Electronic supplementary material Titanium dioxide anchored graphene oxide nanosheets for highly selective voltammetric sensing of dopamine Durairaj S. Ruby Josephine1 .Kaliyamoorthy Justice Babu2 .George peter Gnana kumar2,* . Kunjithapatham Sethuraman1,* 1 School of Physics, Madurai Kamaraj University, Madurai-625021, Tamil Nadu, India 2 Department of Physical Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai-625021, Tamil Nadu, India *Corresponding authors, K. Sethuraman: e-mail: [email protected]; Tel. No: 91-9445252309 G. Gnanakumar: e-mail: [email protected]; Tel. No: 91-9585752997 Morphological and optical studies The typical SEM images of graphene oxide (GO) and GO/TiO2 (graphene oxide/titanium dioxide) nanocomposite (NC) are depicted in Fig. S1. All of the obtained SEM images confirmed the sheet like features of GO (Fig. S1). The successful decoration of TiO2 nanoparticles (NPs) on GO sheets has also been confirmed for the GO/TiO2 composite (Fig. S1(b)). The elemental purity of GO/TiO2 NC was observed from the EDAX pattern of GO/TiO2 composite. 1 Fig. S1 (a, b) SEM images of GO and GO/ TiO2 nanostructures and (c) EDAX spectrum of GO/TiO2 nanostructures. PL spectroscopy The PL spectra of GO and GO/TiO2 NC are depicted in Fig. S2. The PL spectrum of GO showed a strong emission peak centered at 365 nm, corresponding to crystalline graphitic Sp2 network of GO. The PL spectrum of GO/TiO2 NC (Fig. S2 (b)) exhibited the similar emission peak with the decreased intensity in comparison with GO (Fig. S2 (a)). 2 Fig. S2 PL spectra of (a) GO and (b) GO/ TiO2 nanocomposite. DPV studies The DPV technique was exploited for the selective detection of DA in the presence of AA and UA and the DPV measurements were carried out at bare GCE and GO/TiO2/GCE in 0.1 M phosphate buffer containing 20 M DA, 2 mM AA and 0.2 mM UA (fig. S3). The bare GCE exhibited poor selectivity in the ternary mixture as evidenced from the overlapped voltammetric peaks for AA- DA (fig. S3 (a)). However, GO/TiO2/GCE exhibited three distinct voltammetric peaks for AA, DA and UA with the peak potential at -0.04 (AA), 0.22 (DA) and 0.41 (UA) V vs. Ag/AgCl respectively (fig. S3 (b)). The separation of peak potentials of AA-DA and DA-UA were found to be 0.26 and 0.19 V vs. Ag/AgCl, respectively, and are influential enough to explore the DA selectivity. In addition, GO/TiO2/GCE exhibited high oxidation current even under the lower concentration of DA (0.02 mM), which is 100 and 10 fold lower than that of AA and UA. At pH=7.2, AA (pKa=4.10) and UA (pKa=5.27) exhibited the negative charge, whereas DA (pKa=8.87) exhibited the positive charge [1]. Hence, it is clear that the negatively charged GO/TiO2 exhibited the repelling effects against the negatively charged AA and UA and electrostatically interacted with the positively charged DA, which facilitated the selectivity of fabricated sensors toward DA. 3 Fig. S3 DPV curves of 20M DA, 2 mM AA and 0.2 mM UA in pH (7.2) phosphate buffer on (a) bare GCE and (b) GO/TiO2/GCE (Amplitude: 0.05 V, Pulse width: 0.05 s, Sample width: 0.02 s and Pulse period: 0.5 s). Table S1 Figures of merit of recently reported nanomaterial based methods for preconcentration of dopamine in presence of uric acid and ascorbate. LODa (μM) Electrode materials Linear range (M) GOb/GCEc 1.0–15 0.27 2 Graphene/GCEc 4.0–100 2.64 3 TiO2/Graphene/GCEc 5–200 2.0 4 Fe3O4/RGOd/GCEc 0.5–100 0.12 5 Au/RGOd/GCEc 6.8–4.1 1.4 6 GRe/SnO2/GCEc 0.5–500 0.13 7 Au/Graphene/GCEc 5–1000 1.86 8 Pt/RGOd/GCEc 10–170 0.25 9 Ag/RGOd/GCEc 10–800 5.4 10 4 Ref. GNSf/GCEc 4–52 0.6 11 Tg- Graphene/GCEc 0.5–110 0.29 12 N-doped graphene/GCEc 100–450 0.93 13 Fe3O4/Gold electrode 0.15–400 0.03 14 TiO2/rGOd/GCEc 2–60 6.0 15 GNSf 2–1000 0.85 16 MWCNT-BPVCMh 5–300, 300–1000 2.28 17 Porous Cu2O nanospheres-rGOd Gold nanosheets 0.05–109.0 0.015 18 2–298 0.28 19 B-MWCNTsj 62–280 0.11 20 hnp-PtCuj 200–1000 25.1 21 Pdk-Np 0.1–151 0.030 22 Ni(Phen)l2]2+ - SWCNT 1–780 1 23 CNT-NiNCm 0.3–7, 7–240 0.1 24 MoS2n-RGO 5–545 0.05 25 f-RGOd nanosheet clusters 5–70, 100–600 3 26 P2W16V2o-AuPdp 103–1650 0.83 27 Pd Nps-GO 20–2280 – 28 GR-CSq 5–200 – 29 GOb/TiO2/GCEc 0.2–10 0.027 This work a Limit of detection. bGraphene oxide. cGlassy carbon electrode. dReduced f graphene oxide. eGraphene. Graphene nanosheet. gTryphtophan h functionalized. Multiwalled carbon nanotubes- electroactive polymer composite. iMultiwalled carbon nanotubes. fhierrachial nanoporous k l PlatiniumCopper alloy. palladium. Nickel(II)-bis(1,10m n phenanthroline). Nickel (II) norcorrole. Molybdenum diSulphide o PolyPhosphorovanado tungstate. pGold-Palladium. qChitosan. 