Blue Carbon stored in the seagrass beds of the world James W. Fourqurean, Hilary A. Kennedy, Nuria Marbà, Miguel A. Mateo, Gary A. Kendrick and Carlos M. Duarte 9th INTECOL International Wetlands Conference Orlando, Florida , 3-8 June 2012 • Tropical seagrass beds are among the most productive ecosystems, rivaling agricultural crops like corn and soybeans and coastal wetlands • Valuable providers of ecological goods and services (most valuable ecosystem according to Constanza et al 1997) 2 Estimates of global CO2 flux in seagrass beds low high estimate of estimate of global Integrated global NCP extent NCP extent Integrated NCP tons CO2e ha-1y-1 km2 Tg CO2e y-1 km2 Tg CO2e y-1 Mean 4.4 300000 130.7 600000 261.4 Upper 95th cl of mean 6.2 300000 185.5 600000 371.1 Lower 95th cl of mean 2.5 300000 75.9 600000 151.8 maximum 85.4 300000 739.2 600000 1478.3 For comparison, mean NCP for: wetlands = 0.6 tons CO2e ha-1y-1 Amazon rainforest: 3.7 tons CO2e ha-1y-1 3 Duarte et al 2010 Global Biogeochem. Cycles But what about the value of the Blue Carbon stored in the system? 4 Carbon fixed in seagrass beds does not all stay in the seagrass beds 5 Only about half of the C buried in seagrass beds is derived from seagrass -5 -15 1:1 -20 13 Csediment (‰) -10 Y = -2.31 + 1.39x SE of slope = 0.08 r2 = 0.22, p<0.001 -25 -30 -22 -20 -18 -16 -14 -12 -10 -8 -6 -4 13 Cseagrass (‰) 6 Kennedy et al 2010 Global Biogeochem. Cycles So, how much C is stored in seagrass ecosystems? • Measuring C storage in some seagrass ecosystems: • Florida Bay • Shark Bay • Western Mediterranean • Literature review of C stores in seagrasses • Estimates of the sizes of stocks and potential fluxes of CO2 following habitat loss 7 Measuring C stored in living biomass 8 Measuring C stored in seagrass soils: Piston corer to collect uncompressed cores 9 Need: • volumetric measures of Dry Bulk Density (mass of soil per volume) • Carbon content of soil (as a fraction of mass) – Organic matter, or Loss on Ignition (LOI) – Corg 10 Trout Creek Russell Bank Bob Allen Keys Nine Mile Bank 11 0 50 50 Depth (cm) Depth (cm) Corg generally decreases downcore in Florida Bay seagrass soils. 0 100 150 100 150 200 200 Bob Allen Keys 250 0 0 250 0 Buried peats have high Corg 1 2 3 4 0 6 5 Depth (cm) 100 150 1 2 3 4 5 6 Organic C content (% of dry wt) Organic C content (% of dry wt) 50 50 Depth (cm) Russel Bank 100 150 200 200 Nine Mile Bank Trout Cove 250 250 0 1 2 3 4 5 Organic C content (% of dry wt) 0 6 1 2 3 4 5 6 Organic C content (% of dry wt) Fourqurean et al. In Press MFR 12 0 50 50 Depth (cm) Depth (cm) DBD generally increases downcore in Florida Bay seagrass soils. 0 100 150 200 100 150 200 Bob Allen Keys Russel Bank 250 0 250 0 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 Buried peats have low DBD -1 -1 Dry Bulk Density (g mL ) 50 Depth (cm) Depth (cm) 50 100 150 200 Dry Bulk Density (g mL ) 100 150 200 Nine Mile Bank Trout Cove 250 250 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 -1 Dry Bulk Density (g mL ) Fourqurean et al. In Press MFR -1 Dry Bulk Density (g mL ) 13 14 Corg is constant or increases down-core in Shark Bay 0 0 20 20 20 40 40 40 60 80 Depth (cm) 0 Depth (cm) Depth (cm) Southeastern sites Southwestern sites Northwestern sites 60 80 60 80 100 100 100 120 120 120 140 140 140 0 2 4 6 Organic C content (% of dry wt) 80 2 4 6 8 0 Organic C content (% of dry wt) 2 4 6 8 Organic C content (% of dry wt) Fourqurean et al. In Press MFR 15 Florida Bay n= 695 mean = 0.84 ± 0.02 median = 0.83 minimum = 0.24 maximum = 1.63 0.3 Frequency Shark Bay 0.2 0.1 n= 247 mean = 0.75 ± 0.01 median = 0.72 minimum = 0.35 maximum = 1.18 0.3 0.2 0.1 0.0 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 0.0 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 Dry Bulk Density (mg mL-1) n= 695 mean = 6.28 ± 0.28 median = 5.60 minimum = 2.63 maximum = 43.78 0.3 Frequency Dry Bulk Density (mg mL-1) 0.2 0.1 n= 247 mean = 9.11 ± 0.20 median = 8.92 minimum = 2.77 maximum = 19.09 0.3 0.2 0.1 0.0 0.0 0 2 4 6 8 10 12 14 16 18 20 + 0 2 4 6 8 LOI (%) n= 697 mean = 2.39 ± 0.15 median = 2.05 minimum = 0.64 maximum = 22.73 Frequency 0.3 0.2 10 12 14 16 18 20 + LOI (%) 0.1 n= 222 mean = 