Top Production Cross Section Matching of Relativistic and Non-Relativistic Regimes Angelika Widl in collaboration with André Hoang, Bahman Dehnadi, Maximilian Stahlhofen, Vicent Mateu Outline Motivation Relativistic Regime Non-Relativistic Regime Matching Outlook 1 / 30 Motivation top quark properties: mtpole ≈ 170 GeV, Γt ≈ 2 GeV precise measurement of top quark properties for: – stability of the SM vacuum – electroweak precision tests – new physics searches – ... up down strange charm bottom top 2 / 30 Motivation Top production cross section in the pole mass scheme: σ ( e+e- ⟶ t t ) σ[pb] σ QCD up to order α i σ NRQCD up to NNLL 1.4 1.4 1.2 1.2 1.0 1.0 0.8 0.8 0.6 0.6 0.4 0.4 0.2 0.2 0.0 0.0 350 360 370 s [GeV] 380 390 400 340 350 360 370 380 390 s [GeV] 3 / 30 Relativistic Regime 4 / 30 Relativistic Regime Z σt t̄ = dΠ e− t γ + q e+ t̄ + 2 + ... 4 / 30 Relativistic Regime Z σt t̄ = dΠ = Im e− e− t γ + + q e+ t̄ t e− e+ e+ 2 + ... + + + ... t̄ 4 / 30 Relativistic Regime Z σt t̄ = dΠ = Im e− e− t γ + + q e+ t̄ t e− e+ e+ 2 + ... + + + ... t̄ (4πα)2 2 = Qt Im q2 t + + + ... t̄ 4 / 30 Relativistic Regime Z σt t̄ = dΠ = Im e− e− 2 + ... t γ + + q e+ t̄ t e+ e+ e− + + + ... t̄ (4πα)2 2 = Qt Im q2 t + + + ... t̄ Z = A(q 2 ) Im −i d 4 x e iqx h0|T jµ (x) j µ (0)|0i , j µ (x) = ψ̄(x)γ µ ψ(x) 4 / 30 Relativistic Regime X Vacuum Polarization known up to α3 [Hoang, Mateu, Zebarjad ’08] 5 / 30 Relativistic Regime Vacuum Polarization known up to α3 [Hoang, Mateu, Zebarjad ’08] σQCD up to O[αi] 1.4 1.2 1.0 0.8 O[α3 ] σ[pb] X O[α2 ] 0.6 O[α1 ] O[α0 ] 0.4 0.2 0.0 350 360 370 380 390 400 s [GeV] 5 / 30 Non-Relativistic Regime 6 / 30 Non-Relativistic Regime – scales: m, |~p | ∼ mv , E ∼ mv 2 (mt ∼ 170 GeV , v ∼ α ∼ 0.1) 6 / 30 Non-Relativistic Regime – scales: m, |~p | ∼ mv , E ∼ mv 2 – large disparity of scales (mt ∼ 170 GeV , v ∼ α ∼ 0.1) m mv mv 2 ΛQCD 6 / 30 Non-Relativistic Regime – scales: m, |~p | ∼ mv , E ∼ mv 2 – large disparity of scales (mt ∼ 170 GeV , v ∼ α ∼ 0.1) m mv mv 2 ΛQCD – problems: 1. large logarithms log E2 m2 , log ~2 p m2 6 / 30 Non-Relativistic Regime – scales: m, |~p | ∼ mv , E ∼ mv 2 – large disparity of scales (mt ∼ 170 GeV , v ∼ α ∼ 0.1) m mv mv 2 ΛQCD – problems: 1. large logarithms 2. Coulomb singularity log E2 m2 , log ~2 p m2 contributions of order α2 α3 α4 , v4 , v5 , v3 ... 