondria i n r a t l i v e r c e l l s . Acta. Med. P o l . 13: 161 - 175, 1972. APPENDIXES PAGE APPENDIX 1 2 Computer program f o r enzyme r e a c t i o n o r d e r a n a l y s i s and c a l c u l a t i o n of r e a c t i o n r a t e s ....................... 145 Computer programs f o r converting enzyme r e a c t i o n r a t e s f o r s e m , homogenate and mitochondria1 assays. Rates a r e converted from micromolar values i n t o m i l l i - u n i t values .................................................. 149 3 Computer program f o r c a l c u l a t i n g various s t a t i s t i c a l parameters, including mean, variance and standard deviation .............................................. 4 Computer program f o r c a l c u l a t i o n of a pooled e s t i m a t e of variance 5 Computer program f o r t - t e s t , using a pooled e s t i m a t e of v a r i a n c e 153 ............................................. 155 ............................................. 157 Appendix 1. Computer program f o r enzyme r e a c t i o n o r d e r a n a l y s i s and c a l c u l a t i o n of r e a c t i o n r a t e s . Appendix 2. Computer programs for converting enzyme reaction rates for serum, homogenate and mitochondiral assays. Rates are converted from micromolar values into milli-unit values. P SF,-RuM C 1 I ' T I I I S P R O G R I I ~ . U . T V E S YOU A C T I V I T Y II? IeJILLI-UCITS C21 ' I C3I ' PLEASE EliTER T N E R A T E I11 MICRO!-!OLS/I.?IN. LEAVE AT L E A S 1 O N 6 ' C121 ACT; 'KILLI-UCITS/MC. v PER I,!L. SJ?IZIII~I' ' C1J 'TIIIS PROGI?Al.! GI V Z S YOU A C Y I I'ITY [ 3 1 ' T Y P E IC RATI: IN NICROi'.;OLAR/I.!IN.' [ 5 3 ' T Y P E IN T O T A L A S S A Y VOLUME' C 91 ' T Y P E I R PEi?CK/i'T D I L U T I O C ' 'ACTIVITY C121 ACT+XTxTAx100~~(llVxP1L) C 131 A C T ; P ' I I I L L I - U G I T S / C I , f . I?USCLE1 IIJ K I L L I - UUITS/CI.: I~IUSCL?" V NITOCIIO/? C 13 'TIIIS C21 " PROGRAI!: G I V E S YOU A C T I V I T Y Ilr' E I J L L I - U I " : l T S / G l PROTFTN C 31 ' T Y P E I f / TIIE R A T E ' C 4 I RATE.-Ll C 53 ' TYPE [F;? ._Sv+p C 7 3 ' )/OW I!/ TIiC ASSAY VOLUNE' T Y P E II/ TNZ? I~IITOCHOCPRIAL VOLUME' C83 M V 4 C9I C 103 C 11 I ' ENYER DIL4 FII?ALLY ENTER TIlR /lEIGllT OF PROTL'IIJ IN /!C. C 123 rJP+U [ 131 ACTIV+RATR~ASV~~OO-:-(I.~V~~~~LX~!P) C 141 ACTIV v TIIE DILUTION FACTOR( P E R C E N T ) ' ; '14ILLI-UNITS/b!C. PROTFI!Jt ' ' Appendix 3. Computer program f o r c a l c u l a t i n g various s t a t i s t i c a l parameters, i n c l u d i n g mean, variance ana standard d e v i a t i o n . Appendix 4. Computer program f o r c a l c u l a t i o n of a pooled e s t i m a t e of v a r i a n c e . 1 1 T Y P E I# THE NUiIBEHS O F S A N P L E S IN EACH CROUP N+A*R,C,. 2 1 T Y P E IIJ TNF: STANDARD DEVIATIOlJ Ilir ISACII GROUP S + X , Y , Z , . .. ,. Appendix 5. Computer program f o r t - t e s t , u s i n g a pooled e s t i m a t e of v a r i a n c e . V TPOOL C 1 3 ' T Y P E IIl?AfJ X ' C l . 5 1 MX+n C 2 1 ' T Y P E MEAN Y' C 2 . 5 1 MY40 C 3 1 'TYPE C 3.5 1 C4I POOLED V A R I E C C E ' PVARtO ' T Y P E h7UNBER S A M P L E S I N X' C4.51 NX+n C 5 1 ' T Y P E NUMBER S A M P L E S IN Y ' C 5 , 5 3 NY+O C 6 1 NUWMX-MY C71 DEN+(PVARX((;NX)+(~NY)))*.~ C 8 1 T+UUMtDEfJ C93 T v
© Copyright 2026 Paperzz