Tutorial 1: Misspecification Matthew Robson University of York Econometrics 2 1 Assignment 5 Assume that the true model of consumersβ behaviour is: πΏπΆπ‘ = π½0 + π½1 πΏπΌπ‘ + π½2 πΏπ + π’π‘ (1) Where: πΏπΆπ‘ = log consumption, πΏπΌπ‘ = log income, πΏππ‘ = log wealth Estimate the simple log-linear consumption function: πΏπΆπ‘ = π½0β + π½1β πΏπΌπ‘ + π’π‘β (2) Over the period 1967q1-2002q4 2 Descriptive Statistics 3 OLS Results: True Model πΏπΆπ‘ = 0.564 + 0.943 πΏπΌπ‘ + 0.008 πΏπ + π’π‘ πΌππ‘ππππππ‘ππ‘πππ: ππ π€π πβππππ π₯ ππ¦ 1% π€π ππ₯ππππ‘ π¦ π‘π πβππππ ππ¦ π½%. πβπ ππππ‘πππ ππππ π‘ππππ‘π¦, πππ πππ π βπππ ππππ π‘πππ‘. 4 Fitted Model 5 OLS Results: Simple Model πΏπΆπ‘ = 0.257 + 0.974 πΏπΌπ‘ + π’π‘ 6 Question a) Under what conditions will the OLS estimates of (2) be unbiased and consistent for the true parameters π½0 and π½1 ? True: Estimated: ππ‘ = π½0 + π½1 π1π‘ + π½2 π2π‘ + π’π‘ ππ‘ = π½0β + π½1β π1π‘ + π’π‘β Where: π’π‘β = π’π‘ + π½2 π2π‘ True Model Deviation from the mean: π¦π‘ = π½1 π₯1π‘ + π½2 π₯2π‘ + π’π‘ Where: π₯ππ‘ = πππ‘ β ππ 7 Question a) β(π₯1π‘ π¦π‘ ) β π½1 = 2 βπ₯1π‘ Covariance of x & y Sample variance of x We know: π¦π‘ = π½1 π₯1π‘ + π½2 π₯2π‘ + π’π‘ β΄ β(π₯1π‘ π½1 π₯1π‘ + π½2 π₯2π‘ + π’π‘ ) = 2 βπ₯1π‘ π½1 β π₯1π‘ π₯1π‘ + π½2 β π₯1π‘ π₯2π‘ + β(π₯1π‘ π’π‘ ) β π½1 = 2 βπ₯1π‘ π½1β Expectation = 0 π½1β π½2 β π₯1π‘ π₯2π‘ β(π₯1π‘ π’π‘ ) = π½1 + + 2 2 βπ₯1π‘ βπ₯1π‘ 8 Question a) πΈ If β π₯1π‘ π₯2π‘ π½2 2 βπ₯1π‘ π½1β β π₯1π‘ π₯2π‘ = π½1 + π½2 2 βπ₯1π‘ Bias is +ve (-ve) bias is upwards (downwards) β π₯1π‘ π₯2π‘ = π1 2 βπ₯1π‘ π2π‘ = π0 + π1 π1π‘ + π£π‘ π½1β = biased if π1 β 0 πππ π½2 β 0 If π1 and π½2 have same (opposite) sign upwards (downwards) bias 9 Question a) β’ If model (2) was the true model π½0β and π½1β would be unbiased and consistent (i.e. π½2 = 0) estimators of π½0 and π½1 β’ If model (2) suffers from omitted variable bias (i.e. π½2 β 0) the estimates of π½1β will be biased and inconsistent, for π½1 , if π1π‘ and π2π‘ are correlated. The estimator of π½0β will be biased and inconsistent, for π½0 , even if π1π‘ and π2π‘ are uncorrelated: πΈ π½0β = π½0 + π½2 π0 π0 = π2π‘ β π1 π1π‘ β’ The only way the intercept is unbiased is if π½2 = 0 (i.e is the true model) or π1 = π2π‘ = 0 or π0 = 0 10 Question b) Estimate the following equation: πΏππ‘ = π0 + π1 πΏπΌπ‘ + π£π‘ (3) Over the full sample period 1967q1-2002q4 In which direction do you think the OLS estimate of π½1β from equation (2) is biased for π½1 ? 11 OLS Results: Equation (3) π2π‘ = π0 + π1 π1π‘ + π£π‘ πΏππ‘ = β36.6006 + 3.69676πΏπΌπ‘ + π£π‘ πΈ π½1β = π½1 + π½2 π1 π1 = +ve sign, and π½2 is expected to be +ve β΄ expect bias to be +ve πΈ π½0β < πΈ π½0 , as π0 = βπ£π 12 Question b) Does our prediction hold true? πΏπΆπ‘ = 0.564 + 0.943 πΏπΌπ‘ + 0.008 πΏπ + π’π‘ πΏπΆπ‘ = 0.257 + 0.974 πΏπΌπ‘ + π’π‘ Yes: 0.974 > 0.943, π½1β > π½1 The omitted variable, wealth, likely biases the coefficient upwards. Yes: 0.257 < 0.564, π½0β < π½0 The omitted variable, wealth, likely biases the intercept downwards. 13 Question c) What can be said about the precision of your estimates of equation (2)? In general we know: 1. The error variance, π 2 , is incorrectly estimated 2. The standard errors of the estimated coefficients π£ππ π½ are biased 3. Conventional t and F tests are of limited value (i.e. invalid) 14 Question c) β’ From (1) the variance of the error term is π 2 . We have an estimate of this which π 2, βππ2 RSS is this is equal to = , where ππ are the residuals from the model, n is πβπ πβπ the sample size, and k is the number of parameters. Estimates of π 2 are likely to be different between the true and estimated model. Why? Consider (2)β¦ π2 πππππ ππ π£ππ π½1 = 2 2 πΆπππππππ‘πππ πΆππππππππππ‘ βπ₯1π‘ 1 β π12 2 π π£ππ π½1β = 2 βπ₯1π‘ 2 β’ The variance of π½1β is a biased estimate for the true model. But what if π12 = 0, will the variance be the same? No. As π 2 is likely to be incorrect as well.. 2 β’ In general if π12 β₯ 0 we could expect π£ππ π½1β < π£ππ π½1 but remember that πβ2 is unlikely to be equal to π 2 . 