6 / 30 Non-Relativistic Regime Fields in vNRQCD and pNRQCD: field (E , m) potential quark (mv 2 , mv ) soft gluon (mv , mv ) ultrasoft gluon (mv 2 , mv 2 ) 7 / 30 Non-Relativistic Regime Fields in vNRQCD and pNRQCD: field (E , m) potential quark (mv 2 , mv ) soft gluon (mv , mv ) ultrasoft gluon (mv 2 , mv 2 ) Example: p p′ (mv 2, mv) −p −p′ ∼ Vc (~ p −~ p 0 )2 7 / 30 Coulomb Singularity: LO + + + +... 8 / 30 Coulomb Singularity: LO = + + + +... + + + +... 8 / 30 Coulomb Singularity: LO = v + + + + αs + +... + αs2 /v +... αs3 /v 2 αs ∼ v ! 8 / 30 Coulomb Singularity: LO = + + + + v Z ∼ d 3p (2π)3 + + −1 +... αs2 /v αs +... αs3 /v 2 αs ∼ v ! ~ 2 /m + iε E −p Z + d 3 p1 d 3 p2 (2π)3 (2π)3 −1 ~ 21 /m + iε E −p 4παs · CF ~ 2 )2 (~ p1 −p −1 ~ 22 /m + iε E −p + ... 8 / 30 Coulomb Singularity: LO Green function of the non-relativistic Schrödinger equation: Free Hamiltonian: H0 = p~ 2 /m 9 / 30 Coulomb Singularity: LO Green function of the non-relativistic Schrödinger equation: Free Hamiltonian: H0 = p~ 2 /m ~ 0 ) = (2π)3 δ (3) (~ ~ 0) (H0 − E ) G0 (~ p, p p−p 9 / 30 Coulomb Singularity: LO Green function of the non-relativistic Schrödinger equation: Free Hamiltonian: H0 = p~ 2 /m ~ 0 ) = (2π)3 δ (3) (~ ~ 0) (H0 − E ) G0 (~ p, p p−p ~ 0 ) = (2π)3 δ (3) (~ ~ 0) G0 (~ p, p p−p G0 (~ x , x~ ,0 E ) = Z −1 ~ 2 /m E −p 0 d 3p −1 e i~p (~x −~x ) (2π)3 E − p ~ 2 /m 9 / 30 Coulomb Singularity: LO Green function of the non-relativistic Schrödinger equation: Free Hamiltonian: H0 = p~ 2 /m ~ 0 ) = (2π)3 δ (3) (~ ~ 0) (H0 − E ) G0 (~ p, p p−p ~ 0 ) = (2π)3 δ (3) (~ ~ 0) G0 (~ p, p p−p G0 (~ x , x~ ,0 E ) = Z −1 ~ 2 /m E −p 0 d 3p −1 e i~p (~x −~x ) (2π)3 E − p ~ 2 /m G0 (0, 0, E ) ∼ 9 / 30 Coulomb Singularity: LO Full Hamiltonian: H = H0 + V 10 / 30 Coulomb Singularity: LO Full Hamiltonian: H = H0 + V ~ 0) + (H0 − E ) G (~ p, p Z d 3k ~) = (2π)3 δ (3) (~ ~ 0) V (~ p−~ k) G (~ k, p p−p (2π)3 10 / 30 Coulomb Singularity: LO Full Hamiltonian: H = H0 + V ~ 0) + (H0 − E ) G (~ p, p ~ 0 ) = G0 (~ ~ 0) + G (~ p, p p, p Z Z d 3k ~) = (2π)3 δ (3) (~ ~ 0) V (~ p−~ k) G (~ k, p p−p (2π)3 d 3 p1 d 3 p 2 ~ 1 )V (~ ~ 0) + . . . G0 (~ p, p p 1 −~ p 2 )G0 (~ p 2, p (2π)3 (2π)3 10 / 30 Coulomb Singularity: LO Full Hamiltonian: H = H0 + V ~ 0) + (H0 − E ) G (~ p, p ~ 0 ) = G0 (~ ~ 0) + G (~ p, p p, p G (0, 0, E ) ∼ Z Z d 3k ~) = (2π)3 δ (3) (~ ~ 0) V (~ p−~ k) G (~ k, p p−p (2π)3 d 3 p1 d 3 p 2 ~ 1 )V (~ ~ 0) + . . . G0 (~ p, p p 1 −~ p 2 )G0 (~ p 2, p (2π)3 (2π)3 + + +... 