5 References [1] Arulraj AD, Arunkumar A, Vijayan M, Viswanath KB , Vasantha VS (2016) A simple route to develop highly porous nano polypyrrole/reduced graphene oxide composite film for selective determination of dopamine. Electrochim Acta 206: 77–85. doi:10.1016/j.electacta.2016.04.134 [2] Gao F, Cai X, Wang X, Gao C, Liu S, Gao F, Wang Q (2013) Highly sensitive and selective detection of dopamine in the presence of ascorbic acid at graphene oxide modified electrode. Sens Actuators B 186: 380-387. doi:10.1016/j.snb.2013.06.020. [3] Ma XY, Chao MY and Wang ZX (2012) Electrochemical detection of dopamine in the presence of epinephrine, uric acid and ascorbic acid using a graphene modified electrode. Anal Methods 4: 1687- 1692. doi: 10.1039/c2ay25040c. [4] Fan Y, Lu HT, Liu JH, Yang CP, Jing QS, Zhang YX, Yang XK, Huang KJ (2011) Hydrothermal preparation and electrochemical sensing properties of TiO(2)-graphene nanocomposite, Colloids and Surfaces B: Biointerfaces 83: 78–82. doi: 10.1016/j.colsurfb.2010.10.048. [5] See TP, Pandikumar A, Ming HN, Ngee LH and Sulaiman Y (2014) Simultaneous electrochemical detection of dopamine and ascorbic acid using an iron oxide/reduced graphene oxide modified glassy carbon electrode. Sensors 14: 15227-15243. doi: 10.3390/s140815227. [6] Wang C, Du J, Wang H, Zou C, Jiang F, Yang P, Du Y (2014) A facile electrochemical sensor based on reduced graphene oxide and Au nanoplates modified glassy carbon electrode for simultaneous detection of ascorbic acid, dopamine and uric acid. Sens Actuators B 204: 302–309. 10.1016/j.snb.2014.07.077. [7] Sun W, Wang X, Wang Y, Ju X, Xu L, Li G and Sun Z (2013) Application of graphene-SnO2 nanocomposite modified electrode for the sensitive electrochemical detection of dopamine. Electrochim Acta 87: 317–322. doi:10.1016/j.electacta.2012.09.050. [8] Li J, Yang J, Yang Z, Li Y, Yu S, Xu Q, Hu X (2012) Graphene-Au nanoparticles nanocomposite film for selective electrochemical determination of dopamine. Anal Methods 4: 1725–1728. doi: 10.1039/c2ay05926f. [9] Xu TQ, Zhang QL, Zheng JN, Lv ZY, Wei J, Wang AJ and Feng JJ (2014) Simultaneous determination of dopamine and uric acid in the presence of ascorbic acid using Pt nanoparticles supported on reduced graphene oxide. Electrochim Acta 115:109-115. doi:10.1016/j.electacta.2013.10.147. 6 [10] Kaur B, Pandiyan T, Satpati B, Srivastava R (2013) Simultaneous and sensitive determination of ascorbic acid, dopamine, uric acid, and tryptophan with silver nanoparticles-decorated reduced graphene oxide modified electrode. Colloids Surf B 111: 97-106. doi:10.1016/j.colsurfb.2013.05.023. [11] Liu SQ, Sun WH, Hu FT (2012) Graphene nano sheet-fabricated electrochemical sensor for the determination of dopamine in the presence of ascorbic acid using cetyltrimethylammonium bromide as the discriminating agent. Sens Actuators B 173: 497-504. doi: 10.1016/j.snb.2012.07.052. [12] Lian Q, He Z, He Q, Luo A, Yan K, Zhang D, Lu X and Zhou X (2014) Simultaneous determination of ascorbic acid, dopamine and uric acid based on tryptophan functionalized graphene. Anal Chim Acta 823:32-39. doi:10.1016/j.aca.2014.03.032. [13] Li SM, Yang SY, Wang YS, Lien CH, Tien HW, ST Hsiao, Liao WH, Tsai HP, Chang CL, Ma CCM, (2013) Controllable synthesis of nitrogen-doped graphene and its effect on the simultaneous electrochemical determination of ascorbic acid, dopamine, and uric acid. Carbon 59:418-429. doi:10.1016/j.carbon.2013.03.035. [14] Fang