604_2016_2015_MOESM1_ESM

Electronic supplementary material
Titanium dioxide anchored graphene oxide nanosheets for highly selective voltammetric
sensing of dopamine
Durairaj S. Ruby Josephine1 .Kaliyamoorthy Justice Babu2 .George peter Gnana kumar2,*
.
Kunjithapatham Sethuraman1,*
1
School of Physics, Madurai Kamaraj University, Madurai-625021, Tamil Nadu, India
2
Department of Physical Chemistry, School of Chemistry, Madurai Kamaraj University,
Madurai-625021, Tamil Nadu, India
*Corresponding authors,
K. Sethuraman: e-mail: [email protected]; Tel. No: 91-9445252309
G. Gnanakumar: e-mail: [email protected]; Tel. No: 91-9585752997
Morphological and optical studies
The typical SEM images of graphene oxide (GO) and GO/TiO2 (graphene oxide/titanium
dioxide) nanocomposite (NC) are depicted in Fig. S1. All of the obtained SEM images confirmed
the sheet like features of GO (Fig. S1). The successful decoration of TiO2 nanoparticles (NPs) on
GO sheets has also been confirmed for the GO/TiO2 composite (Fig. S1(b)). The elemental
purity of GO/TiO2 NC was observed from the EDAX pattern of GO/TiO2 composite.
1
Fig. S1 (a, b) SEM images of GO and GO/ TiO2 nanostructures and (c) EDAX spectrum of
GO/TiO2 nanostructures.
PL spectroscopy
The PL spectra of GO and GO/TiO2 NC are depicted in Fig. S2. The PL spectrum of GO
showed a strong emission peak centered at 365 nm, corresponding to crystalline graphitic Sp2
network of GO. The PL spectrum of GO/TiO2 NC (Fig. S2 (b)) exhibited the similar emission
peak with the decreased intensity in comparison with GO (Fig. S2 (a)).
2
Fig. S2 PL spectra of (a) GO and (b) GO/ TiO2 nanocomposite.
DPV studies
The DPV technique was exploited for the selective detection of DA in the presence of
AA and UA and the DPV measurements were carried out at bare GCE and GO/TiO2/GCE in
0.1 M phosphate buffer containing 20 M DA, 2 mM AA and 0.2 mM UA (fig. S3). The bare
GCE exhibited poor selectivity in the ternary mixture as evidenced from the overlapped
voltammetric peaks for AA- DA (fig. S3 (a)). However, GO/TiO2/GCE exhibited three distinct
voltammetric peaks for AA, DA and UA with the peak potential at -0.04 (AA), 0.22 (DA) and
0.41 (UA) V vs. Ag/AgCl respectively (fig. S3 (b)). The separation of peak potentials of AA-DA
and DA-UA were found to be 0.26 and 0.19 V vs. Ag/AgCl, respectively, and are influential
enough to explore the DA selectivity. In addition, GO/TiO2/GCE exhibited high oxidation
current even under the lower concentration of DA (0.02 mM), which is 100 and 10 fold lower
than that of AA and UA. At pH=7.2, AA (pKa=4.10) and UA (pKa=5.27) exhibited the negative
charge, whereas DA (pKa=8.87) exhibited the positive charge [1]. Hence, it is clear that the
negatively charged GO/TiO2 exhibited the repelling effects against the negatively charged AA
and UA and electrostatically interacted with the positively charged DA, which facilitated the
selectivity of fabricated sensors toward DA.
3
Fig. S3 DPV curves of 20M DA, 2 mM AA and 0.2 mM UA in pH (7.2) phosphate buffer
on (a) bare GCE and (b) GO/TiO2/GCE (Amplitude: 0.05 V, Pulse width: 0.05 s, Sample
width: 0.02 s and Pulse period: 0.5 s).
Table S1 Figures of merit of recently reported nanomaterial based methods for
preconcentration of dopamine in presence of uric acid and ascorbate.
