Computational models with electrophysiological input predict behavior on a numerical cognition task
{ Draft Version 11.4.2016 }
RichardWPrather&SaraHeverly-Fitt
Abstract
Thedesignofcognitiveinterventionsislimitedbytheabilitytopredictparticipants’behaviorand
howitmaychangewithexperience.Wepresentanovelcomputationalmodeldesignthatusesbehavioral
andelectrophysiologicalinputtopredictparticipants’behavioronindividualtrialsofanumerical
comparisontask.Wemodelparticipants’behaviorusingindependentmodelinstantiationsthatare
optimizedforeachparticipantusinganevolutionaryalgorithm.Themodelisalsothenabletogeneralize
tonovelparticipantdatawithoutasignificantreductioninpredictionaccuracy.Wediscussboththe
potentialandlimitationsofthecurrentparadigmindevelopingtrainingregimensforchildrenwithearly
mathdifficulty.
Introduction
Thecurrentinterestininterventionsandtrainingparadigmsincludesareasofcognitionsuchas
languagelearning,memory,numericalcognition.Thegoalofsuchinterventionstypicallyistoimprove
learners’performanceonatargettask(Park,Bermudez,Roberts,&Brannon,2016;Park&Brannon,
2014;Prather&Alibali,2011),orinthecaseofolderadultspreventdecline(e.g.,Angueraetal.,2013).
Therehasbeenanincreaseintheautomaticization(e.g.,Iuculanoetal.,2015)andindividualizationof
interventions(e.g.,CohenKadosh,Dowker,Heine,Kaufmann,&Kucian,2013;Vanlehn,2011).Thedesign
ofeffectiveinterventionsrequiresbothaccurateassessmentofthelearner’sbehaviorandpredictionof
howthatbehaviormaychangewithexperience.
Thecurrentstudyisanevaluationofpredictivecomputationalmodeloflearners’behaviorona
numericaltask.Thelong-termgoalistocreateindividualizedtrainingproceduresthataredesignedby
thecomputationalmodel.Asignificantlimitationininterventiondesignisthatthereislargeindividual
variationinparticipantbehavior.Aparticulartrainingsequenceortaskthatiseffectiveforparticipants
ofaverageskillmaynotbeforparticipantswithlow-numeracy.Asaninitialstepwedevelopeda
computationalmethodforsingle-trialpredictionsofparticipants’behavior.Wefocusonevaluatingthe
canonicalnon-symbolicnumericalcomparisontask(Figure1).Participant’sskillinthistaskisusedto
indextheirnumeracy;aconstructthathasbeenshowntocorrelatewithimportantoutcomesrelatedto
mathperformance(e.g.,Libertus,Feigenson,&Halberda,2013;Libertus,Odic,&Halberda,2012;
Mazzocco,Feigenson,&Halberda,2011).Participants’skillinnon-symbolicnumericalcomparisonis
correlatedwiththeirskillonsymbolicarithmetic(e.g.,Chen&Li,2014;Fazio,Bailey,Thompson,&
Siegler,2014).Theuseofnon-symbolicnumericalcomparisonasatrainingtaskthatmaytransferto
symbolicarithmetichasmixedresults(Parketal.,2016;Park&Brannon,2013,2014).
Thecurrentstudycombinesthebehavioralandelectrophysiologicaldataasinputforapredictive
computationalmodel.Wefocusonthenon-symbolicnumericalcomparisontask,whichhaswell
cataloguedbehavioralandneuralcorrelates.Comparisonsinwhichthetwonumbersarerelativelycloser
invaluetendtohavemoreerrorsandlongerreactiontimes.Forexample,acomparisonbetween20and
22objectsproducesmoreerrorsthanacomparisonbetween20and50(foralternateseeRatcliff,
Thompson,&Mckoon,2015).Thisphenomenonistermedthedistanceeffectanddependsontheratio
differencebetweenthetwovaluesbeingcompared.Theneuralcorrelatesofthecomparisontask,asseen
withelectroencephalography,includeaneuraldistanceeffectwheretheamplitudeofeventrelated
potentialsvarybasedonthedistanceofthecomparison(e.g.,Ben-Shalom,Berger,&Henik,2013;Heine,
Tamm,Wissmann,&Jacobs,2011;Jiangetal.,2010).Ourapproachforthemodelpredictsthespecific
responsesforeachindividualparticipantoneachindividualtrial.Thisallowsthemodeltoaccountfor
individualdifferencesinperformance.