10 / 30 Coulomb Singularity: LO Full Hamiltonian: H = H0 + V ~ 0) + (H0 − E ) G (~ p, p ~ 0 ) = G0 (~ ~ 0) + G (~ p, p p, p G (0, 0, E ) ∼ G (0, 0, E ) = lim r →0 Z Z d 3k ~) = (2π)3 δ (3) (~ ~ 0) V (~ p−~ k) G (~ k, p p−p (2π)3 d 3 p1 d 3 p 2 ~ 1 )V (~ ~ 0) + . . . G0 (~ p, p p 1 −~ p 2 )G0 (~ p 2, p (2π)3 (2π)3 + + +... C F αs m2 1 iv + − αs CF log(−2i mvr ) − 1 + 2 γE + ψ 1 − i 4π mr 2v 10 / 30 Coulomb Singularity + v + αs (1, L) + . . . c1 (ν) + α2s /v α3s /v 2 LO L = log (v ) 11 / 30 Coulomb Singularity + v v3 + + . . . c1 (ν) + αs (1, L) α2s /v α3s /v 2 LO αs v α2s (1, L, L2 ) α3s /v (1, L) NLO αs v 2 (1, L) α2s v (1, L) α3s (1, L, L2 , L3 ) NNLO L = log (v ) −→ NNLO Schrödinger equation solved numerically [Hoang, Teubner ’99] 11 / 30 Large Logarithms −→ resum logs with vNRQCD m |~ p | E ΛQCD 12 / 30 Large Logarithms −→ resum logs with vNRQCD m |~ p | E ΛQCD correlated scales E = ~2 p m 12 / 30 Large Logarithms −→ resum logs with vNRQCD m |~ p | E ΛQCD ~2 p m correlated scales E = renormalization scales µus , µs 12 / 30 Large Logarithms −→ resum logs with vNRQCD m |~ p | E ΛQCD ~2 p m correlated scales E = renormalization scales µus , µs 2 2 log µE2 , log p~µ2 logs us s 12 / 30 Large Logarithms −→ resum logs with vNRQCD m |~ p | E ΛQCD ~2 p m correlated scales E = renormalization scales µus , µs 2 2 log µE2 , log p~µ2 logs subtraction velocity ν us s 2 µus = mν , µs = mν 12 / 30 Large Logarithms Expansion of currents: i j i = ψ̄(x) γ i ψ(x) = X ~ p c1 (ν) O~pi ,1 + c2 (ν) O~pi ,2 , † i ∗ O~p,1 = ψ~p σ (iσ2 ) χ−~p i O~p,2 = 1 † 2 i ~ σ (iσ2 ) χ∗ ψ p −~ p m2 ~p 13 / 30 Large Logarithms Expansion of currents: i j i = ψ̄(x) γ i ψ(x) = X c1 (ν) O~pi ,1 + c2 (ν) O~pi ,2 , i O~p,2 = ~ p † i ∗ O~p,1 = ψ~p σ (iσ2 ) χ−~p 1 † 2 i ~ σ (iσ2 ) χ∗ ψ p −~ p m2 ~p Cross section: Z σt t̄ = A(q 2 ) Im −i d 4 x e iqx h0|T jµ (x) j µ (0)|0i = A(q 2 ) Im [c1 (ν) A1 (ν, v , m) + 2 c1 (ν)c2 (ν) A2 (ν, m, v )] A1 = i XZ 4 d x e iqx † h0|T O~p,1 (x) O~ (0)|0i p 0 ,1 ~ p ,~ p0 A2 = Z i X 4 iqx † † d x e h0|T O~p,1 O~ + O~p,2 O~ |0i p 0 ,2 p 0 ,1 2 0 ~ p ,~ p 13 / 30 Large Logarithms c1 (ν) A1 (ν, v , m) QCD vNRQCD c1 log E2 m2 , log ~2 p m2 log E2 µ2 us , log ~2 p µ2 s , 1 εn 14 / 30 Large Logarithms c1 (ν) A1 (ν, v , m) QCD vNRQCD c1 log – ν=1 E2 m2 , log ~2 p m2 log E2 µ2 us , log ~2 p µ2 s , 1 εn µus = m, µs = m → determine c1 14 / 30 Large Logarithms c1 (ν) A1 (ν, v , m) – logs in A1 : log log E2 µ2 us ∼ log v4 ν4 ~2 p µ2 s ∼ log v2 ν2 , 15 / 30 Large