LODa
(μM)
Electrode materials
Linear
range (M)
GOb/GCEc
1.0–15
0.27
2
Graphene/GCEc
4.0–100
2.64
3
TiO2/Graphene/GCEc
5–200
2.0
4
Fe3O4/RGOd/GCEc
0.5–100
0.12
5
Au/RGOd/GCEc
6.8–4.1
1.4
6
GRe/SnO2/GCEc
0.5–500
0.13
7
Au/Graphene/GCEc
5–1000
1.86
8
Pt/RGOd/GCEc
10–170
0.25
9
Ag/RGOd/GCEc
10–800
5.4
10
4
Ref.
GNSf/GCEc
4–52
0.6
11
Tg- Graphene/GCEc
0.5–110
0.29
12
N-doped graphene/GCEc
100–450
0.93
13
Fe3O4/Gold electrode
0.15–400
0.03
14
TiO2/rGOd/GCEc
2–60
6.0
15
GNSf
2–1000
0.85
16
MWCNT-BPVCMh
5–300, 300–1000
2.28
17
Porous Cu2O
nanospheres-rGOd
Gold nanosheets
0.05–109.0
0.015
18
2–298
0.28
19
B-MWCNTsj
62–280
0.11
20
hnp-PtCuj
200–1000
25.1
21
Pdk-Np
0.1–151
0.030
22
Ni(Phen)l2]2+ - SWCNT
1–780
1
23
CNT-NiNCm
0.3–7, 7–240
0.1
24
MoS2n-RGO
5–545
0.05
25
f-RGOd nanosheet clusters
5–70, 100–600
3
26
P2W16V2o-AuPdp
103–1650
0.83
27
Pd Nps-GO
20–2280
–
28
GR-CSq
5–200
–
29
GOb/TiO2/GCEc
0.2–10
0.027
This
work
a
Limit of detection. bGraphene oxide. cGlassy carbon electrode. dReduced
f
graphene oxide. eGraphene.
Graphene nanosheet. gTryphtophan
h
functionalized. Multiwalled carbon nanotubes- electroactive polymer
composite. iMultiwalled carbon nanotubes. fhierrachial nanoporous
k
l
PlatiniumCopper
alloy.
palladium.
Nickel(II)-bis(1,10m
n
phenanthroline). Nickel (II) norcorrole. Molybdenum diSulphide
o
PolyPhosphorovanado tungstate. pGold-Palladium. qChitosan.
5
References
[1] Arulraj AD, Arunkumar A, Vijayan M, Viswanath KB , Vasantha VS (2016) A simple route to
develop highly porous nano polypyrrole/reduced graphene oxide composite film for selective
determination of dopamine. Electrochim Acta 206: 77–85. doi:10.1016/j.electacta.2016.04.134
[2] Gao F, Cai X, Wang X, Gao C, Liu S, Gao F, Wang Q (2013) Highly sensitive and selective detection
of dopamine in the presence of ascorbic acid at graphene oxide modified electrode. Sens Actuators B 186:
380-387. doi:10.1016/j.snb.2013.06.020.
[3] Ma XY, Chao MY and Wang ZX (2012) Electrochemical detection of dopamine in the presence of
epinephrine, uric acid and ascorbic acid using a graphene modified electrode.
Anal Methods 4: 1687-
1692. doi: 10.1039/c2ay25040c.
[4] Fan Y, Lu HT, Liu JH, Yang CP, Jing QS, Zhang YX, Yang XK, Huang KJ (2011) Hydrothermal
preparation and electrochemical sensing properties of TiO(2)-graphene nanocomposite, Colloids and
Surfaces B: Biointerfaces 83: 78–82. doi: 10.1016/j.colsurfb.2010.10.048.
[5] See TP, Pandikumar A, Ming HN, Ngee LH and Sulaiman Y (2014) Simultaneous electrochemical
detection of dopamine and ascorbic acid using an iron oxide/reduced graphene oxide modified glassy
carbon electrode. Sensors 14: 15227-15243. doi: 10.3390/s140815227.
