LectureJan.16 Boundaryconditionswithanon-zeroperiodicpotential,U -Duetothecrystalstructure,itisgenerallynotconvenienttoconsideracubewith periodicboundaryconditions,aswedidforthefreeelectroncase–aninteger numberofprimitivecellsofthedirectlatticewouldnotgenerallyfitintothecube. Instead,itismathematicallyconvenienttoimposethegeneralizedperiodic ! ! ! ! boundaryconditions: ψ ( r + N i ai ) = ψ ( r ), i = 1,2,3wherethe ai areprimitivevectors oftheBravaislatticeandtheNiare3largenumbers(aroundthecuberootof Avagadro’snumber). ! -WritingtheeigenfunctionsasinEq.(1),whataretheallowedvaluesof k ?Since ! € € unk! ( r ) isperiodictheboundaryconditionsreduceto ! ! € € € € e ik ⋅a i N i = 1. ! ! Expanding k inprimitivevectorsofthereciprocallattice, bi , € ! ! ! ! (6) k = f1b1 + f 2b2 + f 3b3 , i2πf i N i = 1.Thusfi=mi/Niwithmiintegers,so theseconditionsbecome e ! € 3 mi ! € k = ∑ bi .Thisisasimplegeneralizationofthefreeelectroncase.Recallthatwe N i=1 !i € restrict k toaprimitivecellofthereciprocallattice(generallythefirstBrillouin ! zone).Thiscanbechosentobetheparallelepipedwithsides bi soweseethatthe ! allowedwave-vectors k aredenseintheRLunitcell.Thenumberofwave-vectors €intheunitcellisN1N2N3whichwecallN.Nisthenumberofprimitivecellsinthe directlattice.WecanchooseaprimitivecelllabeledasinEq.(6)with0<fi<1. € Alternatively,wecancalculatethevolumeofthetinyparallelepipedwithsides ! € bi /N i .Thisis ! ! ! ! ! b1 ⎛ b2 b3 ⎞ 1 ! ⋅⎜ × ⎟ = b1 × b2 × b3 ,(1/N)timesthevolumeoftheprimitivecellofthe N1 ⎝ N 2 N 3 ⎠ N RL.Therefore,thenumberofallowedwave-vectorsinaRLprimitivecellisN,the numberofBravaislatticepointsinthecrystalwiththeseboundaryconditions.The volumeofareciprocallatticeunitcellcanbeproventobe(2π)3/vwherevisthe ! ! ! volumeofadirectlatticeunitcell: v = a1 × ( a2 × a3 ) .SeeHomework2.Withthese boundaryconditions,thenumberofprimitiveunitcellsinthecrystalisN,sothe totalvolumeofthecrystalisV=vN.Thusthevolumeink-spaceofthetiny parallelepipedaroundeachallowedk-pointcanbewritten(2π)3/V,thesameresult € weobtainedforfreeelectrons. FouriertransformedSchroedingerequation ItwillbeconvenienttowritetheSchroedinger-likeEq.(5)obeyedbytheperiodic ! function unk! ( r ) inFouriertransformedform–thatisink-space.Wewillusethisfor ( € € ) studyingthelimitofsmallbutnon-zeroU.Thatis,doingperturbationtheoryinU. € 1 ! r Todothis,westartbyobservingthatsinceU( )isperiodic,itcanbewritten ! ! ! iK ⋅ r U( r ) = ∑U K! e wherethesumisoverRLvectors.TheFouriertransformofa ! K generalfunctionwouldinvolveasum(orintegral)overallwave-vectors,but € periodicityrestrictsthewave-vectorstoRLpoints.Inverting 1 ! !! ! U K! = ∫ d re −iK ⋅r U( r ) v cell Thisfollowssince ! ! ! 1 (7) d 3 r e i( K − K ' )⋅r = δ K! ,K! ' . ∫ v cell € € ! ! Thisfollowsfromthefactthat e iK ⋅r areorthogonalfunctions.Inthecaseofasimple cubiclattice,writing ! ! 