Experiment1
FirstweattemptedtoreplicatetheERPneuraldistanceeffectusinganon-symbolicnumerical
comparisontask.
Method
Participants.Participants(n=26)wereadultsrecruitedthroughauniversityparticipantpool.Protocols
wereapprovedbytheUniversityofMarylandInternalReviewBoard.
Procedure.Weevaluatedparticipants’performanceonthenon-symbolicnumericalcomparisontask
whilemeasuringneuralcorrelatesviaEEG.Participantswereinstructedthattheywouldcompletea
seriesofcomputer-basedtaskswhilesimultaneousEEGrecordingsweretaken.Afterabriefsetupto
initializetheEEGparticipantsbeganthebehavioraltasks.Instructionsfortaskweregivenorallyand
againwrittenonscreen.Participants’responseswereviakeypress.Theexperimentalsessionwas
approximately45minutes.
TaskandStimuli.Stimuliwere90visuallypresentedpairsofshapearrayswithamidlineseparator.
Shapearraysrangedinnumberfrom23to111(seeAppendixB)withamaximumratiodifferenceof2.6.
Participantswereinstructedtoindicatewhichsidecontainedmoreshapesviabuttonpress.Stimuliwere
displayedfor2secondsafterwhichthescreenwasblank.Therewasnoresponsetimelimit;participants
wereinstructedtorespondasquicklyaspossible.
ElectrophysiologicalRecordingsSpecifications.Recordingwasimplementedusinga32-channelEEGcap.
Twentyninetinelectrodeswereheldinplaceonthescalpbyanelasticcap1(Electro-Cap
International,Inc.,Eaton,OH)ina10-20configuration(O1,FP2,O2,P7,2P3,Pz,P4,P8,TP7,Cp3,CPz,
CP4,TP8,T7,C3,Cz,C4,T8,FT7,FC3,FCz,FC4,FT8,3F7,F3,Fz,F4,F8,FP1).Basedonpriorresearchwe
limitedanalysistochannelsintheleftparietalarea(P3,P7,CP3,TP7).Bipolarelectrodeswereplaced
aboveandbelowthelefteyeand4attheoutercanthusoftherightandlefteyestomonitorverticaland
horizontaleye5movements.Additionalelectrodeswereplacedovertheleftandrightmastoids.Scalp6
electrodeswerereferencedonlinetotheleftmastoidandre-referencedofflinetothe7averageofleft
andrightmastoids.Impedancesweremaintainedatlessthan5kΩforall8scalpelectrodesites,less
than2kΩformastoidsites,andlessthan10kΩforocular9electrodes.TheEEGsignalwasamplified
byaNeuroScanSynAmps®Model508310(NeuroScan,Inc.,Charlotte,NC)withabandpassof0.05-100
Hzandwascontinuously11sampledat500Hzbyananalog-to-digitalconverter.
Results
Behavioralresults.Participantperformanceonthenumericalcomparisontaskrangedfrom83%to97%
correct(Figure2).Medianreactiontimesrangedfrom352msto1604ms.Correlationbetweentrialratio
differenceandpercentcorrectwasnon-significant,r=0.30,t=1.54,likelyduetoaceilingeffect(Figure
2).Correlationbetweenreactiontimeandtrialratiodifferencewasr=-0.13,p<0.01
Electrophysiologicalresults.WeevaluatediftherewasanERPdistanceeffectinparietalareas.MeanERP
amplitudewithinthetimewindowof280-380mswasextracted.Trialswerebinnedintoequalsized
groupsoflarge,mediumorsmallcomparisondistances.WecomparedthemeanERPamplitudeforlarge
andsmallcomparisondistances.DatawereanalyzedusingrepeatedmeasuresANOVA,withtrial
comparisondistancebeingthewithin-subjectsvariable.Ouranalysisshowsthatwhenevaluatingdata
fromtwoparietalchannelsthereisasignificantdifferenceinERPamplitudebetweenlargeandsmall
comparisondifferences.WefoundasignificanteffectofratiodifferenceonmeanERPamplitudeforthe
P3andCP3,F(1,25)=6.33,p=.018andF(1,25)=4.58,p=.042respectively.Thisanalysisoftheneural
distanceeffectisconsistentwithpriorresultsintermsofEEGchannellocation,ERPtimewindow,and
trialcomparison.