[6] Wang C, Du J, Wang H, Zou C, Jiang F, Yang P, Du Y (2014) A facile electrochemical sensor based
on reduced graphene oxide and Au nanoplates modified glassy carbon electrode for simultaneous
detection of ascorbic acid, dopamine and uric acid. Sens Actuators B 204: 302–309.
10.1016/j.snb.2014.07.077.
[7] Sun W, Wang X, Wang Y, Ju X, Xu L, Li G and Sun Z (2013) Application of graphene-SnO2
nanocomposite modified electrode for the sensitive electrochemical detection of dopamine. Electrochim
Acta 87: 317–322. doi:10.1016/j.electacta.2012.09.050.
[8] Li J, Yang J, Yang Z, Li Y, Yu S, Xu Q, Hu X (2012) Graphene-Au nanoparticles nanocomposite film
for selective electrochemical determination of dopamine. Anal Methods 4: 1725–1728. doi:
10.1039/c2ay05926f.
[9] Xu TQ, Zhang QL, Zheng JN, Lv ZY, Wei J, Wang AJ and Feng JJ (2014) Simultaneous
determination of dopamine and uric acid in the presence of ascorbic acid using Pt nanoparticles supported
on reduced graphene oxide. Electrochim Acta 115:109-115. doi:10.1016/j.electacta.2013.10.147.
6
[10] Kaur B, Pandiyan T, Satpati B, Srivastava R (2013) Simultaneous and sensitive determination of
ascorbic acid, dopamine, uric acid, and tryptophan with silver nanoparticles-decorated reduced graphene
oxide modified electrode. Colloids Surf B 111: 97-106. doi:10.1016/j.colsurfb.2013.05.023.
[11] Liu SQ, Sun WH, Hu FT (2012) Graphene nano sheet-fabricated electrochemical sensor for the
determination of dopamine in the presence of ascorbic acid using cetyltrimethylammonium bromide as
the discriminating agent. Sens Actuators B 173: 497-504. doi: 10.1016/j.snb.2012.07.052.
[12] Lian Q, He Z, He Q, Luo A, Yan K, Zhang D, Lu X and Zhou X (2014) Simultaneous determination
of ascorbic acid, dopamine and uric acid based on tryptophan functionalized graphene. Anal Chim Acta
823:32-39. doi:10.1016/j.aca.2014.03.032.
[13] Li SM, Yang SY, Wang YS, Lien CH, Tien HW, ST Hsiao, Liao WH, Tsai HP, Chang CL, Ma
CCM, (2013) Controllable synthesis of nitrogen-doped graphene and its effect on the simultaneous
electrochemical determination of ascorbic acid, dopamine, and uric acid. Carbon 59:418-429.
doi:10.1016/j.carbon.2013.03.035.
[14] Fang B, Wang G, Zhang W, Li M, Kan X (2005) Fabrication of Fe3O4 nanoparticles modified
electrode and its application for voltammetric sensing of dopamine. Electroanalysis 17:744–748.
doi:10.1002/elan.200403136.
[15] How GTS, Pandikumar A, Ming HN, Ngee LH (2014) Highly exposed {001} facets of titanium
dioxide modified with reduced graphene oxide for dopamine sensing. Sci Rep 4: 5044, 1-8.
doi:10.1038/srep05044.
[16] Bagherzadeh M and Heydari M (2013) Electrochemical detection of dopamine based on preconcentration by graphene nanosheets. Analyst 138: 6044-6051. doi :10.1039/c3an01318a.
[17] Liu R, Zeng X, Liu J, Luo J, Zheng Y, Liu X (2016) A glassy carbon electrode modified with an
amphiphilic, electroactive and photosensitive polymer and with multiwalled carbon nanotubes for
simultaneous determination of dopamine and paracetamol. Microchim Acta 183: 1543-1551. doi
:10.1007/s00604-016-1763-1.
