Propositional logic
Problem 1
1) Using the truth table method check if “ ” connective is associative:
p (q r ) ( p q) r .
2) Using the truth table method check if “ ” connective is associative:
p (q r ) ( p q) r .
3) Using the truth table method check if “ ” connective is distributive over “ ”
connective: p (q r ) ( p q) ( p r ) .
4) Using the truth table method check if “ ” connective is distributive over “ ”
connective: p (q r ) ( p q) ( p r ) .
5) Using the truth table method check the properties of absorption: p (q p) p and
p (q p) p .
6) Using the truth table method check the De’Morgan law for :
( p q) p q ;
Problem 2.
Using the truth table method decide what kind of formula (consistent, inconsistent,
tautology, contingent) is A . If A is consistent, write all the models of A.
1) A= q p r p (q r )
2) A= p (q r ) q p
3) A= p (q r ) q p r
4) A= (p q) r p (q r )
5) A= p (q r ) q p
6)
A p (q r) q p r .
Problem 3. Using the truth table method check if:
1) p q |= ( p r ) ( p q r )
2) p q |= (q r ) ( p r )
3) p (q r ) |= ( p q) ( p r )
4) p r |= (q r ) (( p q) r )
5) p q |= (p q) q
6)
p q | (q r) ( p q r) ;
Problem 4.
Using the truth table method prove that the following formulas are tautologies.
1) ( p (q r )) (( p r ) (q r )) --- semidistributivity of over
2) ( p (q r )) (q ( p r )) --- permutation of the premises law.
3) ( p (q r )) ( p q r ) --- reunion of the premises law.
4) ( p q r ) ( p (q r )) --- separation of the premises law.
5) ( p q) ( p q r ) ( p r ) ---“cut” law.
6) p (q r) (( p q) ( p r)) --- semidistributivity of over
Problem 5. Transform the formula A into its equivalent CNF and DNF. Using one of
these forms prove that A is a valid formula in propositional calculus.
1) A= ( p (q r )) (q ( p r )) --- permutation of the premises law.
2) A= ( p q) ( p q r ) ( p r ) ---“cut” law.
3) A= ( p q r ) ( p (q r )) --- separation of the premises law.
4) A= ( p (q r )) ( p q r ) --- reunion of the premises law.
5) A= (U (V Z )) ((U V ) (U Z )) --- axiom A2
6) A= ( p (q r )) (( p r ) (q r )) --- semidistributivity of over
Problem 6.
Using the apropriate normal form write all the models of the following formulas:
1) A= ( p q r ) ( p r ) q .
2) A= ( p q r ) ( p r ) q
3) A= (q r p) ( p r ) q
4) A= ( p q r ) (q r ) p
5) A= (q r p) ( p r ) q
6) A= (p q) r p (q r)
Problem 7 .
Using the apropriate normal form prove that the following formulas are inconsistent:
1)
2)
3)
4)
5)
6)
7)
8)
(U (V Z )) ((U V ) (U Z )) ;
(U V ) (V U ) ;
(U V ) (U V Z ) (U Z ) ;
(U (V Z )) ((U V ) (U Z )) ;
U (V Z ) ((U V ) (U Z )) ;
(U (V Z )) (U V Z ) ;
(U (V Z )) (V (U Z )) ;
(U V Z ) (U (V Z )) ;
Problem 8
Prove the following properties of the logical equivqlence relation where: R, S FP and
U, V, Z FP.
1. monotonicity: if R |=U and R S then S |=U;
2. cut: if S |=Vi, iI and S{Vi|iI }|= U then S |=U;
3. tranzitivity: if S |=U and {U}|=V then S |=V;
4. conjunction in conclusions (right „and” ):
if S |= U and S |= V then S |= UV;
5. disjunction in premises (left „or”):
if S{U} |= Z and S{V} |= Z then S{UV}|=Z;
6. proof by cases:
if S{U} |= V and S{U } |= V then S |= V.
Problem 9.
Using the definition of deduction prove the following:
1. p q, r p, r | q ;
2. p r, p r q, r | q ;
3. p q, q r, p | r ;
4. p (q r), p q, p | r ;
5. p (q r), q, p | r ;
6. p (q r), p q, p | r ;
7. p (q r), p q, p | r ;
8. p q, r t, p r, q | t .
Problem 10.
Using the theorem of deduction and its reverse prove that:
1) | (U (V Z ) (U V Z ) --- reunion of the premises law.