Logarithms c1 (ν) A1 (ν, v , m) – logs in A1 : log log E2 µ2 us ∼ log v4 ν4 ~2 p µ2 s ∼ log v2 ν2 , – ν = 1 → ν = v use RGE running for c1 (ν) – ν = v evaluate c1 (ν) A1 (ν, v , m) 15 / 30 Large Logarithms c1 (ν) A1 (ν, v , m) – logs in A1 : log log E2 µ2 us ∼ log v4 ν4 ~2 p µ2 s ∼ log v2 ν2 , – ν = 1 → ν = v use RGE running for c1 (ν) – ν = v evaluate c1 (ν) A1 (ν, v , m) – matching at h · m −→ log(h) evaluate at ν = v · f −→ log(f ) 15 / 30 Large Logarithms + v v3 + + . . . c1 (ν) + αs (1, L) α2s /v α3s /v 2 LO αs v α2s (1, L, L2 ) α3s /v (1, L) NLO αs v 2 (1, L) α2s v (1, L) α3s (1, L, L2 , L3 ) NNLO L = log (v ) 16 / 30 Large Logarithms + v v3 + + . . . c1 (ν) + αs (1, L) αs2 /v αs3 /v 2 LL αs v αs2 αs3 /v NLL αs v 2 αs2 v αs3 NNLL L = log (v ) 17 / 30 Non-Relativistic Regime µm = h m, µs = h m(ν f ), µus = h m(ν f )2 18 / 30 Non-Relativistic Regime µm = h m, µs = h m(ν f ), µus = h m(ν f )2 Renormalization Group Improved (RGI) : [Hoang, Manohar, Stewart, Teubner ’01] [Hoang, Stahlhofen ’14] – ν∼v – f and h variation RGI 1.4 1.2 σ[pb] 1.0 0.8 0.6 0.4 0.2 LL NLL NNLL 0.0 330 340 350 360 370 380 390 s [GeV] 18 / 30 Non-Relativistic Regime µm = h m, µs = h m(ν f ), µus = h m(ν f )2 Renormalization Group Improved (RGI) : Fixed Order (FO) : [Hoang, Manohar, Stewart, Teubner ’01] [Hoang, Manohar, Stewart, Teubner ’01] [Hoang, Stahlhofen ’14] [Hoang, Stahlhofen ’14] – ν∼v – ν ∼ 1, h ∼ – f and h variation – h variation FO 1.4 1.4 1.2 1.2 1.0 1.0 0.8 0.8 σ[pb] σ[pb] RGI √ v 0.6 0.4 0.6 0.4 0.2 0.2 LL NLL NNLL 0.0 LO NLO NNLO 0.0 330 340 350 360 s [GeV] 370 380 390 330 340 350 360 370 380 390 s [GeV] 18 / 30 Matching 19 / 30 Matching σNRQCD (RGI, pole mass) σQCD 1.4 1.4 1.2 1.2 1.0 σ[pb] σ[pb] 1.0 0.8 0.6 0.8 0.6 0.4 0.4 0.2 LL NLL NNLL 0.0 330 340 350 360 s [GeV] 370 380 390 0.2 0.0 330 340 350 360 370 380 390 s [GeV] ⇒ include leading order finite width effects: q q q−2m+i Γt v = q−2m → m m 19 / 30 Matching σNRQCD (RGI, pole mass) σQCD (pole mass scheme) 1.4 1.4 1.2 1.2 1.0 σ[pb] σ[pb] 1.0 0.8 0.6 0.8 0.6 0.4 0.4 0.2 LL NLL NNLL 0.2 390 0.0 0.0 330 340 350 360 s [GeV] 370 380 330 340 350 360 370 380 390 s [GeV] ⇒ include leading order finite width effects: q q Γt v = q−2m → q−2m+i m m 19 / 30 Matching σNRQCD (RGI, pole mass) σQCD (pole mass scheme) 1.4 1.4 1.2 1.2 1.0 σ[pb] σ[pb] 1.0 0.8 0.6 0.8 0.6 0.4 0.4 0.2 LL NLL NNLL 0.2 390 0.0 0.0 330 340 350 360 370 s [GeV] 380 330 340 350 360 370 380 390 s [GeV] q 2 > 400 GeV 2 2 q ∼ (2m) σmatched = σQCD σmatched = σQCD + (σNRQCD − σexpanded ) 19 / 30 Matching NNLO 3 v 4 ... N LO v 3 q 2 > 400 GeV 2 2 q ∼ (2m) α4 α α v 3 α v2 α4 v3 ... α v α2 α3 v α4 v2 ... 