Theexperiment1resultsdemonstrateareplicationoftheneuraldistanceeffect(e.g.,Ben-Shalom,
Berger,&Henik,2013;Heine,Tamm,Wissmann,&Jacobs,2011;Jiangetal.,2010).Wefindthatevent
relatedpotentialsfortwoparietalchannels(P3andCP3)significantlyvariedforclosenumerical
comparisonsversusfarcomparisons.
Experiment2
Forexperiment2weusedthebehavioralandneuraldatafromexperiment1asinputfora
computationalmodelofparticipantsbehavior.Weusedthefirsttwo-thirdsoftrials(60)astrainingdata
forthemodelandthelastthirdoftrials(30)asapredictiontest.Thekeycomparisonisifmodel
predictionsduringthetestphaseareasaccurateasmodelfitduringthetrainingphase.Thecomputational
modelisamultilayereddynamicfieldtheorymodel(e.g.,Erlhagen&Schöner,2002;Sandamirskaya,
2014)thatemploysneuraltuningcurvesrelatedtonumericalcognition(e.g.,Prather&Heverly-Fitt,
2016;Prather,2012,2014)alongwithanevolutionaryoptimizationalgorithm.Theevolutionary
algorithmadjustsspecificationsofthemodeldynamicstofiteachparticipant’strainingdata.Thus,each
participant’sdatawasmodeledbyaseparateandindependentinstantiationofthecomputationalmodel.
Theresultingmodelspecificationswerethenusedtopredicttheremainderofeachparticipant’sdata
withoutfurtheruseoftheevolutionaryalgorithm.Weevaluatethemodelfirstbyhowwellthemodelfits
participant’sdatainthetrainingphase,thenbyifthatmodelinstantiationcanextrapolatetothetest
phasedatawithoutfurtheradjustment.
Method
ModelSpecificationsandProcedure.ThemodelwasimplementedusingMATLAB(Mathworks).
Thearchitectureisthatofamultilayereddynamicsystemsmodel(e.g.,Simmering&Perone,2013;
Spencer,Smith,&Thelen,2001).Layersincludedtwoperceptualneuraltuningcurvesandadecision
layer.Layersmodeledneuraltuningcurvesassociatedwithneuralcodingofstimuli(e.g.,Prather,2012,
2014;Tudusciuc&Nieder,2007).Oneachtrialtheexternalinputsforthemodelwerethetwonumerical
valuestobecompared,takenfromthebehavioraltaskinexperiment1.Thetwovalueswererepresented
byproportionallyscaledGaussiancurvesthatreproducetheratiodependentdistanceeffect.Perceptual
layersofthemodelreproducedthestimuliwhileactivitywasforwardedtothedecisionlayer.The
internaldecisionlayerconnectionswerespecifiedtoproducecompetitionwithinthelayerthrough
lateralinhibitionandself-excitation.Thusthetwoperceptuallayersoutputcreatedacompetitionwithin
thedecisionlayer.Thisdynamiccorrespondedtothe“decision”whichwastheindexofthefirststable
activationpeakinthedecisionlayer.Eachtrialwascomprisedof500timesteps.Thedecisionlayer
producedareliabledecisionthroughasteadypeak(activitywithapeakvalueatthesamelayerindexfor
10straighttimesteps).Thetimestepofthedecisionwasconvertedtothepredictedreactiontimeofthe
decision.Thusontrialsinwhichthemodelpredictedafastdecisionthesteadypeakwasreacheda
relativelylowtimestep.Ontrialsinwhichthemodelpredictedaslowerdecisionthesteadypeakwas
reachonahighertimestep.
Useofelectrophysiologicaldata.WeusedERPdataasreportedinexperiment1asmodelinput.Datawas
limitedtotheP3channelasdataindicatedasignificantcorrelationbetweenERPamplitudeandtrial
rationdifference(i.e.theneuraldistanceeffect).ForeachtrialwecalculatedthemeanERPamplitude
acrossthetimewindowusedinexperiment1.Trialamplitudeswereusedtopredictincorrectresponses,
whichweremostlyfortrialswithratiodifferencesinthelowerhalfoftherange.ThusERPamplitude
onlyaffectedmodelparametersontrialswitharatiodifferenceof1.7orless(44of90trials).
