Math 2253 Practice Test 2 Answers Fall 2016 1. Find the derivative of each of the following functions: (a) y x8 (b) y t 2 2t 3 dy dy 8x7 2t 2 dx dt (c) g (t ) t 3 Do not forget that is a constant, so the answer is times the derivative of t 3 . g '(t ) (3t 2 ) g '(t ) 3 t 2 (d) y 1 34 x 3x 1 1 y x 1 3x 4 3 dy 1 1 3 x 2 3( x 4 ) dx 3 4 dy 1 3 2 3 dx 3x 4 x 4 2. Find the slope of the graph of the function at the given point: (2, 18) f ( x) 3 x 3 6 Note that the quantity that gives the slope of the graph is the derivative. In problems of this nature you do not use the y-value. It is given just to locate the point on the curve. f '( x) 3(3x 2 ) f '( x) 9 x 2 Slope = f '(2) 9(22 ) 36 3. Find an equation of the line tangent to y x3 x at (1, 2) dy dy Note that is used to denote the value of when x 1 dx dx x 1 dy 3x 2 1 dx dy Slope = 3(1)2 1 4 dx x 1 Now use the point slope form y y1 m( x x1 ) y 2 4( x 1) y 2 4x 4 y 4x 2 4. Find the points at which the graph of the function has a horizontal tangent line: 1 y x3 2 x 2 5 x 3 The tangent is horizontal at points where the derivative is zero. dy 1 (3x 2 ) 2(2 x) 5 x 2 4 x 5 dx 3 x2 4x 5 0 ( x 5)( x 1) 0 x 5, 1 Note that the question asks you to find points, so you must also find the y-coordinates. 1 125 125 125 225 100 x 5 : y (5)3 2(5) 2 5(5) 50 25 75 3 3 3 3 3 3 1 3 1 1 1 9 8 x 1: y (1) 2(1) 2 5(1) 2 5 3 3 3 3 3 3 3 8 Ans: (5, 100 3 ), (1, 3 ) 5. Find the derivative of each of the following functions: (b) f ( x) (a) y x 4 2 x 2 y x 4 (2 x 2 ) 1 2 1 dy 1 1 ( x 4 ) (2 x 2 ) 2 (2 x) (4 x 3 )(2 x 2 ) 2 dx 2 1 dy 1 x 5 (2 x 2 ) 2 4 x 3 (2 x 2 ) 2 dx This simplifies to 8 x3 5 x5 x x 3 2 f '( x) ( x 2 3)(1) x(2 x) ( x 2 3) 2 f '( x) x2 3 2 x2 ( x 2 3) 2 f '( x) 3 x2 ( x 2 3) 2 2 x2 6. Find the derivative of each of the following functions (a) f ( x) (3x 4)100 d n du (u ) nu n 1 Use the generalized power rule: dx dx 99 f '( x) 100(3x 4) 3 f '( x) 300(3x 4)99 (b) m( x) x2 3 5 x3 d 2 d ( x ) x 2 ( 3 5 x3 ) dx dx m '( x) 3 2 ( 3 5x ) 1 1 ( 3 5 x3 )(2 x) x 2 (3 5 x3 ) 2 (10 x 2 ) 2 3 5 x3 ( 3 5 x3 ) 2 x 3 5 x3 5 x 4 (3 5 x 3 ) 3 5 x3 Note that this simplifies to 1 2 6 x 5x4 3 (3 5 x3 ) 2 (c) (To test your understanding of the chain rule). You read in an article that the 1 derivative of f ( x) where f ( x) tanh 1 x is . Find the derivative of 1 x2 g ( x) tanh 1 2 x3 According to the chain rule the derivative of tanh 1 u w.r.t. x is g '( x) 1 du 1 u 2 dx 1 6x2 1 (2 x 3 ) 2 6 x2 1 4 x6 7. Find the derivative of each of the following functions: (b) f ( x) (a) y x 4 cos x dy (4 x 3 )(cos x) ( x 4 )( sin x) dx dy 4 x 3 cos x x 4 sin x dx (c) g ( x) 3x tan x g '( x) 3 sec x 2 x x 3 2 f '( x) ( x 2 3)(1) x(2 x) ( x 2 3) 2 f '( x) x2 3 2 x2 ( x 2 3) 2 f '( x) 3 x2 ( x 2 3) 2 (d) f ( x) x sec x 3x tan x You have to use the product rule on each term. f '( x) [1(sec x) x(sec x tan x)] [(3)(tan x) (3x)(sec2 x)] f '( x) sec x x sec x tan x 3tan x 3x sec2 x 8. Find the second derivative of each of the following functions. (a) f ( x) 6 x 14 x 3 (b) h( x) csc x 4 f '( x) 6 14( 3 x ) h '( x) csc x cot x f '( x) 6 42 x 4 h ''( x) ( csc x cot x)(cot x) (csc x)( csc 2 x) 5 f ''( x) 42( 4 x ) f ''( x) 168 x 5 h ''( x) csc x cot 2 x csc3 x
© Copyright 2026 Paperzz