3 4 α v 2 2 α v α α v 3 2 2 3 α v α α v v 4 α ... ... ... NLO α3 2 ... v α2 ... LO α1 ... α0 QCD σmatched = σQCD σmatched = σQCD + (σNRQCD − σexpanded ) 20 / 30 Matching NNLO v 3 3 4 v ... N LO q 2 > 400 GeV 2 2 q ∼ (2m) α4 3 α v2 α4 v3 2 3 4 α v2 3 4 α v α α v α v α 2 2 α v α 3 2 2 3 α v α v α v α α v v 4 α ... ... ... ... ... NLO α3 2 ... v α2 ... LO α1 ... α0 NRQCD σmatched = σQCD σmatched = σQCD + (σNRQCD − σexpanded ) 20 / 30 Matching v v 4 ... NNLO 3 q 2 > 400 GeV 2 2 q ∼ (2m) α3 v2 α4 v3 ... 2 α4 v2 ... ... α v α α v α α3 v α v 2 2 α v 3 α α4 v α v 3 2 2 3 4 α v α v α ... ... NLO α3 2 ... v α2 ... LO α1 ... α0 NRQCD σmatched = σQCD σmatched = σQCD + (σNRQCD − σexpanded ) 20 / 30 Matching Switch-Off Function fs 1.0 0.8 0.6 0.4 0.2 0.0 330 340 350 360 370 380 390 q 2 > 400 GeV σmatched = σQCD q 2 ∼ (2m)2 σmatched = σQCD + (σNRQCD − σexpanded ) 2 2 (2m) < q < 400 GeV σmatched = σQCD + (σNRQCD − σexpanded ) · fs 20 / 30 Matching Switch-Off Function fs 1.0 0.8 0.6 0.4 0.2 0.0 330 340 350 360 370 380 390 q 2 > 400 GeV σmatched = σQCD q 2 ∼ (2m)2 σmatched = σQCD + (σNRQCD − σexpanded ) 2 2 (2m) < q < 400 GeV σmatched = σQCD + (σNRQCD − σexpanded ) · fs 20 / 30 Matching σNRQCD σQCD ←→ ←→ ←→ LL NLL NNLL matching: α1 α2 α3 results in the pole mass scheme: σmatched (RGI, pole mass) 1.4 1.2 σ[pb] 1.0 LL, O[α1 ] 0.8 NLL, O[α2 ] 0.6 NNLL, O[α3 ] 0.4 0.2 0.0 330 340 350 360 370 380 390 s [GeV] 21 / 30 Matching σNRQCD LL NLL NNLL matching: σQCD ←→ ←→ ←→ α1 α2 α3 results in the pole mass scheme: σmatched (RGI, pole mass) 1.4 1.2 σ[pb] 1.0 LL, O[α1 ] 0.8 NLL, O[α2 ] 0.6 NNLL, O[α3 ] 0.4 0.2 0.0 340 342 344 346 s [GeV] 21 / 30 Matching 1S mass X renormalon free [Hoang, Ligeti, Manohar ’98] m1S = mpole + CF αs (µ)mpole ∞ n−1 X X n=1 k=0 = mpole cn,k αs (µ)n log µ CF αs (µ)mpole 2 − α2s mpole + . . . 9 22 / 30 Matching 1S mass X renormalon free [Hoang, Ligeti, Manohar ’98] m1S = mpole + CF αs (µ)mpole ∞ n−1 X X cn,k αs (µ)n log n=1 k=0 = mpole µ CF αs (µ)mpole 2 − α2s mpole + . . . 9 σmatched (RGI, 1S mass) 1.4 1.2 σ[pb] 1.0 LL, O[α1 ] 0.8 NLL, O[α2 ] 0.6 NNLL, O[α3 ] 0.4 0.2 0.0 340 342 344 346 s [GeV] 22 / 30 Matching m1S = mpole + CF αs (µ)mpole ∞ n−1 X X cn,k αs (µ)n log n=1 k=0 = mpole − µ CF αs (µ)mpole 2 2 α mpole + . . . 