CS 665 Advanced Computer Architecture – Fall 2003 Tomasulo Algorithm Adapted from DAP Spr.‘98 ©UCB 1 Review: Summary • Instruction Level Parallelism (ILP) in SW or HW • Loop level parallelism is easiest to see • SW parallelism dependencies defined for program, hazards if HW cannot resolve • SW dependencies/compiler sophistication determine if compiler can unroll loops – Memory dependencies hardest to determine • HW exploiting ILP – Works when can’t know dependence at run time – Code for one machine runs well on another • Key idea of Scoreboard: Allow instructions behind stall to proceed (Decode => Issue instr & read operands) – Enables out-of-order execution => out-of-order completion – ID stage checked both for structural & data dependencies 2 Review: Three Parts of the Scoreboard 1. Instruction status—which of 4 steps the instruction is in 2. Functional unit status—Indicates the state of the functional unit (FU). 9 fields for each functional unit Busy—Indicates whether the unit is busy or not Op—Operation to perform in the unit (e.g., + or –) Fi—Destination register Fj, Fk—Source-register numbers Qj, Qk—Functional units producing source registers Fj, Fk Rj, Rk—Flags indicating when Fj, Fk are ready 3. Register result status—Indicates which functional unit will write each register, if one exists. Blank when no pending instructions will write that register 3 Review: Scoreboard Example Cycle 62 Instruction status Instruction j k LD F6 34+ R2 LD F2 45+ R3 MULTD F0 F2 F4 SUBD F8 F6 F2 DIVD F10 F0 F6 ADDD F6 F8 F2 Functional unit status Time Name Integer Mult1 Mult2 Add 0 Divide Register result status Read Execution Write Issue operandscompleteResult 1 2 3 4 5 6 7 8 6 9 19 20 7 9 11 12 8 21 61 62 13 14 16 22 dest S1 S2 Busy Op Fi Fj Fk No No No No No Clock F0 62 F2 F4 FU for j FU for k Fj? Qj Qk Rj F6 F8 F10 F12 ... Fk? Rk F30 FU • In-order issue; out-of-order execute & commit 4 Review: Scoreboard Summary • Speedup 1.7 from compiler; 2.5 by hand BUT slow memory (no cache) • Limitations of 6600 scoreboard – No forwarding (First write register then read it) – Limited to instructions in basic block (small window) – Number of functional units(structural hazards) – Wait for WAR hazards – Prevent WAW hazards 5 Dynamic Issue Goal: take advantage of multiple function units and deal with long memory latencies • Advantages: – Speed • Problems: multiple execution latencies – Result is out of order completion – Forwarding and hazard control become more difficult – Precise exceptions would later amplify the problem (non-issue in the ’60s) • Answer: HW to issue instructions when hazards clear 6 Dynamic Issue • Hazards = data, structural, control – Data: RAW (true data dependence), WAR ( anti-dependence), WAW (output dependence) – Structural: Are the required resources available? – Control: Is this instruction supposed to execute or not? • Implementation – 2 early approaches – Control flow – CDC 6600 (scoreboard) (1964) – Data flow – Tomasulo, IBM 360/91 (1967) » Simple idea – when opcode and operands are ready, and the appropriate set of resources are ready, launch the “execution packet” » Interesting wrinkle – does not used named registers for intermediate storage » Implicit introduction of Register Renaming 7 Register Renaming • Can eliminate name dependence (and hence WAR and WAW) • Static renaming example: Original After Renaming R2 to R6 ADD R1, R2, R3 ADD R7, R2, R3 SUB R2, R3, R4 SUB R6, R3, R4 AND R5, R1, R2 AND R5, R1, R6 LD R1, 0(R4) LD R1, 0(R4) • Increase ILP, increases register pressure • Can be done dynamically in hardware 8 Another Dynamic Algorithm: Tomasulo Algorithm • For IBM 360/91 about 3 years after CDC 6600 (1966) • Goal: High Performance without special compilers – Take advantage of multiple function units and deal with long memory latencies – Advantages: speed via specialization and parallelism – Problems: multiple execution latencies » Out of order completion » Bypass and hazard control difficult » Precise exceptions • Why Study? – lead to Alpha 21264, HP 8000, MIPS 10000, Pentium II, PowerPC 604, … • Main difference from scoreboarding: – Uses hardwired register renaming to remove WAR and WAW hazards 9 Computing Model • Data – Ops view sources and destinations as memory – Hence registers not explicitly named in the ISA stream • Control – Multiple FU » Each fronted by one or