B, Wang G, Zhang W, Li M, Kan X (2005) Fabrication of Fe3O4 nanoparticles modified electrode and its application for voltammetric sensing of dopamine. Electroanalysis 17:744–748. doi:10.1002/elan.200403136. [15] How GTS, Pandikumar A, Ming HN, Ngee LH (2014) Highly exposed {001} facets of titanium dioxide modified with reduced graphene oxide for dopamine sensing. Sci Rep 4: 5044, 1-8. doi:10.1038/srep05044. [16] Bagherzadeh M and Heydari M (2013) Electrochemical detection of dopamine based on preconcentration by graphene nanosheets. Analyst 138: 6044-6051. doi :10.1039/c3an01318a. [17] Liu R, Zeng X, Liu J, Luo J, Zheng Y, Liu X (2016) A glassy carbon electrode modified with an amphiphilic, electroactive and photosensitive polymer and with multiwalled carbon nanotubes for simultaneous determination of dopamine and paracetamol. Microchim Acta 183: 1543-1551. doi :10.1007/s00604-016-1763-1. [18] Mei LP, Feng JJ, Wu L, Chen JR, Shen L, Xie Y, Wang AJ (2016) A glassy carbon electrode modified with porous Cu2O nanospheres on reduced graphene oxide support for simultaneous sensing of uric acid and dopamine with high selectivity over ascorbic acid. Microchim Acta 183: 2039–2046. doi :10.1007/s0060401618450. 7 [19] Zhang QL, Feng JX, Wang AJ, Wei J, Lv ZY, Feng JJ (2015) A glassy carbon electrode modified with porous gold nanosheets for simultaneous determination of dopamine and acetaminophen. Microchim Acta 182: 589-595. [20] Tsierkezos NG, Ritter U, Thaha YN, Downing C, Szroeder P, Scharff P (2016) Multiwalled carbon nanotubes doped with boron as an electrode material for electrochemical studies ondopamine, uric acid, and ascorbic acid. Microchim Acta 183: 35-47. doi: 10.1007/s0060401515856. [21] Zhao D, Fan D, Wang J, Xu C (2015) Hierarchical nanoporous platinum copper alloy for simultaneous electrochemical determination of ascorbic acid, dopamine, and uric acid. Microchim Acta 182: 1345-1352.doi: 10.1007/s00604-015-1450-7. [22] Rafati AA, Afraz A, Hajian A, Assari P (2014) Simultaneous determination of ascorbic acid, dopamine, and uric acid using a carbon paste electrode modified with multiwalled carbon nanotubes, ionic liquid, and palladium nanoparticles. Microchim Acta 181: 1999–2008. doi: 10.1007/s00604-0141293-7. [23] Yan S, Li X, Xiong Y, Wang M, Yang L, Liu X, Li X, Alshahrani LAM, Liu P, Zhang C (2016) Simultaneous determination of ascorbic acid, dopamine and uric acid using a glassy carbon electrode modified with the nickel(II)-bis(1,10-phenanthroline) complex and single-walled carbon nanotubes. Microchim Acta 183:1401–1408. doi:10.1007/s00604-016-1776-9. [24] Deng K, Li X, Huang H (2016) A glassy carbon electrode modified with a nickel (II) norcorrole complex and carbon nanotubes for simultaneous or individual determination of ascorbic acid, dopamine, and uric acid. Microchim Acta 183: 2139–2145. doi:10.1007/s00604-016-1843-2. [25] Xing L, Ma Z (2016) A glassy carbon electrode modified with a nanocomposite consisting of MoS 2 and reduced graphene oxide for electrochemical simultaneous determination of ascorbic acid, dopamine, and uric acid. Microchim Acta 183: 257–263. doi: 10.1007/s00604-015-1648-8. [26] Wang H, Ren F, Yue R, Wang C, Zhai C, Du Y (2014) Macroporous flower-like graphene-nanosheet clusters used for electrochemical determination of dopamine. Colloids Surf A 448: 181–185. doi:10.1016/j.colsurfa.2014.02.028. [27] Zhou C, Li S, Zhu W, Pang H, Ma H (2013) A sensor of a polyoxometalate and Au–Pd alloy for simultaneously detection of dopamine and ascorbic doi:10.1016/j.electacta.2013.09.109. 8 acid. Electrochim Acta 113:454–463. [28] Wu G, Wu Y, Liu X, Rong M, Chen X, Chen X (2012) An electrochemical ascorbic acid sensor based on palladium nanoparticles supported on graphene oxide. Anal Chim Acta 745: 33–37. doi:10.1016/j.aca.2012.07.034. [29] Wang Y, Li Y, Tang L, Lu J, Li J (2009) Application of graphene-modified electrode for selective detection of dopamine. Electrochem Commun 11: 889–892. doi: 10.1016/j.elecom.2009.02.013. 9
© Copyright 2026 Paperzz