ModelFitnessCalculationandEvolutionaryAlgorithmProcedure.Modelingprocedureincludedtwoparts,
trainingphaseandtestphase.Duringtrainingthemodelwasfittothefirst60trialsoftheparticipants
data.Fitwasoptimizedusinganevolutionaryalgorithm.Afterdeterminingthespecificationsofthe
modelthatbestfitwethenusedthatmodeltopredicttheentiretyofparticipantsdatawithoutfurther
adjustmentsviathelearningalgorithmic.Themodelmustgeneralizewhatislearnedduringthetraining
phasetonoveltrialsduringthetestphase.Thisprocessisdoneindependentlyforeachparticipant.
Specificationsthatvariedforeachmodelinstantiationincludedparametersfornoise,tuningcurve
width,rateofactivationchange,inhibitioninconnections.Thefirstgenerationofthealgorithmincluded
10instantiationsofthemodelwithrandomlyselectedvaluesofthespecifications(withina
predeterminedrange).The10modelsarethenrankedbytheresultingfitness.Thebottom5performing
modelswerediscarded.Thebestperformingmodelwasduplicatedforthenextgeneration.Models
ranked2–5weremutated,suchthattheirspecificationswerealteredslightlybyarandomprocess.The
nextgenerationalsoincluded5newmodelswithrandomlyselectedspecifications.Thisprocesswas
repeatedover25generationstoproduceamodelinstantiationthatfittheparticipants’data.Sincethe
modelhasasmallamountofrandomnoiseperformancedoesnotreplicateexactly.Tobestdeterminethe
fitnesslevelofagivensetofmodelspecificationswethenranthemodelrepeatedlyandcalculatethe
meanfitnesslevel.Forthetestingphaseweusedthebest-fitspecificationstopredictthefinalhalftrials
oftheparticipantsdata,whichthemodelhadnotbeentrainingwith.
Modelfitnessiscalculatedusinganoverallerrortermsthatcombinesthenumberofcorrectly
predicteddecisions,thedeviationofthepredictedreactiontimesandcorrelationbetweenpredictedand
truereactiontimes.Theoverallfitofthemodelwasweightedtowardsminimizingresponseprediction
errorviathefollowingequation:
Results
Modeldataaddressestwoquestions.First,howwelldoesthemodelfittoparticipantdatausing
theevolutionalgorithm.Second,howwelldothemodelinstantiationsgeneralizetopredictnovel
participantdata?Analysisofmodelperformancewasmeasuredbydeviationbetweenempiricalhuman
dataandmodeldataforbothtrainingandtestphases.Wecalculatedtheproportionoftrialsinwhichthe
modelresponsematchedtheparticipantresponse.Thekeycomparisonisbetweentheproportionof
matchesthetrainingandtestphase.Thatis,ifthespecificationsofthemodellearnedfromthetraining
canbeusedtopredictfutureperformancewithnoreductioninaccuracy.
Forthetrainingphasedeviationsbetweenthemodelresponseandparticipantresponse,as
measuredbyproportionofmismatchesrangedfrom0.26to0.10withameanof0.16.(seeFigure3).For
thetestphase,deviationsbetweenthemodelresponseandparticipantresponserangedfrom0.26to0.05
withameanof0.159.Forthefinalthirdoftrialsspecificallythedeviationrangewas0.26to0witha
meanof0.19.(seeFigure4).
Wethencomparedmodelperformanceontrainingandtestphases.Forresponsepredictionof
trainedversusnoveldataweusedanon-parametriccomparison(Mann–WhitneyUtest)betweeninitial
trainingfitandtest.ThemodelerrorduringtrainingphasewasnotsignificantlydifferentthantestW=
312,p=0.626.Wethencomparedfitonthetrainingdatatoonlythenovelportionofthetestphase(i.e.
thefinal30trials).Themodelperformanceonthenoveltrialswassignificantlybetterthanthetraining
datafit,W=427,p<0.01.