more “reservation stations” (RS) » When reservation station has all of the source operands then it issues – Outputs » Physically placed on a Common Data Bus (CDB) » Tagged so the RS know what to look for – Inputs » Supplied with instruction or collected by RS 10 Tomasulo Organization FP Registers From Mem FP Op Queue Load Buffers Load1 Load2 Load3 Load4 Load5 Load6 Store Buffers Add1 Add2 Add3 Mult1 Mult2 FP adders Reservation Stations To Mem FP multipliers Common Data Bus (CDB) 11 Tomasulo Algorithm vs. Scoreboard • Control & buffers distributed with Function Units (FU) vs. centralized in scoreboard; – FU buffers called “reservation stations” to control execution; have pending operands – Act as interlock-permits • Registers in instructions replaced by values or pointers to reservation stations(RS); called register renaming (implicit virtual registers); – avoids WAR, WAW hazards – More reservation stations than registers, so can do optimizations compilers can’t • Results to FU from RS, not through registers, over Common Data Bus that broadcasts results to all FUs • Load and Stores treated as FUs with RSs as well • Integer instructions can go past branches, allowing FP ops beyond basic block in FP queue 12 Reservation Stations and Common Data Bus • Reservation Stations hold instructions stalled for RAW hazards, buffers operands until read by instructions. Pending instructions have their register specifiers renamed as locations in reservation stations • Common Data Bus (CDB) broadcasts results to any FU that may need them (reservation stations, register file) 13 Reservation Station Duties • Snarf sources off CDB when they appear – CDB results are tagged with where they came from • When all operands are present, enable the associate FU to execute • Since values aren’t really written to registers (until later): no WAR or WAW hazards are possible • Structural hazards checked at two points – At dispatch – a free reservation station of the right type must be available – When execution packet is ready – multiple reservatino stations may compete for a shared FU » Program order used as basis for arbitration if required 14 Virtual Registers • Tag field associated with data • Tag field is a virtual register ID • Corresponds to reservation station and load buffer names • Motivation due to the 360’s register weakness – Had only 4 FP regs – The 9 renamed regs (reservation station slots) were a significant bonus • Intel’s x86 architecture is also register-poor – With renamed registers they can get around this 15 Reservation Station Components Op—Operation to perform in the unit (e.g., + or –) Vj, Vk—Value of Source operands – Store buffers has V field, result to be stored Qj, Qk—Reservation stations producing source registers (value to be written) – Note: No ready flags as in Scoreboard; Qj,Qk=0 => ready – Store buffers only have Qi for RS producing result Busy—Indicates reservation station or FU is busy Register result status—Indicates which functional unit will write each register, if one exists. Blank when no pending instructions that will write that register. 16 Three Stages of Tomasulo Algorithm 1. Issue—get instruction from FP Op Queue (in-order) If reservation station free (no structural hazard), control issues instr & sends operands (renames registers) from register file (if there) to RS. Dispatch if available buffer (loads, stores)Stall otherwise due to structural hazard 2. Execution—operate on operands (EX) (may be out of order) When both operands ready then execute; if not ready, watch Common Data Bus for result Effectively deals with RAW hazards. 3. Write result—finish execution (WB) (may be out of order) Write on Common Data Bus to all awaiting units; mark reservation station available Renaming model prevents WAW and WAR hazards. • Normal data bus: data + destination (“go to” bus) • Common data bus: data + source (“come from” bus) – 64 bits of data + 4 bits of Functional Unit source address – Write if matches expected Functional Unit (produces result) – Does the broadcast 17 Tomasulo Example Instruction stream Instruction status: Instruction LD F6 LD F2 MULTD F0 SUBD F8 DIVD F10 ADDD F6 j 34+ 45+ F2 F6 F0 F8 k R2 R3 F4 F2 F6 F2 Exec Write Issue Comp Result Load1 Load2 Load3 Register result status: Clock 0 No No No 3 Load/Buffers Reservation Stations: Time Name Busy Add1 No Add2 No