• • • • • • 1- Introduction, overview 2- Hamiltonian of a diatomic molecule 3- Molecular symmetries; Hund’s cases 4- Molecular spectroscopy 5- Photoassociation of cold atoms 6- Ultracold (elastic) collisions Olivier Dulieu Predoc’ school, Les Houches,september 2004 Generalities on molecular symmetries • Determine the spectroscopy of the molecule • Guide the elaboration of dynamical models • Allow a complete classification of molecular states by: – – – – Solving the Schrödinger equation Looking at the separated atom limit (R) Looking at the united atom limit (R0) Adding electron one by one to build electronic configurations Symmetry properties of electronic functions (1) spin 2 S 1 p vxz , 0 , 0 vxz , vxz , , ri (ri , i , i ) ~1 1 ; ~i i 1 1 i~1 e ri , i , i i 1 2p i Lz ; ~ 1 Lz 2 , Central symmetry iˆ(ri ,i , i ) (ri , p i , p i ) 0 1 2 3 4 ... vxz , , Axial symmetry: 2p rotation vxz (ri , i , i ) (ri , i , i ) Planar symmetry ... iˆ g g gerade iˆ u u ungerade Symmetry properties of electronic functions (2) 2 L 2 S is not a good quantum number (precession around the axis) is a good quantum number if electrostatic interaction is dominant 2 S 1 p Ex: 2 : , , , S , , g ,1 g ,3 u ,1 g ,1 u ,3 g ,3 u ,5 g ,... 2S+1: multiplicity states: spin fixed in space, 2S+1 degenerate components states: precession around the axis, multiplet structure, almost equidistant in energy Symmetry properties of electronic functions (3) Otherwise: p : , 0g ,0g ,0u ,0u ,1g ,1u ,... Hund’s cases for a diatomic molecule (1) Rules for angular momenta couplings Determine the appropriate choice of basis functions This choice depends on the internuclear distance (recoupling) F. Hund, Z. Phys. 36, 657 (1926); 40, 742 (1927); 42, 93 (1927) Hund’s cases (2): vector precession model Herzberg 1950 Hund’s case a J N L S Hund’s cases (2): vector precession model Hund’s case b S Herzberg 1950 not defined: state -Spin weakly coupled K J N L Hund’s cases (2): vector precession model Herzberg 1950 Hund’s case c J N L j S Hund’s cases (2): vector precession model Hund’s case d L S K N J Herzberg 1950 Hund’s cases (2): vector precession model Herzberg 1950 Hund’s case e J L N j S Hund’s case (3): interaction ordering E.E. Nikitin & R.N. Zare, Mol. Phys. 82, 85 (1994) H H e H r H SO (a) (b) (c) (d) (e) He HSO Hr strong intermediate weak strong weak intermediate intermediate strong weak intermediate weak strong weak intermediate strong (adapted from Lefebvre-Brion&Field) Rotational energy for (a)-(e) cases O2 J O L S ( N S ) Hr 2 2R Case (a) JMS (a) Erot Bv J ( J 1) 2 S ( S 1) 2 Case (b) Case (c) JM (c) Erot Bv J ( J 1) 2 2 (b ) Erot Bv N ( N 1) 2 (d), (e) cases: useful for Rydberg electrons (see Lefebvre-Brion&Field) Parity(ies) and phase convention(s) (1) On electron coordinates in the molecular frame: Convention of ab-initio calculations (ri , i , i ) (ri , i , i ) vxz , , xz v Convention of molecular spectroscopy vxz , 1 , « Condon&Shortley » vxz AM A 1A AM A ( ) lab mol A( M A 1) AX iAY AM A A( A 1) M A ( M A 1) AM A ( 1) Ax iAy AM A A( A 1) ( 1) One-electron orbital Many-electron wave function vxz , s 1 2 , 1 1 2 , s 1 2 , vxz S 1 S s S vxz JM S 1J S s JM S With s=1 for - states, s=0 otherwise Parity(ies) and phase convention(s) (2) Total parity: Parity of the total wavefunction: +/- (1) J or (1) J 1 2 : e states (1) J 1 or (1) J 1 2 : f states 0, 0 vxz J , 0, 0 s , S , 0 1J S s J , 0, 0 s , S , 0 1 3 5 even J : 0 , 0 , 0 ,... 2 S 1 s 0 , : 1 3 5 odd J : , , ,... 0 0 0 2 S 1 odd J : , , ,... , : even J : , , ,... 3 5 0 0 0 1 3 5 0 0 0 1 s 0 2 S 1 0s , J , e : 2 S 1 0s , J , f : 1 0 ,3 0 ,5 0 ,... 1 0 ,3 0 ,5 0 ,... Parity(ies) and phase convention(s) (3) Total parity: Parity of the total wavefunction: +/- (1) J or (1) J 1 2 : e states (1) J 1 or (1) J 1 2 : f states All states except 0, 0 vxz Js S J s S 1J S s Js S J s S s , J , Js S 1 2 S 1 2 S 1 , J, s e f J S s Js S 1 S s J s S 2 J s S 2 Or –S+s+1/2 Radiative transitions (1) Absorption cross section: f . i In the lab frame . e ri p , q 0 , 1 n i 1 0 z ; 1 ( x i y ) 2 (1) In the mol frame . X X Y Y Z Z 0 Z ; 1 ( X iY ) 2 p p q D ( , ,0) 1 * pq BO approximation v J M v ( R) 2 J 1 J D M ( , ,0) ri ; R R 4p 2 Radiative transitions (2) Absorption cross section: f i p , q 0 , 1 f i q (1) p p v f q (2 J i 1)( 2 J f 1) Mf Jf v i J i J f p M i f 1 Ji q i 1 ( R) d rk f rk ; R i rk ; R q f q i 3 Dipole transition moment (2 J i 1)( 2 J f 1) 4p 2p 0 1 d d (cos ) DMff f ( , ,0) D pq ( , ,0) D M i i ( , ,0) J 1 Hönl-London factor 1 Ji 2 Selection rules for radiative transitions (1) n n Lz , 0 ;e rk cos k 0 k 1 i k 1 k Lz , 0 0 f i 0 f i f 0 if f i i Parallel transition f=i n e n i k Lz , 1 ; rk sin ke 1 2 k 1 i k 1 k Lz , 1 1 f i 1 f i f i 0 if f i 1 0,1 f i Perpendicular transition f=i±1 Selection rules for radiative transitions (2) 2p 0 d e iM f ip iM i e e 2p if M i p M f 0 M 0,1 = 0 otherwise Jf M f J i J f p M i f 1 Ji 0 q i 1 J 0,1 Ji 0 X Jf 0 Jf 0 1 Ji 0 0 0 If Jf+Ji+1 odd No Q line for transition 1 P line J J f J i 0 Q line 1 R line Selection rules for radiative transitions (3) v f f i q v i f i q ( Re ) v f vi vxz 0 0 X Allowed Forbidden ug iˆ q q u X u, g X g Allowed Forbidden FranckCondon factor
© Copyright 2026 Paperzz