GeneralDiscussion
Thisstudydemonstratesthatamultilayersdynamicfieldcomputationalmodelusingbehavioral
andneuraldatainputcanaccuratelypredictbehaviorforindividualparticipants.Specificallythemodel
instantiationsareabletogeneralizetofuturebehavior.Experiment1resultsincludeareplicationofthe
ERPnumericaldistanceeffect.Experiment2resultsdemonstratethatthecomputationalmodelisboth
abletoaccuratelyfitindividualparticipants’behavioraldataandextrapolatetopredictnoveldata.The
currentmodel,usingindependentinstantiationsandanoptimizationalgorithmwasabletofittoarange
ofparticipantbehavioraldata.Fittoparticipantdatawasaccuratewithinanerrorrateof0.10for
responses.Extrapolationtonoveldatawasofsimilaraccuracytotheinitialmodelfit.
LimitationsandFutureDirections.Evaluatingthecomputationalmodelresultsrequirescaution.
Thereareseveralquestionstoconsider.Therewasvariationinthemodelfittotrainingdata.Whymight
someparticipantshavedatathatisbetterfitbythecomputationalmodel?Itcouldbethecasethat
participantswithlowvariabilitydataarebetterfitbythemodel.Forexampleaparticipantthatcorrectly
respondedto100%oftrialswouldbetrivialtopredict.Participantsperformanceonthetaskmight
correlatewithmodelfit,wherebetterperformingparticipantshadbetterfitmodels.Acorrelation
betweenparticipantperformanceandmodelfitwassignificantR=-0.54,t(22)=3.009,p<0.01.Wethen
lookedmorespecificallyofmodelpredictionsofincorrectanswers.Modelperformanceinpredicting
incorrectresponsesofparticipantsdidnotcorrelatewithparticipantperformance,R=-0.22,t(22)=
1.05,p=0.30.Themodel’sperformancesomewhatdependsonthecharacteristicsoftheparticipantdata.
Theinitialmodelfitwasbestforparticipantswithahighdegreeofaccuracy.Howevermodelprediction
ofwhichtrialstheparticipantsansweredincorrectlywasnotcorrelatedwithparticipantperformance.
Additionallytherewasnosignificantcorrelationbetweenparticipantperformanceandhowwellthe
modelgeneralizedtothenovelasmeasuredbythedifferenceintrainingandtesterror,R=0.03,t(22)=
0.141,p=0.88.
Itisunclearifthereisalimitationtothenumberoftrialsthemodelcouldpredictbasedonthe
training.Theremaybeaninprincipallimitationtothenumberoftrialsthemodelcanpredict.Itmayalso
bethecasethatalargertrainingsetforthemodelresultsinmoreaccurateextrapolation.Perhapsa
multiplevisitexperimentwithamuchlargernumberoftrialswouldresultingreateraccuracyin
predictions.Thecurrentstudyonlyinvolvedabriefexperimentalsession.Longerandpotentially
multiplevisitexperimentalsessionscouldaddressthisquestion.
Weusethecanonicalnon-symbolicnumericaltaskhere.Thistaskiscentraltothestudyof
numericalcognitionandhasshowntocorrelatewithothertasks,whicharemorerelevanttoeducational
applications.Thequestionremainsissuchamodelingapproachcouldbeextendedtonon-symbolic
arithmetic,symboliccomparisonorevensymbolicarithmetic.Asimilarstyleneuraltuningcurve
computationalmodelhasbeenusedforothertaskssuchassymbolicnumberlineandsymbolic
arithmetic(Prather2012;2014;2016)
Conclusions.Inthisstudywepresentanovelcomputationalmethodforpredictinghuman
behavioronanumericalcomparisontask.Thecomputationalmethodusesbothbehavioralandneural
datatomakepredictionsofparticipants’futurebehavioronindividualtrials.Themethodmaypotentially
beexpandedtoincludeothernumerical,arithmeticorgeneralcognitivetasks.Themethodmayalsobe
adjustedtopredictaparticularstimulussetthatleadstoimprovedperformanceonthecurrenttaskor
othergeneralcognitivetasks.Suchexpandedandadapteduseofthecomputationalmethodcouldprove
tobeasignificantstepinbridgingresearchoncognitiveinterventiondesignandindividualizedtraining
regimens.
References
Anguera,J.a,Boccanfuso,J.,Rintoul,J.L.,Al-Hashimi,O.,Faraji,F.,Janowich,J.,…Gazzaley,a.(2013).