FU count Add3 No down Mult1 No Mult2 No Busy Address Op S1 Vj S2 Vk RS Qj RS Qk 3 FP Adder R.S. 2 FP Mult R.S. F0 F2 F4 F6 F8 F10 F12 ... F30 FU Clock cycle counter 18 Tomasulo Example Cycle 1 Instruction status: Instruction LD F6 LD F2 MULTD F0 SUBD F8 DIVD F10 ADDD F6 j 34+ 45+ F2 F6 F0 F8 k R2 R3 F4 F2 F6 F2 Exec Write Issue Comp Result 1 Reservation Stations: Time Name Busy Add1 No Add2 No Add3 No Mult1 No Mult2 No Register result status: Clock 1 FU Busy Address Load1 Load2 Load3 Op S1 Vj S2 Vk RS Qj RS Qk F0 F2 F4 F6 F8 Yes No No 34+R2 F10 F12 ... F30 Load1 19 Tomasulo Example Cycle 2 Instruction status: Instruction LD F6 LD F2 MULTD F0 SUBD F8 DIVD F10 ADDD F6 j 34+ 45+ F2 F6 F0 F8 k R2 R3 F4 F2 F6 F2 Exec Write Issue Comp Result 1 2 Reservation Stations: Time Name Busy Add1 No Add2 No Add3 No Mult1 No Mult2 No Register result status: Clock 2 FU Busy Address Load1 Load2 Load3 Op S1 Vj S2 Vk RS Qj RS Qk F0 F2 F4 F6 F8 Load2 Yes Yes No 34+R2 45+R3 F10 F12 ... F30 Load1 Note: Can have multiple loads outstanding 20 Tomasulo Example Cycle 3 Instruction status: Instruction LD F6 LD F2 MULTD F0 SUBD F8 DIVD F10 ADDD F6 j 34+ 45+ F2 F6 F0 F8 k R2 R3 F4 F2 F6 F2 Exec Write Issue Comp Result 1 2 3 Reservation Stations: Time Name Busy Op Add1 No Add2 No Add3 No Mult1 Yes MULTD Mult2 No Register result status: Clock 3 FU F0 Busy Address 3 S1 Vj Load1 Load2 Load3 S2 Vk RS Qj Yes Yes No 34+R2 45+R3 F10 F12 RS Qk R(F4) Load2 F2 Mult1 Load2 F4 F6 F8 ... F30 Load1 • Note: registers names are removed (“renamed”) in Reservation Stations; MULT issued • Load1 completing; what is waiting for Load1? 21 Tomasulo Example Cycle 4 Instruction status: Instruction LD F6 LD F2 MULTD F0 SUBD F8 DIVD F10 ADDD F6 j 34+ 45+ F2 F6 F0 F8 k R2 R3 F4 F2 F6 F2 Exec Write Issue Comp Result 1 2 3 4 Reservation Stations: Busy Address 3 4 4 Load1 Load2 Load3 S1 Vj S2 Vk RS Qj RS Qk F2 F4 F6 F8 No Yes No 45+R3 F10 F12 Time Name Busy Op Add1 Yes SUBD M(A1) Load2 Add2 No Add3 No Mult1 Yes MULTD R(F4) Load2 Mult2 No Register result status: Clock 4 FU F0 Mult1 Load2 ... F30 M(A1) Add1 • Load2 completing; what is waiting for Load2? 22 Tomasulo Example Cycle 5 Instruction status: Instruction LD F6 LD F2 MULTD F0 SUBD F8 DIVD F10 ADDD F6 j 34+ 45+ F2 F6 F0 F8 k R2 R3 F4 F2 F6 F2 Exec Write Issue Comp Result 1 2 3 4 5 Reservation Stations: Busy Address 3 4 4 5 Load1 Load2 Load3 S1 Vj S2 Vk RS Qj RS Qk F2 F4 F6 F8 Time Name Busy Op 2 Add1 Yes SUBD M(A1) M(A2) Add2 No Add3 No 10 Mult1 Yes MULTD M(A2) R(F4) Mult2 Yes DIVD M(A1) Mult1 Register result status: Clock 5 FU F0 Mult1 M(A2) No No No F10 F12 ... F30 M(A1) Add1 Mult2 • Timer starts down for Add1, Mult1 23 Tomasulo Example Cycle 6 Instruction status: Instruction LD F6 LD F2 MULTD F0 SUBD F8 DIVD F10 ADDD F6 j 34+ 45+ F2 F6 F0 F8 k R2 R3 F4 F2 F6 F2 Exec Write Issue Comp Result 1 2 3 4 5 6 Reservation Stations: Busy Address 3 4 4 5 Load1 Load2 Load3 S1 Vj S2 Vk RS Qj RS Qk F2 F4 F6 F8 Time Name Busy Op 1 Add1 Yes SUBD M(A1) M(A2) Add2 Yes ADDD M(A2) Add1 Add3 No 9 Mult1 Yes MULTD M(A2) R(F4) Mult2 Yes DIVD M(A1) Mult1 Register result status: Clock 6 FU F0 Mult1 M(A2) Add2 No No No F10 F12 ... F30 Add1 Mult2 • Issue ADDD here despite name dependency on F6? 24 Tomasulo Example Cycle 7 Instruction status: Instruction LD F6 LD F2 MULTD F0 SUBD F8 DIVD F10 ADDD F6 j 34+ 45+ F2 F6 F0 F8 k R2 R3 F4 F2 F6 F2 Exec Write Issue Comp Result 1 2 3 4 5 6 Reservation Stations: 3 4 Busy Address 4 5 Load1 Load2 Load3 7 S1 Vj S2 Vk RS Qj RS Qk F2 F4 F6 F8 Time Name Busy Op 0 Add1 Yes SUBD M(A1) M(A2) Add2 Yes ADDD M(A2) Add1 Add3 No 8 Mult1 Yes MULTD M(A2) R(F4) Mult2 Yes DIVD M(A1) Mult1 Register result status: Clock 7 FU F0 No No No Mult1 M(A2) Add2 F10 F12 ... F30 Add1 Mult2 • Add1 (SUBD) completing; what is waiting for it? 25 Tomasulo Example Cycle 8 Instruction status: Instruction LD F6 LD F2 MULTD F0 SUBD F8 DIVD F10 ADDD F6 j 34+ 45+ F2 F6 F0 F8 k R2 R3 F4 F2 F6 F2 Exec Write Issue Comp Result 1 2 3 4 5 6 Reservation Stations: Busy Address 3 4 4 5 Load1 Load2 Load3 7 8 S1 Vj S2 Vk RS Qj RS Qk F2 F4 F6 F8 Time Name Busy Op Add1 No 2 Add2 Yes ADDD (M-M) M(A2) Add3 No 7 Mult1 Yes MULTD M(A2) R(F4) Mult2 Yes DIVD M(A1) Mult1 Register result status: Clock 8 FU F0 Mult1 M(A2) No No No F10 F12 ... F30 Add2 (M-M) Mult2 26 Tomasulo Example Cycle 9 Instruction status: Instruction LD F6 LD F2 