9 s NRQCD α0 LO v α1 α2 α3 ... ... ... ... ... NNLO ... NLO ... Pole mass: 23 / 30 Matching m1S = mpole + CF αs (µ)mpole ∞ n−1 X X cn,k αs (µ)n log n=1 k=0 2 2 α mpole + . . . 9 s NRQCD α0 LO v α1 α3 ... LO α0 α1 ... ... ... ... ... NNLO NRQCD α2 α3 α2 v v ... α3 v NLO ... ... α2 v NNLO ... 1S mass: α2 NLO ... Pole mass: ... ... ... = mpole − µ CF αs (µ)mpole 23 / 30 Matching MS mass : mpole = m + m ∞ X an (nl , nh ) αs (m)n n=1 = m + m αs a1 + . . . ( m = m(nl+1) (m(nl+1) ) ) 24 / 30 Matching MS mass : mpole = m + m ∞ X an (nl , nh ) αs (m)n n=1 ( m = m(nl+1) (m(nl+1) ) ) = m + m αs a1 + . . . σQCD up to O[α3 ] 1.4 1.2 σ[pb] 1.0 pole mass (mpole = 172.6 GeV) 0.8 _ = 163 GeV) MS mass (mMS 0.6 0.4 0.2 0.0 320 330 340 350 360 s [GeV] 24 / 30 Matching α0 LO v α1 α2 α3 ... NRQCD α0 α1 ... ... ... ... NNLO ... NLO ... Pole mass: NRQCD α2 α3 α3 v5 ... 2 α v3 α3 v3 α v MS mass: LO ... α v v ... α v NLO ... 2 ... NNLO ... ... ... ... ... 25 / 30 Matching MSR mass : [Hoang, Jain, Scimemi, Stewart ’08] mpole = m +m mpole = mMSRn (R) + R ∞ X n=1 ∞ X an (nl , nh ) αs (m)n an (nl , 0) αs (R)n = m + m αs a1 + . . . = mMSRn (R) + αs R a1 + . . . n=1 ⇒ choose R ∼ m v 26 / 30 Matching MSR mass with R ∼ m v : σQCD up to O[α3 ] 1.4 1.2 σ[pb] 1.0 0.8 pole mass 0.6 MSR mass 0.4 0.2 0.0 320 340 360 380 400 s [GeV] 27 / 30 Matching v α2 α3 ... v α1 α2 α R v m 2 NLO ... R m ... α v NNLO α3 α R v3 m2 α R3 v5 m3 α2 R v m α3 R 2 v3 m2 2 2 2 α R v m2 ... LO α0 ... ... ... ... NNLO ... NLO NRQCD MSR mass: α1 3 3 3 α R v3 m3 ... ... 3 , αv R m ... ... α0 LO ... Pole mass: NRQCD R ∼ mv ∼ mα 28 / 30 Matching Results in the MSR mass scheme: σmatched (FO, MSR mass) 1.4 1.2 1.2 1.0 1.0 σ[pb] σ[pb] σmatched (RGI, MSR mass) 1.4 0.8 0.6 0.4 0.4 0.2 0.2 0.0 0.0 330 340 350 360 370 380 390 1.4 1.4 1.2 1.2 1.0 1.0 σ[pb] σ[pb] 0.8 0.6 0.8 340 350 360 370 380 390 330 340 350 360 370 380 390 0.8 0.6 0.6 0.4 0.4 0.2 0.2 0.0 330 0.0 330 340 350 360 s [GeV] 370 380 390 s [GeV] 29 / 30 Conclusion Summary – matched σNRQCD and σQCD – implemented of the MSR mass scheme Outlook – N 3 LO corrections for the fixed order cross section – higher order electroweak effects 30 / 30 Conclusion Summary – matched σNRQCD and σQCD – implemented of the MSR mass scheme Outlook – N 3 LO corrections for the fixed order cross section – higher order electroweak effects Thank you for your attention! 30 / 30
© Copyright 2026 Paperzz