2π K − K' = n ,n ,n a x y z € TheintegralinEq.(7)factorizesinto3integralsoftheform: 1 a 1 i(2π / a )n x x x =a dx e i(2π / a )n x x = e ∫ x =0 . a 0 2πi Thisintegralgiveszerofor n x ≠ 0 and1fornx=0.Thisargumentcanbegeneralized toanyBravaislattice.TogeneralizethistoanarbitraryBLnotethat,writing ! ! ! ! r = f1a1 + f 2 a2 + f 3 a3 ,wemaywrite 1 1 1 1 3 € ∫ d r = ∫ df1 ∫ df 2 ∫ df 3 v cell 0 0 0 ! ! ! ! and,writingtheRLvectorsas K = n1b1 + n 2b2 + n 3b3 ,theintegralofEq.(7)becomes: ( € € € € 1 € ) 1 ∫ df e 2πin x f1 1 1 ∫ df e 2 2πin y f 2 ∫ df e 3 2πin z f 3 = δ n x ,0δ n y ,0δ n z ,0 . € ! SinceU( r )isreal, U − K! = U K! * .Ifthecrystalhasinversionsymmetry,sothat,fora ! ! suitablechoiceoforigin, U(−r ) = U( r ) ,then U K! = U − K! = U K! * . ! €ItwillbeconvenienttoshiftU( r )byaconstant,wecanmakeitsaverageoveraunit € ! r )justshiftsallenergybandsbyaconstantand cell, U !0 = 0 .(ThisredefinitionofU( € 0 € € € 0 0 isofnoimportance.) Theperiodicfactorsintheeigenfunctionshaveasimilarexpansion,whichwewrite: € ! ! ! ! −iK ⋅ r ! ! ! k liesinthefirstBrillouinzone.Thislabelingofthe uk ( r ) = ∑ c k − K e .Here € ! K Fouriercoefficient,c,isconvenientbecausethenthefullwave-functioniswritten: ! ! ! ! ψ k! ( r ) = ∑ c k! − K! e i( k − K )⋅r .Weseethatthereisacoefficientcforeachpointinallofk€ ! € K space(subjecttotheperiodicboundaryconditions).Eq.(5)becomes: € 2 ⎡ !2 " ⎤ ⎡ !2 " " 2 ⎤ " " " " " " " " 2 0 = ⎢− ik + ∇ + ∑U K" 'e iK '⋅r − ε k" ⎥∑ c k" − K" e −iK ⋅r = ⎢ k − K + ∑U K" 'e iK '⋅r − ε k" ⎥∑ c k" − K" e −iK ⋅r " " ⎢⎣ 2m ⎥⎦ K" ⎥⎦ K" ⎣⎢ 2m K K Thenwerewrite: ! ! ! ! ! ! ! ! U K! 'c k! − K! − K! 'e −iK ⋅r = ∑U K! ' − K! c k! − K! 'e −iK ⋅r ∑! U K! 'e iK '⋅r ∑! c k! − K! e −iK ⋅r = ∑ ! ! ! ! K' K K'K K'K ! ! ! K by K + K ' ,thenreplacingthe byfirstreplacingthedummysummationvariable ! ! ! ! K K ' − K K otherdummysummationvariable ’by .Thisgivesasumover ofterms ! ! −iK ⋅ r withr-dependence e .Eachofthesetermsmustseparatelyvanishsincethe ! equationistrueforall r andtheseareorthogonalfunctions,asimpliedbyEq.(7). € € Thuswegetak-spaceSchroedinger-likeequationforthediscreteFouriermodesof € € € theperiodicfunctionu: ⎡ ! 2 " "€2 ⎤ (7) ( k − K ) −€ε k" ⎥c k" − K" + ∑U K" ' − K" c k" − K" ' = 0 ⎢ " ⎣ 2m ⎦ K' ! K WemustsolvethisequationforeachRLvector togetthesetofeigenfunctions ! andeigenvaluesforaspecifiedvalueof k inthefirstBrillouinzone.The! eigenfunctionsarenowlabeledby c k! − K! .Eacheigenfunctionhasafixed k .There ! € k ,correspondingtothe unk! with willbeaninfinitenumberofsolutionsforeach ! € c k! − K! non-zeroforevery K in n=0,1,2,3,…Eachsolutionwillgenerallyhaveallofthe € € theBZ. € € € € ( € € € ) ( ) 3
© Copyright 2026 Paperzz