MULTD F0 SUBD F8 DIVD F10 ADDD F6 j 34+ 45+ F2 F6 F0 F8 k R2 R3 F4 F2 F6 F2 Exec Write Issue Comp Result 1 2 3 4 5 6 Reservation Stations: Busy Address 3 4 4 5 Load1 Load2 Load3 7 8 S1 Vj S2 Vk RS Qj RS Qk F2 F4 F6 F8 Time Name Busy Op Add1 No 1 Add2 Yes ADDD (M-M) M(A2) Add3 No 6 Mult1 Yes MULTD M(A2) R(F4) Mult2 Yes DIVD M(A1) Mult1 Register result status: Clock 9 FU F0 Mult1 M(A2) No No No F10 F12 ... F30 Add2 (M-M) Mult2 27 Tomasulo Example Cycle 10 Instruction status: Instruction LD F6 LD F2 MULTD F0 SUBD F8 DIVD F10 ADDD F6 j 34+ 45+ F2 F6 F0 F8 k R2 R3 F4 F2 F6 F2 Exec Write Issue Comp Result 1 2 3 4 5 6 Reservation Stations: 3 4 4 5 7 8 Busy Address Load1 Load2 Load3 10 S1 Vj S2 Vk RS Qj RS Qk F2 F4 F6 F8 Time Name Busy Op Add1 No 0 Add2 Yes ADDD (M-M) M(A2) Add3 No 5 Mult1 Yes MULTD M(A2) R(F4) Mult2 Yes DIVD M(A1) Mult1 Register result status: Clock 10 FU F0 No No No Mult1 M(A2) F10 F12 ... F30 Add2 (M-M) Mult2 • Add2 (ADDD) completing; what is waiting for it? 28 Tomasulo Example Cycle 11 Instruction status: Instruction LD F6 LD F2 MULTD F0 SUBD F8 DIVD F10 ADDD F6 j 34+ 45+ F2 F6 F0 F8 k R2 R3 F4 F2 F6 F2 Exec Write Issue Comp Result 1 2 3 4 5 6 Reservation Stations: Busy Address 3 4 4 5 Load1 Load2 Load3 7 8 10 11 S1 Vj S2 Vk RS Qj RS Qk F2 F4 F6 F8 Time Name Busy Op Add1 No Add2 No Add3 No 4 Mult1 Yes MULTD M(A2) R(F4) Mult2 Yes DIVD M(A1) Mult1 Register result status: Clock 11 FU F0 Mult1 M(A2) No No No F10 F12 ... F30 (M-M+M)(M-M) Mult2 • Write result of ADDD here? • All quick instructions complete in this cycle! 29 Tomasulo Example Cycle 12 Instruction status: Instruction LD F6 LD F2 MULTD F0 SUBD F8 DIVD F10 ADDD F6 j 34+ 45+ F2 F6 F0 F8 k R2 R3 F4 F2 F6 F2 Exec Write Issue Comp Result 1 2 3 4 5 6 Reservation Stations: Busy Address 3 4 4 5 Load1 Load2 Load3 7 8 10 11 S1 Vj S2 Vk RS Qj RS Qk F2 F4 F6 F8 Time Name Busy Op Add1 No Add2 No Add3 No 3 Mult1 Yes MULTD M(A2) R(F4) Mult2 Yes DIVD M(A1) Mult1 Register result status: Clock 12 FU F0 Mult1 M(A2) No No No F10 F12 ... F30 (M-M+M)(M-M) Mult2 30 Tomasulo Example Cycle 13 Instruction status: Instruction LD F6 LD F2 MULTD F0 SUBD F8 DIVD F10 ADDD F6 j 34+ 45+ F2 F6 F0 F8 k R2 R3 F4 F2 F6 F2 Exec Write Issue Comp Result 1 2 3 4 5 6 Reservation Stations: Busy Address 3 4 4 5 Load1 Load2 Load3 7 8 10 11 S1 Vj S2 Vk RS Qj RS Qk F2 F4 F6 F8 Time Name Busy Op Add1 No Add2 No Add3 No 2 Mult1 Yes MULTD M(A2) R(F4) Mult2 Yes DIVD M(A1) Mult1 Register result status: Clock 13 FU F0 Mult1 M(A2) No No No F10 F12 ... F30 (M-M+M)(M-M) Mult2 31 Tomasulo Example Cycle 14 Instruction status: Instruction LD F6 LD F2 MULTD F0 SUBD F8 DIVD F10 ADDD F6 j 34+ 45+ F2 F6 F0 F8 k R2 R3 F4 F2 F6 F2 Exec Write Issue Comp Result 1 2 3 4 5 6 Reservation Stations: Busy Address 3 4 4 5 Load1 Load2 Load3 7 8 10 11 S1 Vj S2 Vk RS Qj RS Qk F2 F4 F6 F8 Time Name Busy Op Add1 No Add2 No Add3 No 1 Mult1 Yes MULTD M(A2) R(F4) Mult2 Yes DIVD M(A1) Mult1 Register result status: Clock 14 FU F0 Mult1 M(A2) No No No F10 F12 ... F30 (M-M+M)(M-M) Mult2 32 Tomasulo Example Cycle 15 Instruction status: Instruction LD F6 LD F2 MULTD F0 SUBD F8 DIVD F10 ADDD F6 j 34+ 45+ F2 F6 F0 F8 k R2 R3 F4 F2 F6 F2 Exec Write Issue Comp Result 1 2 3 4 5 6 Reservation Stations: Busy Address 3 4 15 7 4 5 Load1 Load2 Load3 10 11 S1 Vj S2 Vk RS Qj RS Qk F2 F4 F6 F8 8 Time Name Busy Op Add1 No Add2 No Add3 No 0 Mult1 Yes MULTD M(A2) R(F4) Mult2 Yes DIVD M(A1) Mult1 Register result status: Clock 15 FU F0 Mult1 M(A2) No No No F10 F12 ... F30 (M-M+M)(M-M) Mult2 • Mult1 (MULTD) completing; what is waiting for it? 33 Tomasulo Example Cycle 16 Instruction status: Instruction LD F6 LD F2 MULTD F0 SUBD F8 DIVD F10 ADDD F6 j 34+ 45+ F2 F6 F0 F8 k R2 R3 F4 F2 F6 F2 Exec Write Issue Comp Result 1 2 3 4 5 6 Reservation Stations: 3 4 15 7 4 5 16 8 Load1 Load2 Load3 10 11 S1 Vj S2 Vk RS Qj RS Qk F2 F4 F6 F8 Time Name Busy Op Add1 No Add2 No Add3 No Mult1 No 40 Mult2 Yes DIVD M*F4 M(A1) Register result status: Clock 16 FU F0 Busy Address M*F4 M(A2) No No No F10 F12 ... F30 (M-M+M)(M-M) Mult2 • Just waiting for Mult2 (DIVD) to complete 34 Faster than light computation (skip a couple of cycles) 35 Tomasulo Example Cycle 55 Instruction status: Instruction LD F6 LD F2 MULTD F0 SUBD F8 DIVD F10 ADDD F6 j 34+ 45+ F2 F6 F0 F8 k R2 R3 F4 F2 F6 F2 Exec Write Issue Comp Result 1 2 3 4 5 6 Reservation Stations: 