Videogametrainingenhancescognitivecontrolinolderadults.Nature,501(7465),97–101.
http://doi.org/10.1038/nature12486
Ben-Shalom,T.,Berger,A.,&Henik,A.(2013).Mybrainknowsnumbers!-anERPstudyofpreschoolers’
numericalknowledge.FrontiersinPsychology,4(October),716.
http://doi.org/10.3389/fpsyg.2013.00716
Chen,Q.,&Li,J.(2014).Associationbetweenindividualdifferencesinnon-symbolicnumberacuityand
mathperformance:ameta-analysis.ActaPsychologica,148,163–72.
http://doi.org/10.1016/j.actpsy.2014.01.016
CohenKadosh,R.,Dowker,A.,Heine,A.,Kaufmann,L.,&Kucian,K.(2013).Interventionsforimproving
numericalabilities:Presentandfuture.TrendsinNeuroscienceandEducation,2(2),85–93.
http://doi.org/10.1016/j.tine.2013.04.001
Erlhagen,W.,&Schöner,G.(2002).Dynamicfieldtheoryofmovementpreparation.PsychologicalReview,
109(3),545–572.http://doi.org/10.1037//0033-295X.109.3.545
Fazio,L.K.,Bailey,D.H.,Thompson,C.a,&Siegler,R.S.(2014).Relationsofdifferenttypesofnumerical
magnituderepresentationstoeachotherandtomathematicsachievement.JournalofExperimental
ChildPsychology,123,53–72.http://doi.org/10.1016/j.jecp.2014.01.013
Heine,A.,Tamm,S.,Wissmann,J.,&Jacobs,A.M.(2011).Electrophysiologicalcorrelatesofnon-symbolic
numericalmagnitudeprocessinginchildren:joiningthedots.Neuropsychologia,49(12),3238–46.
http://doi.org/10.1016/j.neuropsychologia.2011.07.028
Iuculano,T.,Rosenberg-Lee,M.,Richardson,J.,Tenison,C.,Fuchs,L.,Supekar,K.,&Menon,V.(2015).
Cognitivetutoringinduceswidespreadneuroplasticityandremediatesbrainfunctioninchildren
withmathematicallearningdisabilities.NatureCommunications,6,8453.
http://doi.org/10.1038/ncomms9453
Jiang,T.,Qiao,S.,Li,J.,Cao,Z.,Gao,X.,Song,Y.,…Chen,C.(2010).Effectsofsymboltypeandnumerical
distanceonthehumanevent-relatedpotential.Neuropsychologia,48(1),201–10.
http://doi.org/10.1016/j.neuropsychologia.2009.09.005
Libertus,M.E.,Feigenson,L.,&Halberda,J.(2013).IsApproximateNumberPrecisionaStablePredictor
ofMathAbility?LearningandIndividualDifferences,25,126–133.
http://doi.org/10.1016/j.lindif.2013.02.001
Libertus,M.E.,Odic,D.,&Halberda,J.(2012).Intuitivesenseofnumbercorrelateswithmathscoreson
college-entranceexamination.ActaPsychologica,141(3),373–379.
http://doi.org/10.1016/j.actpsy.2012.09.009
Mazzocco,M.M.,Feigenson,L.,&Halberda,J.(2011).ImpairedAcuityoftheApproximateNumber
SystemUnderliesMathematicalLearningDisability(Dyscalculia),82(4),1224–1237.
http://doi.org/10.1111/j.1467-8624.2011.01608.x
Park,J.,Bermudez,V.,Roberts,R.C.,&Brannon,E.M.(2016).JournalofExperimentalChildNon-symbolic
approximatearithmetictrainingimprovesmathperformanceinpreschoolers.Journalof
ExperimentalChildPsychology,152,278–293.http://doi.org/10.1016/j.jecp.2016.07.011
Park,J.,&Brannon,E.M.(2013).Trainingtheapproximatenumbersystemimprovesmathproficiency.
PsychologicalScience,24(10),2013–9.http://doi.org/10.1177/0956797613482944
Park,J.,&Brannon,E.M.(2014).Improvingarithmeticperformancewithnumbersensetraining:An
investigationofunderlyingmechanism.Cognition,133(1),188–200.
http://doi.org/10.1016/j.cognition.2014.06.011
Prather,R.W.(2012).Connectingneuralcodingtonumbercognition:acomputationalaccount.