3.31 ± 0.10 median = 3.33 minimum = 0.21 maximum = 8.87 0.3 0.2 0.1 0.0 0.0 0 1 2 3 4 5 6 7 8 9 Corg (% of dry weight) 10 + 0 1 2 3 4 5 6 7 8 9 Corg (% of dry weight) 10 + 16 Fourqurean et al. In Press MFR Organic C storage in soil -1 Mg C ha Corg stocks in top m of seagrass beds 350 F10b 300 W4b 12-2 250 11-2 431 Ninemile 2 128 200 150 116 Ninemile 1 Russell 1 Russell 2 Trout 2 Bob Allen 1 Bob Allen 2 Trout 1 F17b 100 Florida Bay Seagrass biomass: Florida Bay 1.14 MgC ha-1 Shark Bay 4.75 MgC ha-1 Shark Bay Fourqurean et al. In Press MFR 17 There are about 18,000 km2 of seagrass beds in south Florida A very rough estimate of carbon stored in the top meter of seagrass soils in south Florida: 18,000 km2 of seagrasses 594 tons CO2e ha-1 1 x 109 tons CO2e stored in the soils! 18 0 Depth (cm) 100 200 300 400 500 0 5 10 15 20 25 30 Organic C content (% of dry wt) Mateo et al 1997 ECSS 19 Distribution of seagrass C stock data We compiled 3640 observations from 946 distinct locations Fourqurean et al. 2012 Nature Geoscience 20 Global distribution of seagrass soil DBD Number of Observations 600 n=2484 mean = 1.03 ± 0.02 median = 0.92 range: 0.06 - 2.35 500 400 300 200 100 0 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 Soil Dry Bulk Density (g mL-1) Fourqurean et al. 2012 Nature Geoscience 21 LOI can be used to predict Corg 50 12 y = -0.21 + 0.40x r2 = 0.87 p<0.001 Soil Corg (% of dry weight) 10 8 40 6 4 2 30 0 0 5 10 15 20 y = -0.33 + 0.43x r2 = 0.96 p<0.001 20 10 0 0 20 40 60 80 100 LOI (% of dry weight) Fourqurean et al. 2012 Nature Geoscience 22 Global distribution of soil Corg in seagrass meadows Number of Observations 1600 Reported as Corg Estimated from LOI 1400 1200 1000 n=3561 mean = 2.0 ± 0.1 median = 1.4 range: 0 - 48.2 800 600 400 200 0 0 2 4 6 Fourqurean et al. 2012 Nature Geoscience 8 10 12 14 16 18 20 22 24 Soil Corg (% of dry wt) 23 Number of Observations Global estimates of seagrass soil Corg stocks 30 Whole core inventory Estimated from short cores 25 20 15 10 5 0 0 100 200 300 400 500 600 700 800 900 Soil Corg Storage in top meter Fourqurean et al. 2012 Nature Geoscience (Mg ha-1) 24 Regional estimates of Seagrass Corg stocks Region Northeast Pacific Southeast Pacific North Atlantic Tropical Western Atlantic Mediterranean South Atlantic Indopacific Western Pacific South Australia Global Average Living Seagrass Biomass MgC ha-1 n Mean ± 95%CI n Soil Corg MgC ha-1 Mean ± 95%CI 5 0 50 0.97 ± 1.02 ND 0.85 ± 0.19 1 0 24 64.4 ND 48.7 ± 14.5 44 57 5 47 0 40 0.84 ±0.17 7.29 ± 1.52 1.06 ± 0.51 0.61 ± 0.26 ND 2.32 ± 0.63 13 29 5 8 0 9 150.9 ± 26.3 372.4 ± 74.5 137.0 ± 56.8 23.6 ± 8.3 ND 268.3 ± 101.7 251 2.51 ± 0.49 89 194.2 ± 20.2 Fourqurean et al. 2012 Nature Geoscience 25 Some seagrass beds rival C-rich terrestrial forests and mangroves Ecosystem C storage -1 (Mg Corg ha ) 1200 Living Biomass 1000 Soil Corg 800 * * ** * ** * ** * ** ** ** *** ** ** ** ** ** ** * 600 400 200 0 l a re Bo p m Te Fourqurean et al. 2012 Nature Geoscience l ic e a n ss c v i a a op nd Oce gro agr r n e T la a S p M U e at r e 26 How big are Global Seagrass Blue Carbon stores? • 300,000-600,000 km2 of seagrasses • Median estimate of seagrass biomass: 2.5 Mg Corg ha-1 • Median estimate of seagrass soil Corg (top meter) 139.7 Mg Corg ha-1 • Global seagrass biomass: 75.5 and 151.0 Tg C • Global seagrass Soil Corg: 4.2 - 8.4 Pg C (earlier estimate of salt marshes and mangrove combined is 10 Pg C (Chmura et al 2003) 27 Reports of seagrass losses and the rates of decline are increasing dramatically 28 Waycott et al. 2009 PNAS What are the consequences of seagrass loss to global C budget?? • Seagrass loss has averaged 1.5% y-1 since the beginning of the 20th century • Resulting loss of seagrass biomass: 11.3 – 22.7 Tg C y-1 • Resulting loss of seagrass soil Corg (top meter) 63 – 297 Tg C y-1 • These rates are roughly 10% of total CO2 fluxes attributable to land use change 29 Acknowledgements: Funding for this work: • NSF – FCE LTER • NSF – Earth Systems History • Australian Government Caring for our Country grant A product of the International Blue Carbon Science Working Group, spearheaded by Conservation International 30
© Copyright 2026 Paperzz