3 4 15 7 4 5 16 8 Load1 Load2 Load3 10 11 S1 Vj S2 Vk RS Qj RS Qk F2 F4 F6 F8 Time Name Busy Op Add1 No Add2 No Add3 No Mult1 No 1 Mult2 Yes DIVD M*F4 M(A1) Register result status: Clock 55 FU F0 Busy Address M*F4 M(A2) No No No F10 F12 ... F30 (M-M+M)(M-M) Mult2 36 Tomasulo Example Cycle 56 Instruction status: Instruction LD F6 LD F2 MULTD F0 SUBD F8 DIVD F10 ADDD F6 j 34+ 45+ F2 F6 F0 F8 k R2 R3 F4 F2 F6 F2 Exec Write Issue Comp Result 1 2 3 4 5 6 Reservation Stations: 3 4 15 7 56 10 4 5 16 8 Load1 Load2 Load3 S1 Vj S2 Vk RS Qj RS Qk 56 FU F0 F2 F4 F6 F8 M*F4 M(A2) No No No 11 Time Name Busy Op Add1 No Add2 No Add3 No Mult1 No 0 Mult2 Yes DIVD M*F4 M(A1) Register result status: Clock Busy Address F10 F12 ... F30 (M-M+M)(M-M) Mult2 • Mult2 (DIVD) is completing; what is waiting for it? 37 Tomasulo Example Cycle 57 Instruction status: Instruction LD F6 LD F2 MULTD F0 SUBD F8 DIVD F10 ADDD F6 j 34+ 45+ F2 F6 F0 F8 k R2 R3 F4 F2 F6 F2 Exec Write Issue Comp Result 1 2 3 4 5 6 Reservation Stations: 3 4 15 7 56 10 4 5 16 8 57 11 Load1 Load2 Load3 S1 Vj S2 Vk RS Qj RS Qk F2 F4 F6 F8 Time Name Busy Op Add1 No Add2 No Add3 No Mult1 No Mult2 Yes DIVD M*F4 M(A1) Register result status: Clock 56 FU F0 Busy Address M*F4 M(A2) No No No F10 F12 ... F30 (M-M+M)(M-M) Result • Once again: In-order issue, out-of-order execution and out-of-order completion. 38 Compare to Scoreboard Cycle 62 Instruction status Instruction j k LD F6 34+ R2 LD F2 45+ R3 MULTD F0 F2 F4 SUBD F8 F6 F2 DIVD F10 F0 F6 ADDD F6 F8 F2 Functional unit status Time Name Integer Mult1 Mult2 Add 0 Divide Register result status Read Execution Write Issue operandscompleteResult 1 2 3 4 5 6 7 8 6 9 19 20 7 9 11 12 8 21 61 62 13 14 16 22 dest S1 S2 Busy Op Fi Fj Fk No No No No No Clock F0 62 F2 F4 FU for j FU for k Fj? Qj Qk Rj F6 F8 F10 F12 ... Fk? Rk F30 FU • Why takes longer on Scoreboard/6600? 39 Tomasulo v. Scoreboard (IBM 360/91 v. CDC 6600) Pipelined Functional Units (6 load, 3 store, 3 +, 2 x/÷) window size: 14 instructions No issue on structural hazard WAR: renaming avoids WAW: renaming avoids Broadcast results from FU Control: reservation stations Multiple Functional Units (1 load/store, 1 + , 2 x, 1 ÷) 5 instructions same stall completion stall completion Write/read registers central scoreboard 40 Tomasulo Drawbacks • Complexity – delays of 360/91, MIPS 10000, Alpha 21264, IBM PPC 620 in CA:AQA 2/e, but not in silicon! • Many associative stores (CDB) at high speed • Performance limited by Common Data Bus – Each CDB must go to multiple functional units high capacitance, high wiring density – Number of functional units that can complete per cycle limited to one! » Multiple CDBs more FU logic for parallel assoc stores • Non-precise interrupts! – We will address this later 41 Summary: Tomasulo • Prevents Register as bottleneck – Where’s the new bottleneck? • Avoids WAR, WAW hazards of Scoreboard • If we assume branch prediction (next subject…) – Allows loop unrolling in HW – Not limited to basic blocks • Lasting Contributions – Dynamic scheduling – Register renaming – Load/store disambiguation » Out of order is OK if addresses don’t match • 360/91 descendants are PowerPC 604, 620; MIPS R10000; HP-PA 8000; Intel Pentium Pro 42 Tomasulo Loop Example Loop: LD MULTD SD SUBI BNEZ F0 F4 F4 R1 R1 0 F0 0 R1 Loop R1 F2 R1 #8 • Assume Multiply takes 4 clocks • Assume first load takes 8 clocks (cache miss?), second load takes 4 clocks (hit) • To be clear, will show clocks for SUBI, BNEZ • Reality, integer instructions ahead 43 Loop Example Instruction status: ITER Instruction 1 1 1 Iter2 ation 2 Count 2 LD MULTD SD LD MULTD SD F0 F4 F4 F0 F4 F4 j k 0 F0 0 0 F0 0 R1 F2 R1 R1 F2 R1 Reservation Stations: Time Name Busy Add1 No Add2 No Add3 No Mult1 No Mult2 No Op Vj Exec Write Issue CompResult Busy Addr Load1 Load2 Load3 Store1 Store2 Store3 S1 Vk S2 Qj RS Qk Code: LD MULTD SD SUBI BNEZ No No No No No No Added Store Buffers F0 F4 F4 R1 R1 Register result status Clock 0 F0 R1 80 F2 F4 F6 F8 Fu F10 F12 0 F0 0 R1 Loop R1 F2 R1 #8 ... F30 Instruction Loop Fu Value of Register used for address, iteration control 44 Loop Example Cycle 1 Instruction status: ITER Instruction 1 LD F0 j k 0 R1 1 Vj S1 Vk Reservation Stations: Time Name Busy Add1 No Add2 No Add3 No Mult1 No Mult2 No Exec Write Issue CompResult Op S2 Qj RS Qk Busy Addr Fu Load1 Load2 