15 Question d) β’ Explain how you would use a Ramsey RESET test to check whether your model is specified correctly? Calculate the RESET test for your estimated model (2) and discuss the outcome of this test β’ What other test might you use to investigate correct model specification? Briefly explain how you would use this test in the example above. 16 Ramsey RESET Test β’ Step 1: From the assumed model obtain the estimated ππ (old) β’ Step 2: Re-run the assumed model including the estimated ππ in some form as an additional regressor (new) β’ Step 3: Then use the F-test to find out whether the increase in π 2 , by using the model in Step 2, is statistically significant πΉ= 2 2 π πππ€ β π πππ 2 1 β π πππ€ ππ. πππ€ ππππππ π πππ π β ππ. πππππππ‘πππ ππ πππ€ πππππ β’ Step 4: If the computed F statistic is significant (for example at 5%) we can reject the null hypothesis that the model is correctly specified 17 RESET Test: Manually Old Model: ππ‘ = π½0 + π½1 π1π‘ + π’π‘ New Model: 2 3 ππ‘ = π½0β + π½1β π1π‘ + π½2β π2π‘ + π½3β π3π‘ + π’π‘β Where: πππ‘ = π½0 + π½1 πππ‘ π»0 : πππππ ππ πππππππ‘ππ¦ π ππππππππ π»1 : π»0 ππ ππππ π 0.992419 β 0.991402 2 πΉ= = 9.39058 ~πΉ2,140 1 β 0.992419 144 β 4 0.05 0.01 πΉ2,140 β 3.07, πΉ2,140 β 4.79, β΄ πΉ > πΉ π ππ‘ 5% πππ 1%, π€π ππππππ‘ π‘βπ ππ’ππ 18 RESET Test: Manually (alternative) Old Model: ππ‘ = π½0 + π½1 π1π‘ + π’π‘ New (alternative) Model: 2 ππ‘ = π½0β + π½1β π1π‘ + π½2β π2π‘ + π’π‘β Where: πππ‘ = π½0 + π½1 πππ‘ π»0 : πππππ ππ πππππππ‘ππ¦ π ππππππππ π»1 : π»0 ππ ππππ π 0.992415 β 0.991402 1 πΉ= = 18.831 ~πΉ1,140 1 β 0.992415 144 β 3 0.05 0.01 πΉ1,140 β 3.92, πΉ1,140 β 6.85, β΄ πΉ > πΉ π ππ‘ 5% πππ 1%, π€π ππππππ‘ π‘βπ ππ’ππ 19 RESET Test: PcGive πππππ β πππ π‘ β πππ π‘ β ππΎ β π πΈππΈπ π‘ππ π‘ πππ π πΈππΈπ23 π‘ππ π‘ πΉ πΉ 20 Lagrange Multiplier (LM) test β’ Step 1: Estimate the restricted regression by OLS and obtain the residuals β’ Step 2: If the unrestricted model is the correct one the residuals from Step 1 will be related to the extra variables in the unrestricted model β’ Step 3: Regress the residuals from Step 1 on all the variables. This is the auxiliary regression β’ Step 4: For large sample sizes, the sample size (n) times by the π 2 from the auxiliary regression follows the chi-square distribution with degrees of freedom equal to the number of restrictions imposed by the restricted model. ππ 2asy ~ π 2 (ππ’ππππ ππ πππ π‘ππππ‘ππππ ) 21 Lagrange Multiplier (LM) test Unrestricted Model: πΏπΆπ‘ = π½0 + π½1 πΏπΌπ‘ + π½2 πΏπ + π’π‘ πΏπΆπ‘ = π½0β + π½1β πΏπΌπ‘ + π’π‘β Restricted Model: Auxiliary Regression: π’π‘β = πΌ0 + πΌ1 πΏπΌπ‘ + πΌ2 πΏπ + π£π‘ Use the π 2 from the Auxiliary Regression to calculate the test statistic. ππ 2 = 144 β 0.00880823 = 1.268~ π 2 (1) π10.05 β 3.841, π10.01 β 6.635 πΏπ < π10.05 β Do not reject the Null 22 RESET vs LM β’ RESET: β’ We do not get information of how to improve the model β’ However, it is good as we do not need to know which Xβs are the issue β’ LM: β’ Allows us to choose the βbetterβ model β’ Relies on asymptotic assumptions, so low n means it is an inappropriate test 23
© Copyright 2026 Paperzz