2) | (U V Z ) (U (V Z )) --- separation of the premises law
3) | (U (V Z )) (V (U Z )) --- permutation of the premises law.
4) | (U (V Z )) ((U V ) (U Z )) --- second axiom of propositional logic
5) | ( p q) ( p q r ) ( p r ) --- “cut” law.
6) | ( p q) (( p r) ( p q r))
Problem 11.
Using the theorem of deduction and its reverse prove that:
1) | ( p q) (( r p) (r q))
2) | ( p r ) (( q r ) ( p q r ))
3) | ( p q) (( r t ) ( p r q t ))
4) | ( p r ) (( p r q) ( p q))
5) | (q p) ((s q) (s p))
6)
| (U (V Z )) (U (Z V )) .
Problem 12
Using the theorem of deduction and its reverse prove that:
1) | ( p q) (( p r ) ( p q r ))
2) | ( p (q r )) (q ( p r ))
3) | ( p (q r )) (( p q) ( p r ))
4) | ( p q) ( p q r ) ( p r )
5)
6)
| q (( p (q r )) ( p r ))
| p (q r ) (( p q) ( p r )) ;
Problem 13. Using the semantic tableaux method decide what kind of formula is A. If A is consistent,
write all its models.
1. A= (( p q) (p r )) (q r ) .
2. A= ( p q r ) ( p r ) q
3. A= (q r p) ( p r ) q
4. A= (( r q) (p r )) ( p q) .
5. A= (( p r ) (p r )) (q r )
6. A ( ( p r) p) (( p q) ( p r)) .
Problem 14. Prove that the formula A is valid using the semantic tableaux method.
1.A= ( p (q r )) (q ( p r )) permutation of the premises
2. A= ( p q r ) ( p q) ( p r ) distributivity of implication over disjunction
3. A= ( p q r ) ( p q) ( p r ) distributivity of implication over disjunction
4. A= ( p q) (( r t ) ( p r q t ))
5. A= ((V Z ) U ) ((U V ) (U Z ))
6. A ( p (q r)) ( p q r) ;
Problem 15. Using the semantic tableaux method check if:
1. p (q r s), p, s | q .
2. p (q r ), r q |= (p q) r
3. p (q r s), p, r | q
4. p q, r t , p r | q t
5. p (q r ), q r |= p (q r )
Problem 16. Using the sequent calculus check if the following sequent is true or not.
1. p q p r , r q r .
2.
3.
4.
5.
6.
p q r ( p r) q
q r p, q ( p r ) q
p, r q p r ( p q) (q p) .
p r , p q q r , r q
p (q r), q r | p (q r)
Problem 17. Prove the validity of the formula A using the sequent calculus method:
1) A= ( p q r ) ( p q) ( p r ) , distributivity of over
2) A= ( p (q r )) ( p q r ) , reunion of the premises
3) A= ((V Z ) U ) ((U V ) (U Z ))
4) A= ( p q r ) ( p q) ( p r ) , distributivity of over .
5) A= ( p q r ) ( p (q r )) , separation of the premises
6) A p (q r) ( p q) ( p r)
Problem 18. Using the sequent calculus check if:
1) p (q r ), r q |= (p q) r
2)
3)
4)
5)
6)
p (q r ), q r |= p (q r )
p q, r t , p r | q t
p (q r s), p, s | q s
p (q r s), p, r | q p
p (q r s), p, r | q r
Problem 19.
Using general resolution prove that the following formulas are tautologies:
1) (B A) ((B A) B)
2) ( B A) (C A) ( B C A)
3) ( A B) ((A C ) (B C ))
4) ( A B) ((C A) (C B))
5) ( p q r ) ( p q) ( p r )
Problem 20
Using lock resolution check the inconsistency of the following sets of clauses:
1) { p q, p q r , p q r , p r , p r} ,
2) { p q, p q r , p r , p r , p r} ,
3) { p q, p q r , p q r , q r , q r} ,
4) { p q, p q r , p q r , p q, p r} ,
5) { p r , p q r , p q r , p q r , p q r , r} ,
Problem 21
Check if the following deductions are valid using linear resolution:
1)
2)
3)
4)
5)
p q r , p q r , q r | r
p q r , p q, q r | p
p q r , p q r , q p | q
p q, q r , p r | r
p q r , p q r , p r | p
© Copyright 2026 Paperzz