Load3 Store1 Store2 Store3 Yes No No No No No 80 Code: LD MULTD SD SUBI BNEZ F0 F4 F4 R1 R1 0 F0 0 R1 Loop R1 F2 R1 #8 ... F30 Register result status Clock 1 R1 80 F0 F2 F4 F6 F8 F10 F12 Fu Load1 45 Loop Example Cycle 2 Instruction status: ITER Instruction 1 1 LD MULTD F0 F4 j k 0 F0 R1 F2 1 2 Vj S1 Vk Reservation Stations: Time Exec Write Issue CompResult Name Busy Op Add1 No Add2 No Add3 No Mult1 Yes Multd Mult2 No S2 Qj RS Qk R(F2) Load1 Busy Addr Fu Load1 Load2 Load3 Store1 Store2 Store3 Yes No No No No No 80 Code: LD MULTD SD SUBI BNEZ F0 F4 F4 R1 R1 0 F0 0 R1 Loop R1 F2 R1 #8 ... F30 Register result status Clock 2 R1 80 F0 Fu Load1 F2 F4 F6 F8 F10 F12 Mult1 46 Loop Example Cycle 3 Instruction status: ITER Instruction 1 1 1 LD MULTD SD F0 F4 F4 j k 0 F0 0 R1 F2 R1 Reservation Stations: Time Name Busy Op Add1 No Add2 No Add3 No Mult1 Yes Multd Mult2 No Vj Exec Write Issue CompResult 1 2 3 S1 Vk S2 Qj RS Qk R(F2) Load1 Busy Addr Fu Load1 Load2 Load3 Store1 Store2 Store3 Yes No No Yes No No 80 80 Mult1 Code: LD MULTD SD SUBI BNEZ F0 F4 F4 R1 R1 0 F0 0 R1 Loop R1 F2 R1 #8 ... F30 Register result status Clock 3 R1 80 F0 Fu Load1 F2 F4 F6 F8 F10 F12 Mult1 • Implicit renaming sets up data flow graph 47 Loop Example Cycle 4 Instruction status: ITER Instruction 1 1 1 LD MULTD SD F0 F4 F4 j k 0 F0 0 R1 F2 R1 Reservation Stations: Time Name Busy Op Add1 No Add2 No Add3 No Mult1 Yes Multd Mult2 No Vj Exec Write Issue CompResult 1 2 3 S1 Vk S2 Qj RS Qk R(F2) Load1 Busy Addr Fu Load1 Load2 Load3 Store1 Store2 Store3 Yes No No Yes No No 80 80 Mult1 Code: LD MULTD SD SUBI BNEZ F0 F4 F4 R1 R1 0 F0 0 R1 Loop R1 F2 R1 #8 ... F30 Register result status Clock 4 R1 80 F0 Fu Load1 F2 F4 F6 F8 F10 F12 Mult1 • Dispatching SUBI Instruction (not in FP queue) 48 Loop Example Cycle 5 Instruction status: ITER Instruction 1 1 1 LD MULTD SD F0 F4 F4 j k 0 F0 0 R1 F2 R1 Reservation Stations: Time Name Busy Op Add1 No Add2 No Add3 No Mult1 Yes Multd Mult2 No Vj Exec Write Issue CompResult 1 2 3 S1 Vk S2 Qj RS Qk R(F2) Load1 Busy Addr Fu Load1 Load2 Load3 Store1 Store2 Store3 Yes No No Yes No No 80 80 Mult1 Code: LD MULTD SD SUBI BNEZ F0 F4 F4 R1 R1 0 F0 0 R1 Loop R1 F2 R1 #8 ... F30 Register result status Clock 5 R1 72 F0 Fu Load1 F2 F4 F6 F8 F10 F12 Mult1 • And, BNEZ instruction (not in FP queue) 49 Loop Example Cycle 6 Instruction status: ITER Instruction 1 1 1 2 LD MULTD SD LD F0 F4 F4 F0 j k 0 F0 0 0 R1 F2 R1 R1 1 2 3 6 Vj S1 Vk Reservation Stations: Time Exec Write Issue CompResult Name Busy Op Add1 No Add2 No Add3 No Mult1 Yes Multd Mult2 No S2 Qj RS Qk R(F2) Load1 Busy Addr Fu Load1 Load2 Load3 Store1 Store2 Store3 Yes Yes No Yes No No 80 72 80 Mult1 Code: LD MULTD SD SUBI BNEZ F0 F4 F4 R1 R1 0 F0 0 R1 Loop R1 F2 R1 #8 ... F30 Register result status Clock 6 R1 72 F0 Fu Load2 F2 F4 F6 F8 F10 F12 Mult1 • Notice that F0 never sees Load from location 80 50 Loop Example Cycle 7 Instruction status: ITER Instruction 1 1 1 2 2 LD MULTD SD LD MULTD F0 F4 F4 F0 F4 j k 0 F0 0 0 F0 R1 F2 R1 R1 F2 1 2 3 6 7 Vj S1 Vk Reservation Stations: Time Exec Write Issue CompResult Name Busy Op Add1 No Add2 No Add3 No Mult1 Yes Multd Mult2 Yes Multd S2 Qj RS Qk R(F2) Load1 R(F2) Load2 Busy Addr Fu Load1 Load2 Load3 Store1 Store2 Store3 Yes Yes No Yes No No 80 72 80 Mult1 Code: LD MULTD SD SUBI BNEZ F0 F4 F4 R1 R1 0 F0 0 R1 Loop R1 F2 R1 #8 ... F30 Register result status Clock 7 R1 72 F0 Fu Load2 F2 F4 F6 F8 F10 F12 Mult2 • Register file completely detached from computation • First and Second iteration completely overlapped 51 Loop Example Cycle 8 Instruction status: ITER Instruction 1 1 1 2 2 2 LD MULTD SD LD MULTD SD F0 F4 F4 F0 F4 F4 j k 0 F0 0 0 F0 0 R1 F2 R1 R1 F2 R1 1 2 3 6 7 8 Vj S1 Vk Reservation Stations: Time Exec Write Issue CompResult Name Busy Op Add1 No Add2 No Add3 No Mult1 Yes Multd Mult2 Yes Multd S2 Qj RS Qk R(F2) Load1 R(F2) Load2 Busy Addr Fu Load1 Load2 Load3 Store1 Store2 Store3 Yes Yes No Yes Yes No 80 72 80 72 Mult1 Mult2 Code: LD MULTD SD SUBI BNEZ F0 F4 F4 R1 R1 0 F0 0 R1 Loop R1 F2 R1 #8 ... F30 Register result status Clock 8 R1 72 F0 Fu Load2 F2 F4 F6 F8 F10 F12 Mult2 52 Loop Example Cycle 9 Instruction status: ITER Instruction 1 1 1 2 2 2 LD MULTD SD LD MULTD SD F0 F4 F4 F0 F4 F4 j k 0 F0 0 0 F0 0 R1 F2 R1 R1 F2 R1 1 2 3 6 7 8 9 Vj S1 Vk S2 Qj Reservation Stations: Time Exec Write Issue CompResult