[18] Mei LP, Feng JJ, Wu L, Chen JR, Shen L, Xie Y, Wang AJ (2016) A glassy carbon electrode
modified with porous Cu2O nanospheres on reduced graphene oxide support for simultaneous sensing of
uric acid and dopamine with high selectivity over ascorbic acid. Microchim Acta 183: 2039–2046. doi
:10.1007/s0060401618450.
7
[19] Zhang QL, Feng JX, Wang AJ, Wei J, Lv ZY, Feng JJ (2015) A glassy carbon electrode modified
with porous gold nanosheets for simultaneous determination of dopamine and acetaminophen. Microchim
Acta 182: 589-595.
[20] Tsierkezos NG, Ritter U, Thaha YN, Downing C, Szroeder P, Scharff P (2016) Multiwalled carbon
nanotubes doped with boron as an electrode material for electrochemical studies ondopamine, uric acid,
and ascorbic acid. Microchim Acta 183: 35-47. doi: 10.1007/s0060401515856.
[21] Zhao D, Fan D, Wang J, Xu C (2015) Hierarchical nanoporous platinum copper alloy for
simultaneous electrochemical determination of ascorbic acid, dopamine, and uric acid. Microchim Acta
182: 1345-1352.doi: 10.1007/s00604-015-1450-7.
[22] Rafati AA, Afraz A, Hajian A, Assari P (2014) Simultaneous determination of ascorbic acid,
dopamine, and uric acid using a carbon paste electrode modified with multiwalled carbon nanotubes,
ionic liquid, and palladium nanoparticles. Microchim Acta 181: 1999–2008. doi: 10.1007/s00604-0141293-7.
[23] Yan S, Li X, Xiong Y, Wang M, Yang L, Liu X, Li X, Alshahrani LAM, Liu P, Zhang C (2016)
Simultaneous determination of ascorbic acid, dopamine and uric acid using a glassy carbon electrode
modified with the nickel(II)-bis(1,10-phenanthroline) complex and single-walled carbon nanotubes.
Microchim Acta 183:1401–1408. doi:10.1007/s00604-016-1776-9.
[24] Deng K, Li X, Huang H (2016) A glassy carbon electrode modified with a nickel (II) norcorrole
complex and carbon nanotubes for simultaneous or individual determination of ascorbic acid, dopamine,
and uric acid. Microchim Acta 183: 2139–2145. doi:10.1007/s00604-016-1843-2.
[25] Xing L, Ma Z (2016) A glassy carbon electrode modified with a nanocomposite consisting of MoS 2
and reduced graphene oxide for electrochemical simultaneous determination of ascorbic acid, dopamine,
and uric acid. Microchim Acta 183: 257–263. doi: 10.1007/s00604-015-1648-8.
[26] Wang H, Ren F, Yue R, Wang C, Zhai C, Du Y (2014) Macroporous flower-like graphene-nanosheet
clusters used for electrochemical determination of dopamine. Colloids Surf A 448: 181–185.
doi:10.1016/j.colsurfa.2014.02.028.
[27] Zhou C, Li S, Zhu W, Pang H, Ma H (2013) A sensor of a polyoxometalate and Au–Pd alloy for
simultaneously detection of
dopamine
and
ascorbic
doi:10.1016/j.electacta.2013.09.109.
8
acid. Electrochim Acta
113:454–463.
[28] Wu G, Wu Y, Liu X, Rong M, Chen X, Chen X (2012) An electrochemical ascorbic acid sensor
based on palladium nanoparticles supported on graphene oxide. Anal Chim Acta 745: 33–37.
doi:10.1016/j.aca.2012.07.034.
[29] Wang Y, Li Y, Tang L, Lu J, Li J (2009) Application of graphene-modified electrode for selective
detection of dopamine. Electrochem Commun 11: 889–892. doi: 10.1016/j.elecom.2009.02.013.
9