Modeling of microscale variations in methane fluxes Anu Kettunen Jan 17th, 2003 Solar energy and cycling of elements 2 Natural green house phenomenon • Atmosphere surface temperature of Earth ca 30oC higher than without atmosphere • Green house gases prevent Solar energy from escaping from Earth • H2O, CO2, CH4, N2O, CFC compounds 3 Human activities • Use of fossil fuel etc. human actions increase green house gas concentrations = enhances green house phenomenon climate change Indicators of the Human Influence on the Atmosphere during the Industrial Era Robert T. Watson, IPCC chair 4 Future climate • • • • On average warmer Regional differences Precipitation patterns Likelihood for extreme events (drought, storms) increases 5 Mires • Northern mires carbon sinks during last millenia, huge amount of carbon in peat • Sources of green house gases (CO2 ja CH4) • Important to understand role of mires in carbon cycle 6 Methane • CH4 important green house gas • Concentration increases ca 1% per year • Wetlands (20-30 %), rice paddies, ruminants, landfills, artificial lakes 7 Research problem • Previously no satisfactory description of spatial and seasonal variations in methane fluxes • Growing season measurument: CH4, T, WT etc. from different mire surfaces • Methane production and oxidaton potentials • Process model connects methane flux to vegetation cover, photosynthetic cycle and peat thermal and moisture conditions 8 Process model 9 Model predictions 800 80 800 600 60 600 80 60 400 40 400 40 200 20 200 20 5-Jul 4-Aug 3-Sep 3-Oct -400 800 -20 6-May -200 -40 -400 80 800 60 400 40 200 20 0 0 5-Jun 5-Jul 4-Aug 3-Sep 3-Oct -400 800 Flux, mg CH4 m-2 d-1 600 6-May -200 4-Aug 3-Sep 3-Oct -20 -40 80 600 60 400 40 200 20 0 -20 6-May -200 -40 -400 0 5-Jun 5-Jul 4-Aug 3-Sep 3-Oct -20 -40 80 800 600 60 600 80 60 400 40 400 40 200 20 200 20 0 6-May -200 -400 0 5-Jun 5-Jul 4-Aug 3-Sep 3-Oct Flux, mg CH4 m-2 d-1 f. Hummock B Water table, cm from peat surface e. Hummock A Flux, mg CH4 m-2 d-1 5-Jul d. Lawn-low hummock B Water table, cm from peat surface Flux, mg CH4 m-2 d-1 c. Eriophorum lawn A 0 5-Jun Water table, cm from peat surface 5-Jun 0 0 -20 6-May -200 -40 -400 0 5-Jun 5-Jul 4-Aug 3-Sep 3-Oct Water table, cm from peat surface 6-May -200 0 Water table, cm from peat surface 0 Flux, mg CH4 m-2 d-1 b. Flark B Water table, cm from peat surface Flux, mg CH4 m-2 d-1 a. Carex lawn A -20 -40 10 Fresh carbon, NPP and T a. 4500 Flux, mg CH4 m -2 d-1 4000 3500 3000 2500 2000 1500 1000 500 0 6-May 26-May 15-Jun 5-Jul 25-Jul 14-Aug 3-Sep 14-Aug 3-Sep 23-Sep 13-Oct 800 Flux, mg CH4 m -2 d-1 700 T+2 600 500 (T&GPP)+2 400 300 T-2 200 100 0 6-May • Model sensitive to fresh carbon • If T ja CO2 NPP substrate CH4 • If only T CH4 less (T&GPP)-2 26-May 15-Jun 5-Jul 25-Jul 23-Sep 13-Oct 11 Transport of oxygen to peat c. 800 700 Flux, mg CH4 m -2 d-1 • The more sedges transport oxygen to peat, the lower the CH4 flux • If methane oxidation CH4 600 500 400 300 200 100 0 6-May 26-May 15-Jun 5-Jul 25-Jul 14-Aug 3-Sep 23-Sep 13-Oct Change in transport capacity of sedges 12 The effect of drought 800 Flux, mg CH4 m -2 d-1 700 600 500 400 2 wk 4 wk 300 6 wk 200 100 0 6-May 8 wk 26-May 15-Jun 5-Jul 25-Jul 14-Aug 3-Sep 23-Sep 13-Oct • Long dry periods methanogens CH4 • If > 4-6 week drought, no recovery even after rains come 13 Main contribution of the thesis • Simulation model for CH4 fluxes from different mire surfaces CH4 fluxes from boreal mires can be predicted under current and future climate • Increased understanding • Connection to general circulation models 14
© Copyright 2026 Paperzz