Name Busy Op Add1 No Add2 No Add3 No Mult1 Yes Multd Mult2 Yes Multd RS Qk R(F2) Load1 R(F2) Load2 Busy Addr Fu Load1 Load2 Load3 Store1 Store2 Store3 Yes Yes No Yes Yes No 80 72 80 72 Mult1 Mult2 Code: LD MULTD SD SUBI BNEZ F0 F4 F4 R1 R1 0 F0 0 R1 Loop R1 F2 R1 #8 ... F30 Register result status Clock 9 R1 72 F0 Fu Load2 F2 F4 F6 F8 F10 F12 Mult2 • Load1 completing: who is waiting? • Note: Dispatching SUBI 53 Loop Example Cycle 10 Instruction status: ITER Instruction 1 1 1 2 2 2 LD MULTD SD LD MULTD SD F0 F4 F4 F0 F4 F4 j k 0 F0 0 0 F0 0 R1 F2 R1 R1 F2 R1 Reservation Stations: Time 4 Exec Write Issue CompResult 1 2 3 6 7 8 S1 Vk 9 10 10 S2 Qj Name Busy Op Vj Add1 No Add2 No Add3 No Mult1 Yes Multd M[80] R(F2) Mult2 Yes Multd R(F2) Load2 RS Qk Busy Addr Load1 Load2 Load3 Store1 Store2 Store3 No Yes No Yes Yes No Code: LD MULTD SD SUBI BNEZ F0 F4 F4 R1 R1 Fu 72 80 72 Mult1 Mult2 0 F0 0 R1 Loop R1 F2 R1 #8 ... F30 Register result status Clock 10 R1 64 F0 Fu Load2 F2 F4 F6 F8 F10 F12 Mult2 • Load2 completing: who is waiting? • Note: Dispatching BNEZ 54 Loop Example Cycle 11 Instruction status: ITER Instruction 1 1 1 2 2 2 LD MULTD SD LD MULTD SD F0 F4 F4 F0 F4 F4 j k 0 F0 0 0 F0 0 R1 F2 R1 R1 F2 R1 Reservation Stations: Time 3 4 Exec Write Issue CompResult 1 2 3 6 7 8 S1 Vk Name Busy Op Vj Add1 No Add2 No Add3 No Mult1 Yes Multd M[80] R(F2) Mult2 Yes Multd M[72] R(F2) 9 10 10 11 S2 Qj RS Qk Busy Addr Load1 Load2 Load3 Store1 Store2 Store3 No No Yes Yes Yes No Code: LD MULTD SD SUBI BNEZ F0 F4 F4 R1 R1 64 80 72 Fu Mult1 Mult2 0 F0 0 R1 Loop R1 F2 R1 #8 ... F30 Register result status Clock 11 R1 64 F0 Fu Load3 F2 F4 F6 F8 F10 F12 Mult2 • Next load in sequence 55 Loop Example Cycle 12 Instruction status: ITER Instruction 1 1 1 2 2 2 LD MULTD SD LD MULTD SD F0 F4 F4 F0 F4 F4 j k 0 F0 0 0 F0 0 R1 F2 R1 R1 F2 R1 Reservation Stations: Time 2 3 Exec Write Issue CompResult 1 2 3 6 7 8 S1 Vk Name Busy Op Vj Add1 No Add2 No Add3 No Mult1 Yes Multd M[80] R(F2) Mult2 Yes Multd M[72] R(F2) 9 10 10 11 S2 Qj RS Qk Busy Addr Load1 Load2 Load3 Store1 Store2 Store3 No No Yes Yes Yes No Code: LD MULTD SD SUBI BNEZ F0 F4 F4 R1 R1 64 80 72 Fu Mult1 Mult2 0 F0 0 R1 Loop R1 F2 R1 #8 ... F30 Register result status Clock 12 R1 64 F0 Fu Load3 F2 F4 F6 F8 F10 F12 Mult2 • Why not issue third multiply? 56 Loop Example Cycle 13 Instruction status: ITER Instruction 1 1 1 2 2 2 LD MULTD SD LD MULTD SD F0 F4 F4 F0 F4 F4 j k 0 F0 0 0 F0 0 R1 F2 R1 R1 F2 R1 Reservation Stations: Time 1 2 Exec Write Issue CompResult 1 2 3 6 7 8 9 S1 Vk Name Busy Op Vj Add1 No Add2 No Add3 No Mult1 Yes Multd M[80] R(F2) Mult2 Yes Multd M[72] R(F2) 10 10 11 S2 Qj RS Qk Busy Addr Load1 Load2 Load3 Store1 Store2 Store3 No No Yes Yes Yes No Code: LD MULTD SD SUBI BNEZ F0 F4 F4 R1 R1 64 80 72 Fu Mult1 Mult2 0 F0 0 R1 Loop R1 F2 R1 #8 ... F30 Register result status Clock 13 R1 64 F0 Fu Load3 F2 F4 F6 F8 F10 F12 Mult2 • Why not issue third store? 57 Loop Example Cycle 14 Instruction status: ITER Instruction 1 1 1 2 2 2 LD MULTD SD LD MULTD SD F0 F4 F4 F0 F4 F4 j k 0 F0 0 0 F0 0 R1 F2 R1 R1 F2 R1 Reservation Stations: Time 0 1 Exec Write Issue CompResult 1 2 3 6 7 8 9 14 10 11 S1 Vk S2 Qj RS Qk Name Busy Op Vj Add1 No Add2 No Add3 No Mult1 Yes Multd M[80] R(F2) Mult2 Yes Multd M[72] R(F2) 10 Busy Addr Load1 Load2 Load3 Store1 Store2 Store3 No No Yes Yes Yes No Code: LD MULTD SD SUBI BNEZ F0 F4 F4 R1 R1 64 80 72 Fu Mult1 Mult2 0 F0 0 R1 Loop R1 F2 R1 #8 ... F30 Register result status Clock 14 R1 64 F0 Fu Load3 F2 F4 F6 F8 F10 F12 Mult2 • Mult1 completing. Who is waiting? 58 Loop Example Cycle 15 Instruction status: ITER Instruction 1 1 1 2 2 2 LD MULTD SD LD MULTD SD F0 F4 F4 F0 F4 F4 j k 0 F0 0 0 F0 0 R1 F2 R1 R1 F2 R1 Reservation Stations: Time 0 Exec Write Issue CompResult 1 2 3 6 7 8 9 14 10 15 11 S1 Vk S2 Qj RS Qk Name Busy Op Vj Add1 No Add2 No Add3 No Mult1 No Mult2 Yes Multd M[72] R(F2) 10 15 Busy Addr Load1 Load2 Load3 Store1 Store2 Store3 No No Yes Yes Yes No Code: LD MULTD SD SUBI BNEZ F0 F4 F4 R1 R1 64 80 72 Fu [80]*R2 Mult2 0 F0 0 R1 Loop R1 F2 R1 #8 ... F30 Register result status Clock 15 R1 64 F0 Fu Load3 F2 F4 F6 F8 F10 F12 Mult2 • Mult2 completing. Who is waiting? 