DevelopmentalScience,15(4),589–600.http://doi.org/10.1111/j.1467-7687.2012.01156.x
Prather,R.W.(2014).Numericaldiscriminationismediatedbyneuralcodingvariation.Cognition,
133(3),601–610.http://doi.org/10.1016/j.cognition.2014.08.003
Prather,R.W.,&Alibali,M.W.(2011).ChildrensAcquisitionofArithmeticPrinciples:TheRoleof
Experience.JournalofCognitionandDevelopment,12(3),332–354.
http://doi.org/10.1080/15248372.2010.542214
Prather,R.W.,&Heverly-Fitt,S.(2016).Neuralcodingpartiallyaccountsfortherelationshipbetween
children’snumber-lineestimationandnumbercomparisonperformance.FrontiersinDevelopmental
Psychology.
Ratcliff,R.,Thompson,C.A.,&Mckoon,G.(2015).Modelingindividualdifferencesinresponsetimeand
accuracyinnumeracy.Cognition,137,115–136.http://doi.org/10.1016/j.cognition.2014.12.004
Sandamirskaya,Y.(2014).Dynamicneuralfieldsasasteptowardcognitiveneuromorphicarchitectures.
FrontiersinNeuroscience,7(January),1–13.http://doi.org/10.3389/fnins.2013.00276
Simmering,V.R.,&Perone,S.(2012).Workingmemorycapacityasadynamicprocess.Frontiersin
Psychology,3(January),567.http://doi.org/10.3389/fpsyg.2012.00567
Spencer,J.P.,Smith,L.B.,&Thelen,E.(2001).TestsofaDynamicSystemsAccountoftheA-not-BError :
TheInfluenceofPriorExperienceontheSpatialMemoryAbilitiesofTwo-Year-Olds,72(5),1327–
1346.
Tudusciuc,O.,&Nieder,A.(2007).Neuronalpopulationcodingofcontinuousanddiscretequantityinthe
primateposteriorparietalcortex.Neuron,104(36).
Vanlehn,K.(2011).TheRelativeEffectivenessofHumanTutoring,IntelligentTutoringSystems,and
OtherTutoringSystemsTheRelativeEffectivenessofHumanTutoring,IntelligentTutoringSystems
,andOtherTutoringSystems,(August2014),37–41.
http://doi.org/10.1080/00461520.2011.611369
Figure1.Example stimuli for a non-symbolic numerical comparison task. Participants are instructed
to indicate which side of the mid-line has a larger number of objects. The stimulus is displayed for a
limited amount of time to discourage counting.
0.90
0.80
0.85
Proportion Correct
0.95
1.00
Participant Performance
Figure2.Participantperformanceonthenumericalcomparisontaskasproportionoftrialscorrect.
0.15
0.00
0.05
0.10
Error
0.20
0.25
0.30
Training Phase Error
Figure3.ModelErrorforthetrainingphaseintermsofproportionofmismatches.
0.15
0.00
0.05
0.10
Error
0.20
0.25
0.30
Test Phase Error
Figure4.Themeancorrectresponseandreactiontimedeviationforthemodelforeachparticipant.
Thesearethemodelpredictionsfromthetestingphase.
AppendixA
StimuliList
25
35
50
75
25
30
40
42
25
65
35
91
25
35
23
23
14
26
19
42
20
22
13
29
30
30
10
18
15
21
50
75
15
35
10
19
15
35
29
70
19
44
10
20
15
33
30
51
15
21
14
14
24
60
30
45
10
19
23
50
29
24
20
30
30
10
35
22
30
20
10
14
20
30
15
10
20
22
20
36
20
30
14
15
30
20
20
10
40
35
70
60
30
39
33
15
56
54
33
32
18
28
52
30
33
25
52
54
38
87
32
51
19
18
39
34
30
20
42
56
10
20
16
20
10
14
30
35
25
40
10
23
10
36
19
45
14
15
16
19
10
25
40
20
23
13
45
14
14
10
13
38
40
34
25
19
45
91
30
60
11
50
15
87
42
54
28
18
40
44
13
65
60
22
23
29
54
26
14
11
© Copyright 2026 Paperzz