Theorem 1 (Cramer’s Rule). Let Ax = b be an n × n linear system with A = a1 a2 . . . an . If |A| = 6 0 then the ith entry xi of the unique solution x = (x1 , x2 , . . . , xn ) is given by a1 . . . b . . . an xi = |A| a11 . . . b1 . . . a1n 1 a21 . . . b2 . . . a2n = . . . , |A| .. . . . .. . . . .. a bn . . . ann n1 . . . where in the last expression the constant vector b replaces the ith column vector ai of A. Proof. Recall that that we can write Ax = b as n X xj aj = x1 a1 + x2 a2 + · · · + xn an = b. j=1 So a1 . . . b ... an = =P 4 =P 1 Pn a1 . . . an j=1 xj aj . . . n X a1 . . . xj aj . . . an j=1 n X xj a1 . . . aj . . . an x1 a1 a2 . . . x2 a1 a2 . . . a1 . . . a2 . . . an an xi a1 a2 . . . ai . . . an xn a1 a2 . . . an . . . j=1 = + .. . + .. . + =P 3 xi a1 a2 . . . = xi |A| a1 . . . b ... |A| an = ai . . . an an xi . 1 Definition 2. Let A = [aij ] be an n × n matrix. Recall that the ijth minor of A is the determinant of the (n − 1) × (n − 1) submatrix of A that remains after deleting the ith row and jth column of A, and the ijth cofactor of A is Aij = (−1)i+j Mij . The cofactor matrix of A is the n × n matrix [Aij ]. The adjoint adj A of A is the transpose of the cofactor matrix of A: adj A = [Aij ]T = Aji . We can write Cramer’s rule in terms of the adjoint of A. By expanding the determinant in the numerator along the column containing b we get: a1 . . . b . . . an xi = |A| 1 (b1 A1i + b2 A2i + · · · + bn Ani ). = |A| So x1 b1 A11 + b2 A21 + · · · + bn An1 x2 b A + b2 A22 + · · · + bn An2 = 1 1 12 x = . .. .. |A| . xn b1 A1n + b2 A2n + · · · + bn Ann b1 A11 A21 . . . An1 A A22 . . . An2 b2 1 . .12 = .. .. ... .. .. |A| . . A1n A2n . . . (Adj A)b = |A| Ann bn Theorem 3. The inverse of an invertible matrix A is given by A−1 = [Aij ]T adj A = |A| |A| 2
© Copyright 2026 Paperzz