59 Loop Example Cycle 16 Instruction status: ITER Instruction 1 1 1 2 2 2 LD MULTD SD LD MULTD SD F0 F4 F4 F0 F4 F4 j k 0 F0 0 0 F0 0 R1 F2 R1 R1 F2 R1 1 2 3 6 7 8 9 14 10 15 11 16 Vj S1 Vk S2 Qj RS Qk Reservation Stations: Time 4 Exec Write Issue CompResult Name Busy Op Add1 No Add2 No Add3 No Mult1 Yes Multd Mult2 No 10 15 R(F2) Load3 Busy Addr Load1 Load2 Load3 Store1 Store2 Store3 No No Yes Yes Yes No Code: LD MULTD SD SUBI BNEZ F0 F4 F4 R1 R1 64 80 72 Fu [80]*R2 [72]*R2 0 F0 0 R1 Loop R1 F2 R1 #8 ... F30 Register result status Clock 16 R1 64 F0 Fu Load3 F2 F4 F6 F8 F10 F12 Mult1 60 Loop Example Cycle 17 Instruction status: ITER Instruction 1 1 1 2 2 2 LD MULTD SD LD MULTD SD F0 F4 F4 F0 F4 F4 j k 0 F0 0 0 F0 0 R1 F2 R1 R1 F2 R1 1 2 3 6 7 8 9 14 10 15 11 16 Vj S1 Vk S2 Qj RS Qk Reservation Stations: Time Exec Write Issue CompResult Name Busy Op Add1 No Add2 No Add3 No Mult1 Yes Multd Mult2 No 10 15 R(F2) Load3 Busy Addr Fu Load1 Load2 Load3 Store1 Store2 Store3 No No Yes Yes Yes Yes 64 80 72 64 Code: LD MULTD SD SUBI BNEZ F0 F4 F4 R1 R1 0 F0 0 R1 Loop R1 F2 R1 #8 ... F30 [80]*R2 [72]*R2 Mult1 Register result status Clock 17 R1 64 F0 Fu Load3 F2 F4 F6 F8 F10 F12 Mult1 61 Loop Example Cycle 18 Instruction status: ITER Instruction 1 1 1 2 2 2 LD MULTD SD LD MULTD SD F0 F4 F4 F0 F4 F4 j k 0 F0 0 0 F0 0 R1 F2 R1 R1 F2 R1 1 2 3 6 7 8 9 14 18 10 15 10 15 Vj S1 Vk S2 Qj RS Qk Reservation Stations: Time Exec Write Issue CompResult Name Busy Op Add1 No Add2 No Add3 No Mult1 Yes Multd Mult2 No 11 16 R(F2) Load3 Busy Addr Fu Load1 Load2 Load3 Store1 Store2 Store3 No No Yes Yes Yes Yes 64 80 72 64 Code: LD MULTD SD SUBI BNEZ F0 F4 F4 R1 R1 0 F0 0 R1 Loop R1 F2 R1 #8 ... F30 [80]*R2 [72]*R2 Mult1 Register result status Clock 18 R1 64 F0 Fu Load3 F2 F4 F6 F8 F10 F12 Mult1 62 Loop Example Cycle 19 Instruction status: ITER Instruction 1 1 1 2 2 2 LD MULTD SD LD MULTD SD F0 F4 F4 F0 F4 F4 j k 0 F0 0 0 F0 0 R1 F2 R1 R1 F2 R1 1 2 3 6 7 8 9 14 18 10 15 19 10 15 19 11 16 Vj S1 Vk S2 Qj RS Qk Reservation Stations: Time Exec Write Issue CompResult Name Busy Op Add1 No Add2 No Add3 No Mult1 Yes Multd Mult2 No R(F2) Load3 Busy Addr Load1 Load2 Load3 Store1 Store2 Store3 No No Yes No Yes Yes Code: LD MULTD SD SUBI BNEZ F0 F4 F4 R1 R1 Fu 64 72 64 [72]*R2 Mult1 0 F0 0 R1 Loop R1 F2 R1 #8 ... F30 Register result status Clock 19 R1 56 F0 Fu Load3 F2 F4 F6 F8 F10 F12 Mult1 63 Loop Example Cycle 20 Instruction status: ITER Instruction 1 1 1 2 2 2 LD MULTD SD LD MULTD SD F0 F4 F4 F0 F4 F4 j k 0 F0 0 0 F0 0 R1 F2 R1 R1 F2 R1 1 2 3 6 7 8 9 14 18 10 15 19 10 15 19 11 16 20 Vj S1 Vk S2 Qj RS Qk Reservation Stations: Time Exec Write Issue CompResult Name Busy Op Add1 No Add2 No Add3 No Mult1 Yes Multd Mult2 No R(F2) Load3 Busy Addr Fu Load1 Load2 Load3 Store1 Store2 Store3 Yes No Yes No No Yes 56 64 Mult1 Code: LD MULTD SD SUBI BNEZ F0 F4 F4 R1 R1 0 F0 0 R1 Loop R1 F2 R1 #8 ... F30 64 Register result status Clock 20 R1 56 F0 Fu Load1 F2 F4 F6 F8 F10 F12 Mult1 • Once again: In-order issue, out-of-order execution and out-of-order completion. 64 Why can Tomasulo overlap iterations of loops? • Register renaming – Multiple iterations use different physical destinations for registers (dynamic loop unrolling). • Reservation stations – Permit instruction issue to advance past integer control flow operations – Also buffer old values of registers - totally avoiding the WAR stall that we saw in the scoreboard. • Other perspective: Tomasulo building data flow dependency graph on the fly. 65 Tomasulo’s scheme offers 2 major advantages (1) the distribution of the hazard detection logic – distributed reservation stations and the CDB – If multiple instructions waiting on single result, & each instruction has other operand, then instructions can be released simultaneously by broadcast on CDB – If a centralized register file were used, the units would have to read their results from the registers when register buses are available. (2) the elimination of stalls for WAW and WAR hazards 66 Tomasulo Summary • Reservations stations: renaming to larger set of registers + buffering source operands – Prevents registers as bottleneck – Avoids WAR, WAW hazards of Scoreboard – Allows loop unrolling in HW • Not limited to basic blocks (integer units gets ahead, beyond branches) • Helps cache misses as well • Lasting Contributions – Dynamic scheduling – Register renaming – Load/store disambiguation • 360/91 descendants are Pentium II; PowerPC 604; MIPS R10000; HP-PA 8000; Alpha 21264 67
© Copyright 2026 Paperzz