Mechanics Chapter 5 Angular momentum 5.3 Angular momentum theorem of a particle 质点的角动量定理 Section 14.7 2005年11月21日 8:00-9:50 Chapter 5. Angular momentum 1 5.3 Angular momentum theorem of a particle • Angular momentum theorem: the torque-angular momentum relationship • Angular impulse-momentum principle • Conservation of angular momentum 2005年11月21日 8:00-9:50 Chapter 5. Angular momentum 2 Mechanics Chapter 5 Angular momentum 5.3 Angular momentum theorem of a particle 5.3.1 Angular momentum theorem 5.3.2 Angular impulse-momentum principle 5.3.3 Conservation of angular momentum 2005年11月21日 8:00-9:50 Chapter 5. Angular momentum 3 5.3.1 Angular momentum theorem Derive the relationship between torque and angular momentum using Newton’s second law Consider the motion of a particle of mass m in an inertial frame F: resultant force acting on the particle; v: velocity of the particle a: acceleration of the particle dv d mv F ma m dt dt Newton’s second law O: a fixed point with respect to an inertial frame r : the position vector of the particle measured from O 2005年11月21日 8:00-9:50 Chapter 5. Angular momentum 4 5.3.1 Angular momentum theorem L = r mv = r p Differentiating this equation with respect to time dL d dr d mv r mv mv r dt dt dt dt = v mv = 0 The angular dL momentum τ dt theorem about a fixed point O 2005年11月21日 8:00-9:50 F The torque of the resultant force acting on a particle about a fixed point O in an inertial frame equals to the time derivative of the particle’s angular momentum about O Chapter 5. Angular momentum 5 5.3.1 Angular momentum theorem Rectangular components: dLx x dt y dLy dt dLz z dt Angular momentum theorem about z-axis Note: • The angular momentum theorem is valid only in inertial reference frame. When applied in a non-inertial frame, torque of inertial force must be added. • The torque and angular momentum must be calculated about the same reference point • The reference point O is assumed to be fixed with respect to the inertial frame. If O is moving, then dr/dt v dL dL dr τ mv dt dt dt 2005年11月21日 8:00-9:50 Chapter 5. Angular momentum 6 5.3.1 Angular momentum theorem The angular momentum theorem shows that the is related to the time derivative of L, but no to L. so that the direction of is generally not the same as L For example: conical pendulum(圆锥摆) • The forces acting on the bob are the weight and the tension of the string. The torque of the resultant force about O: τ r T W r T r W r W is parallel to v • Angular momentum: L r mv L is perpendicular to v and 2005年11月21日 8:00-9:50 Chapter 5. Angular momentum L o T A W v, 7 5.3.1 Angular momentum theorem • As the bob rotates, the angular momentum vector L sweeps out a cone. dL L L´ lim L dt t 0 t Same direction as 2005年11月21日 8:00-9:50 Chapter 5. Angular momentum L 8 Mechanics Chapter 5 Angular momentum 5.3 Angular momentum theorem of a particle 5.3.1 Angular momentum theorem 5.3.2 Angular impulse-momentum principle 5.3.3 Conservation of angular momentum 2005年11月21日 8:00-9:50 Chapter 5. Angular momentum 9 5.3.2 Angular impulse-momentum principle Angular impulse (moment of impulse): The angular impulse of the resultant force F acting on a particle about point O during the time interval t1 and t2 is defined as t2 t2 t1 t1 ( AO )12 r Fdt τdt Let O be the origin of a rectangular coordinate system, then the rectangular components of (AO)1-2 are ( Ax )1 2 ( Ay )1 2 ( Az )1 2 2005年11月21日 8:00-9:50 t2 t1 t2 t1 t2 t1 x dt y dt z dt Angular impulse of F about the z-axis Chapter 5. Angular momentum 10 5.3.2 Angular impulse-momentum principle From the angular momentum theorem dL τ τdt dL dt Integrating over the time interval t1 to t2 t2 t1 t2 τdt dL L2 L1 L t1 ( Ao )12 L2 L1 L The principle of angular impulse and angular momentum: The change in angular momentum is equal to the angular impulse of the resultant force 2005年11月21日 8:00-9:50 Chapter 5. Angular momentum 11 5.3.2 Angular impulse-momentum principle Rectangular components: ( Ax )1 2 Lx 2 Lx1 Lx ( Ay )1 2 Ly 2 Ly1 Ly ( Az )1 2 Lz 2 Lz1 Lz 2005年11月21日 8:00-9:50 Chapter 5. Angular momentum 12 Mechanics Chapter 5 Angular momentum 5.3 Angular momentum theorem of a particle 5.3.1 Angular momentum theorem 5.3.2 Angular impulse-momentum principle 5.3.3 Conservation of angular momentum 2005年11月21日 8:00-9:50 Chapter 5. Angular momentum 13 5.3.3 Conservation of angular momentum From the angular impulse-momentum principle: t2 AO τdt L2 L1 L t1 If AO = 0, then L1 = L2 or L = 0 The principle of conservation of angular momentum: If the angular impulse about O is zero during a given time interval, the angular momentum of the particle about O will be conserved during that interval 2005年11月21日 8:00-9:50 Chapter 5. Angular momentum 14 5.3.3 Conservation of angular momentum Note: This principle is valid only if the angular impulse of the resultant force acting on the particle is zero: • The toque of the resultant force acting on the particle is zero; • The toque of the resultant force is not zero, but the angular impulse of the force is zero. This is a vector equation. We can apply it to any direction in which there is no angular impulse applied. e.g. if Ax = 0, then the angular momentum in xdirection is conserved 2005年11月21日 8:00-9:50 Chapter 5. Angular momentum 15 5.3.3 Conservation of angular momentum Because the angular momentum and torque are both dependent of the reference point O, the angular momentum conservation is also dependent on the choice of O For example: the motion of a planet around the sun O: the center of the sun = r F = 0 L conserved O´: the center of the ellipse path F r r´ O´ O F ´= r´ F 0 L not conserved 2005年11月21日 8:00-9:50 Chapter 5. Angular momentum 16 5.3.3 Conservation of angular momentum 补充例题:计算行星的俘获截面,如果有一航天器在远方以初速度v0射向某一行 星(设航天器不带动力)。航天器计划在行星上登陆。以b 表示v0与行星的垂直 距离,b称为瞄准距离,求b最大值为多少时,航天器可以在行星上着陆,行星质 量为M,半径为R。 v0 解:无引力: b R, s R 2 A m 有引力:航天器在行星处轨道向行星弯曲。 故b可以大于R,可选择b的大小, 使航天器轨道正好与行星表面相切。 b r0 R B v O 取O点为参考点,航天器在行星表面处的速度为v ,取z轴通过O点垂直纸面, 由于航天器所受的引力总是指向O点,故力矩为0, Lz守恒。 在A点:Lz r0v0 sin bv0 在B点: v R Lz Rv bv0 Rv (1) 2005年11月21日 8:00-9:50 Chapter 5. Angular momentum 17 5.3.3 Conservation of angular momentum 作用在航天器上的力为保守力(万有引力),机械能守恒。 1 2 mv02 12 mv 2 G Mm R (2) 由(1)和(2)式得 GMm Ep R b R 1 R 1 1 2 E mv0 2 GMm 1 2 Ep Ep E mv0 0 R 2 E 俘获截面为: Ep R 2 s b R 1 E 2 2005年11月21日 8:00-9:50 2 Chapter 5. Angular momentum 18 5.3.3 Conservation of angular momentum 2005年11月21日 8:00-9:50 Chapter 5. Angular momentum 19
© Copyright 2026 Paperzz