ProblemoftheMonth PartyTime TheProblemsoftheMonth(POM)areusedinavarietyofwaystopromoteproblem solvingandtofosterthefirststandardofmathematicalpracticefromtheCommon CoreStateStandards:“Makesenseofproblemsandpersevereinsolvingthem.”The POMmaybeusedbyateachertopromoteproblemsolvingandtoaddressthe differentiatedneedsofherstudents.Adepartmentorgradelevelmayengagetheir studentsinaPOMtoshowcaseproblemsolvingasakeyaspectofdoing mathematics.POMscanalsobeusedschoolwidetopromoteaproblem‐solving themeataschool.Thegoalisforallstudentstohavetheexperienceofattacking andsolvingnon‐routineproblemsanddevelopingtheirmathematicalreasoning skills.Althoughobtainingandjustifyingsolutionstotheproblemsistheobjective, theprocessoflearningtoproblemsolveisevenmoreimportant. TheProblemoftheMonthisstructuredtoprovidereasonabletasksforallstudents inaschool.ThestructureofaPOMisashallowfloorandahighceiling,sothatall studentscanproductivelyengage,struggle,andpersevere.ThePrimaryVersionis designedtobeaccessibletoallstudentsandespeciallythekeychallengeforgrades K–1.LevelAwillbechallengingformostsecondandthirdgraders.LevelBmay bethelimitofwherefourthandfifth‐gradestudentshavesuccessand understanding.LevelCmaystretchsixthandseventh‐gradestudents.LevelDmay challengemosteighthandninth‐gradestudents,andLevelEshouldbechallenging formosthighschoolstudents.Thesegrade‐levelexpectationsarejustestimatesand shouldnotbeusedasanabsoluteminimumexpectationormaximumlimitationfor students.Problemsolvingisalearnedskill,andstudentsmayneedmany experiencestodeveloptheirreasoningskills,approaches,strategies,andthe perseverancetobesuccessful.TheProblemoftheMonthbuildsonsequentiallevels ofunderstanding.AllstudentsshouldexperienceLevelAandthenmovethroughthe tasksinordertogoasdeeplyastheycanintotheproblem.Therewillbethose studentswhowillnothaveaccessintoevenLevelA.Educatorsshouldfeelfreeto modifythetasktoallowaccessatsomelevel. Overview IntheProblemoftheMonthPartyTime,studentsusemathematicalconceptsof logic,reasoning,andcountingmethods.Themathematicaltopicsthatunderliethis POMareknowledgeoflogic,deductivereasoning,countingprinciples/strategies, andavarietyofmathematicalrepresentationssuchastreediagrams,Venn diagrams,tables,charts,andmatrices. InthefirstlevelofthePOM,studentsdeterminethenumberofguestsinvitedtoa partythroughexaminationofsetinvites‐guestsinvitingothersetsofguests.In LevelB,studentsareaskedtodeterminethenumberofgirlsatthepartywithshort redhair,givenanumberoflogicclues.Thestudentsneedtopartitionawholeusing © Noyce Foundation 2014. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 Unported License (http://creativecommons.org/licenses/by-nc-nd/3.0/deed.en_US). simplefractionalamounts(1/2and1/4).Thestudentsapplylogicalreasoningto determinethenumberofred‐headedgirlsattheparty.InLevelC,studentsare presentedwithasetofcluesregardingtheguests’names,costumes,andtimeof arrivalattheparty.Thestudentsareaskedtomatcheachofthepartygoerstotheir names,costumesandarrivaltimes.InLevelD,thestudentsareaskedtodetermine whenagameisfairforbothplayers.Studentsjustifytheirfindingsandexplain whenthegameisfair.Inthefinallevel,studentsareaskedtosolveacomplexlogic puzzle.Studentsmustdefendtheirsolutionandexplainhowtheysolvedthepuzzle. © Noyce Foundation 2014. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 Unported License (http://creativecommons.org/licenses/by-nc-nd/3.0/deed.en_US). Problem of the Month Party Time Level A Cindy had a party. She invited two guests. Her guests each invited four guests, and then those guests each invited three guests. How many people were at Cindy’s party? Explain how you determined your solution. Problem of the Month Party Time P1 © Noyce Foundation 2014. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 Unported License (http://creativecommons.org/licenses/by-nc-nd/3.0/deed.en_US). Level B At Leslie’s party ¼ of the people had long hair. One half of the people at the party were boys, and ¼ of the girls had short blond hair. None of the boys had long hair. If there were 32 guests, what is the maximum number of girls who could have had short red hair? Show how you determined you answer and why you know you have a correct solution. Problem of the Month Party Time P2 © Noyce Foundation 2014. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 Unported License (http://creativecommons.org/licenses/by-nc-nd/3.0/deed.en_US). Level C Mia, Jake, Carol, Barbara, Ford and Jeff are all going to a costume party. Figure out what costume each person is wearing and when they arrived at the party. The person that arrived fourth was wearing a bathing suit. Barbara was the last to arrive. Jake and Mia arrived and stayed together. The first person was dressed as a French maid. Superman arrived right before Barbara. The potato heads were always together at the party. Ford was a surfer dude. The French maid was not Carol. The vampire arrived after Superman. Problem of the Month Party Time P3 © Noyce Foundation 2014. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 Unported License (http://creativecommons.org/licenses/by-nc-nd/3.0/deed.en_US). Level D Your aunt is having a baby. You have created a party game for a baby shower. It is called Pick the Gender. You put pink and blue tiles into a bag. You ask two guests to pick one tile out of the bag without looking. You tell your guests that if they are the same color, Player A wins and if they are two different colors then Player B wins. How many tiles of which colors did you put into the bag to make sure that both players have an equal chance of winning? Explain your solution and why it is fair. Problem of the Month Party Time P4 © Noyce Foundation 2014. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 Unported License (http://creativecommons.org/licenses/by-nc-nd/3.0/deed.en_US). Level E A man and his wife invite 5 other couples to a dinner party. As the guests arrive to visit before dinner, they shake hands. Not everybody shakes everybody's hands, and of course, no one shakes hands with his own spouse. Later, as they sit down to dinner, the host asks each other person, including his wife, “How many hands did you shake?” He notices, to his surprise, that each respondent shook a different number of hands. How many did his wife shake? Explain your solution and justify your reasoning. Problem of the Month Party Time P5 © Noyce Foundation 2014. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 Unported License (http://creativecommons.org/licenses/by-nc-nd/3.0/deed.en_US). Problem of the Month Party Time PrimaryVersionLevelA Materials:Setsofcounters. Discussionontherug:Teacheraskstheclass,“Who likes to have parties in our class? We are going to solve a problem that is about inviting friends to a party. Who would like to be our party host?”Teacherinvitesastudenttocomeforward.The teachersaystothehost,“Let’s start by inviting three friends to the party.”The studentpicksthreefriendstocomeforward.“How many people are at the party?”the teacheraskstheclass.Studentssharetheiranswersandexplainhowtheyknow.The teachersays,“Suppose each of the friends phones two people to come to the party. How many will be at the party altogether?”Studentssharetheirideasanddiscuss solutions.Thentheyactuallyactitoutandcountthetotalnumberofpeopleattheparty. Insmallgroups:Studentshavecountersavailable.Teachersays,“Cindy had a party. She invited two guests. Her guests each invited four guests, and then those guests each invited three guests. How many people were at Cindy’s party?”Studentswork togethertofindasolution.Afterthestudentsaredone,theteacherasksstudentstoshare theiranswersandmethod. Attheendoftheinvestigation:Studentseitherdiscussordictatearesponsetothis summaryquestion:“Explain and show how you know how many people are at the party.” Problem of the Month Party Time P6 © Noyce Foundation 2014. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 Unported License (http://creativecommons.org/licenses/by-nc-nd/3.0/deed.en_US). ProblemoftheMonth PartyTime TaskDescription–LevelA Thistaskchallengesstudentstouselogicandcountingprinciplestofindthenumberofguestsata partyifguestsinviteguestsatagivenratio. CommonCoreStateStandardsMath‐ContentStandards OperationsandAlgebraicThinking Representandsolveproblemsinvolvingadditionandsubtraction. 2.OA.1Useadditionandsubtractionwithin100tosolveone‐andtwo‐stepproblemsinvolving situationsofaddingto,takingfrom,puttingtogether,takingapart,andcomparing,withunknownsin allpositions. 3.OA.1Interpretproductsofwholenumbers,e.g.interpret5x7asthetotalnumberofobjectsin5 groupsof7objectseach. 3.OA.3Usemultiplicationanddivisionwithin100tosolvewordproblemsinsituationsinvolving equalgroups,arrays,andmeasurementquantities,e.g.,byusingdrawingsandequationswitha symbolfortheunknownnumbertorepresenttheproblem. StatisticsandProbability Investigatechanceprocessesanddevelop,use,andevaluateprobabilitymodels. 7.SP.8Findprobabilitiesofcompoundeventsusingorganizedlists,tables,treediagrams,and simulation. 7.SP.8bRepresentsamplespacesforcompoundeventsusingmethodssuchasorganizedlists,tables andtreediagrams.Foraneventdescribedineverydaylanguage,identifytheoutcomesinthesample space,whichcomposetheevent. CommonCoreStateStandardsMath–StandardsofMathematicalPractice MP.1Makesenseofproblemsandpersevereinsolvingthem. Mathematicallyproficientstudentsstartbyexplainingtothemselvesthemeaningofaproblemandlookingfor entrypointstoitssolution.Theyanalyzegivens,constraints,relationships,andgoals.Theymakeconjectures abouttheformandmeaningofthesolutionandplanasolutionpathwayratherthansimplyjumpingintoa solutionattempt.Theyconsideranalogousproblems,andtryspecialcasesandsimplerformsoftheoriginal probleminordertogaininsightintoitssolution.Theymonitorandevaluatetheirprogressandchangecourseif necessary.Olderstudentsmight,dependingonthecontextoftheproblem,transformalgebraicexpressionsor changetheviewingwindowontheirgraphingcalculatortogettheinformationtheyneed.Mathematically proficientstudentscanexplaincorrespondencesbetweenequations,verbaldescriptions,tables,andgraphsor drawdiagramsofimportantfeaturesandrelationships,graphdata,andsearchforregularityortrends.Younger studentsmightrelyonusingconcreteobjectsorpicturestohelpconceptualizeandsolveaproblem. Mathematicallyproficientstudentschecktheiranswerstoproblemsusingadifferentmethod,andthey continuallyaskthemselves,“Doesthismakesense?”Theycanunderstandtheapproachesofotherstosolving complexproblemsandidentifycorrespondencesbetweendifferentapproaches. MP.4Modelwithmathematics. Mathematicallyproficientstudentscanapplythemathematicstheyknowtosolveproblemsarisingineveryday life,society,andtheworkplace.Inearlygradesthismightbeassimpleaswritinganadditionequationto describeasituation.Inmiddlegrades,astudentmightapplyproportionalreasoningtoplanaschooleventor analyzeaprobleminthecommunity.Byhighschool,astudentmightusegeometrytosolveadesignproblemor useafunctiontodescribehowonequantityofinterestdependsonanother.Mathematicallyproficientstudents whocanapplywhattheyknowarecomfortablemakingassumptionsandapproximationstosimplifya complicatedsituation,realizingthatthesemayneedrevisionlater.Theyareabletoidentifyimportant quantitiesinapracticalsituationandmaptheirrelationshipsusingsuchtoolsasdiagrams,two‐waytables, graphs,flowcharts,andformulas.Theycananalyzethoserelationshipsmathematicallytodrawconclusions. Theyroutinelyinterprettheirmathematicalresultsinthecontextofthesituationandreflectonwhetherthe resultsmakesense,possiblyimprovingthemodelifithasnotserveditspurpose. © Noyce Foundation 2014. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 Unported License (http://creativecommons.org/licenses/by-nc-nd/3.0/deed.en_US). ProblemoftheMonth PartyTime TaskDescription–LevelB Thistaskchallengesstudentstouselogicandfractionstofindapartofasetthatmeetsseveral constraints.Studentsmustusefractionalpartsofthesettohelpcalculatetheiranswers.Students needtofindasystematicwaytoorganizetheirresultsastheyconsidereachconstraint. CommonCoreStateStandardsMath‐ContentStandards NumberandOperations‐Fractions Buildfractionsfromunitfractionsbyapplyingandextendingpreviousunderstandingsof operationsonwholenumbers. 4.NF.4Applyandextendpreviousunderstandingsofmultiplicationtomultiplyafractionbyawhole number. Applyandextendpreviousunderstandingsofmultiplicationanddivisiontomultiplyand dividefractions. 5.NF.4Applyandextendpreviousunderstandingsofmultiplicationandtomultiplyafractionor wholenumberbyafraction. 5.NF.6Solverealworldproblemsinvolvingmultiplicationoffractionsandmixednumbers,e.g.,by usingvisualfractionmodelsorequationstorepresenttheproblem. StatisticsandProbability Investigatechanceprocessesanddevelop,use,andevaluateprobabilitymodels. 7.SP.8Findprobabilitiesofcompoundeventsusingorganizedlists,tables,treediagrams,and simulation. 7.SP.8bRepresentsamplespacesforcompoundeventsusingmethodssuchasorganizedlists,tables andtreediagrams.Foraneventdescribedineverydaylanguage,identifytheoutcomesinthesample space,whichcomposetheevent. CommonCoreStateStandardsMath–StandardsofMathematicalPractice MP.1Makesenseofproblemsandpersevereinsolvingthem. Mathematicallyproficientstudentsstartbyexplainingtothemselvesthemeaningofaproblemandlookingfor entrypointstoitssolution.Theyanalyzegivens,constraints,relationships,andgoals.Theymakeconjectures abouttheformandmeaningofthesolutionandplanasolutionpathwayratherthansimplyjumpingintoa solutionattempt.Theyconsideranalogousproblems,andtryspecialcasesandsimplerformsoftheoriginal probleminordertogaininsightintoitssolution.Theymonitorandevaluatetheirprogressandchangecourseif necessary.Olderstudentsmight,dependingonthecontextoftheproblem,transformalgebraicexpressionsor changetheviewingwindowontheirgraphingcalculatortogettheinformationtheyneed.Mathematically proficientstudentscanexplaincorrespondencesbetweenequations,verbaldescriptions,tables,andgraphsor drawdiagramsofimportantfeaturesandrelationships,graphdata,andsearchforregularityortrends.Younger studentsmightrelyonusingconcreteobjectsorpicturestohelpconceptualizeandsolveaproblem. Mathematicallyproficientstudentschecktheiranswerstoproblemsusingadifferentmethod,andthey continuallyaskthemselves,“Doesthismakesense?”Theycanunderstandtheapproachesofotherstosolving complexproblemsandidentifycorrespondencesbetweendifferentapproaches. MP.4Modelwithmathematics. Mathematicallyproficientstudentscanapplythemathematicstheyknowtosolveproblemsarisingineveryday life,society,andtheworkplace.Inearlygradesthismightbeassimpleaswritinganadditionequationto describeasituation.Inmiddlegrades,astudentmightapplyproportionalreasoningtoplanaschooleventor analyzeaprobleminthecommunity.Byhighschool,astudentmightusegeometrytosolveadesignproblemor useafunctiontodescribehowonequantityofinterestdependsonanother.Mathematicallyproficientstudents whocanapplywhattheyknowarecomfortablemakingassumptionsandapproximationstosimplifya complicatedsituation,realizingthatthesemayneedrevisionlater.Theyareabletoidentifyimportant quantitiesinapracticalsituationandmaptheirrelationshipsusingsuchtoolsasdiagrams,two‐waytables, graphs,flowcharts,andformulas.Theycananalyzethoserelationshipsmathematicallytodrawconclusions. Theyroutinelyinterprettheirmathematicalresultsinthecontextofthesituationandreflectonwhetherthe resultsmakesense,possiblyimprovingthemodelifithasnotserveditspurpose. © Noyce Foundation 2014. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 Unported License (http://creativecommons.org/licenses/by-nc-nd/3.0/deed.en_US). ProblemoftheMonth PartyTime TaskDescription–LevelC Thistaskchallengesstudentstouselogicandlogicstrategiessuchastables,charts,andmatricesto solveaproblemwithaseriesofcluesaboutguests,theircostumes,andtheirarrivaltimes.Students needtomakesenseofmultipleconstraintstofindasolutionandcheckthesolutionagainstallthe constraints. CommonCoreStateStandardsMath‐ContentStandards StatisticsandProbability Investigatechanceprocessesanddevelop,use,andevaluateprobabilitymodels. 7.SP.8Findprobabilitiesofcompoundeventsusingorganizedlists,tables,treediagrams,and simulation. 7.SP.8bRepresentsamplespacesforcompoundeventsusingmethodssuchasorganizedlists,tables andtreediagrams.Foraneventdescribedineverydaylanguage,identifytheoutcomesinthesample space,whichcomposetheevent. CommonCoreStateStandardsMath–StandardsofMathematicalPractice MP.1Makesenseofproblemsandpersevereinsolvingthem. Mathematicallyproficientstudentsstartbyexplainingtothemselvesthemeaningofaproblemand lookingforentrypointstoitssolution.Theyanalyzegivens,constraints,relationships,andgoals. Theymakeconjecturesabouttheformandmeaningofthesolutionandplanasolutionpathway ratherthansimplyjumpingintoasolutionattempt.Theyconsideranalogousproblems,andtry specialcasesandsimplerformsoftheoriginalprobleminordertogaininsightintoitssolution.They monitorandevaluatetheirprogressandchangecourseifnecessary.Olderstudentsmight, dependingonthecontextoftheproblem,transformalgebraicexpressionsorchangetheviewing windowontheirgraphingcalculatortogettheinformationtheyneed.Mathematicallyproficient studentscanexplaincorrespondencesbetweenequations,verbaldescriptions,tables,andgraphsor drawdiagramsofimportantfeaturesandrelationships,graphdata,andsearchforregularityor trends.Youngerstudentsmightrelyonusingconcreteobjectsorpicturestohelpconceptualizeand solveaproblem.Mathematicallyproficientstudentschecktheiranswerstoproblemsusinga differentmethod,andtheycontinuallyaskthemselves,“Doesthismakesense?”Theycanunderstand theapproachesofotherstosolvingcomplexproblemsandidentifycorrespondencesbetween differentapproaches. MP.4Modelwithmathematics. Mathematicallyproficientstudentscanapplythemathematicstheyknowtosolveproblemsarising ineverydaylife,society,andtheworkplace.Inearlygradesthismightbeassimpleaswritingan additionequationtodescribeasituation.Inmiddlegrades,astudentmightapplyproportional reasoningtoplanaschooleventoranalyzeaprobleminthecommunity.Byhighschool,astudent mightusegeometrytosolveadesignproblemoruseafunctiontodescribehowonequantityof interestdependsonanother.Mathematicallyproficientstudentswhocanapplywhattheyknoware comfortablemakingassumptionsandapproximationstosimplifyacomplicatedsituation,realizing thatthesemayneedrevisionlater.Theyareabletoidentifyimportantquantitiesinapractical situationandmaptheirrelationshipsusingsuchtoolsasdiagrams,two‐waytables,graphs, flowcharts,andformulas.Theycananalyzethoserelationshipsmathematicallytodrawconclusions. Theyroutinelyinterprettheirmathematicalresultsinthecontextofthesituationandreflecton whethertheresultsmakesense,possiblyimprovingthemodelifithasnotserveditspurpose. © Noyce Foundation 2014. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 Unported License (http://creativecommons.org/licenses/by-nc-nd/3.0/deed.en_US). ProblemoftheMonth PartyTime TaskDescription–LevelD Thistaskchallengesstudentstoreasonaboutafairgameinthecontextofpickingtilesofdifferent colorsfromabag.Studentsmustdefineasamplespacethatwillgiveanequalprobabilityofgetting matchingornonmatchingcolorswhen2tilesaredrawnfromthebagwithoutreplacement. CommonCoreStateStandardsMath‐ContentStandards StatisticsandProbability Investigatechanceprocessesanddevelop,useandevaluateprobabilitymodels. 7.SP.5Understandthattheprobabilityofachanceeventisanumberbetween0and1thatexpressesthe likelihoodoftheeventoccurring.Largernumbersindicategreaterlikelihood.Aprobabilitynear0indicatesan unlikelyevent,aprobabilityaround½indicatesaneventhatisneitherunlikelynorlikely,andaprobabilitynear 1indicatesalikelyevent. 7.SP.7Developaprobabilitymodelanduseittofindprobabilitiesofevents.Compareprobabilitiesfromamodel ofobservedfrequencies;iftheagreementisnotgood,explainpossiblesourcesofthediscrepancy. 7.SP.8Findprobabilitiesofcompoundeventsusingorganizedlists,tables,treediagrams,andsimulation. 7.SP.8bRepresentsamplespacesforcompoundeventsusingmethodssuchasorganizedlists,tablesandtree diagrams.Foraneventdescribedineverydaylanguage,identifytheoutcomesinthesamplespace,which composetheevent. HighSchool–StatisticsandProbability–ConditionalProbabilityandtheRulesofProbability Understandindependenceandconditionalprobabilityandusethemtointerpretdata. S‐CP.1Describeeventsassubsetsofasamplespace(thesetofoutcomes)usingcharacteristicsoftheoutcomes, orasunions,intersections,orcomplementsofotherevents(“or”,“and”,“not”). S‐CP.3UnderstandtheconditionalprobabilityofAgivenBasP(AandB)/P(B),andinterpretindependenceofA andBassayingthattheconditionalprobabilityofAgivenBisthesameastheprobabilityofA,andthe conditionalprobabilityofBgivenAisthesameastheprobabilityofB. S‐CP.4Constructandinterprettwo‐wayfrequencytablesofdatawhentwocategoriesareassociatedwitheach objectbeingclassified.Usethetwo‐waytableasasamplespacetodecideifeventsareindependentandto approximateconditionalprobabilities. Usetherulesofprobabilitytocomputeprobabilitiesofcompoundeventsinauniformprobability model. S‐CP.8applythegeneralMultiplicationRuleinauniformprobabilitymodel,P(AandB)= P(A)P(B/A)=P(B)P(A/B),andinterprettheanswerintermsofthemodel. CommonCoreStateStandardsMath– StandardsofMathematicalPractice MP.1Makesenseofproblemsandpersevereinsolvingthem. Mathematicallyproficientstudentsstartbyexplainingtothemselvesthemeaningofaproblemandlookingforentrypointsto itssolution.Theyanalyzegivens,constraints,relationships,andgoals.Theymakeconjecturesabouttheformandmeaningof thesolutionandplanasolutionpathwayratherthansimplyjumpingintoasolutionattempt.Theyconsideranalogous problems,andtryspecialcasesandsimplerformsoftheoriginalprobleminordertogaininsightintoitssolution.They monitorandevaluatetheirprogressandchangecourseifnecessary.Olderstudentsmight,dependingonthecontextofthe problem,transformalgebraicexpressionsorchangetheviewingwindowontheirgraphingcalculatortogettheinformation theyneed.Mathematicallyproficientstudentscanexplaincorrespondencesbetweenequations,verbaldescriptions,tables, andgraphsordrawdiagramsofimportantfeaturesandrelationships,graphdata,andsearchforregularityortrends.Younger studentsmightrelyonusingconcreteobjectsorpicturestohelpconceptualizeandsolveaproblem.Mathematicallyproficient studentschecktheiranswerstoproblemsusingadifferentmethod,andtheycontinuallyaskthemselves,“Doesthismake sense?”Theycanunderstandtheapproachesofotherstosolvingcomplexproblemsandidentifycorrespondencesbetween differentapproaches. MP.4Modelwithmathematics. Mathematicallyproficientstudentscanapplythemathematicstheyknowtosolveproblemsarisingineverydaylife,society, andtheworkplace.Inearlygradesthismightbeassimpleaswritinganadditionequationtodescribeasituation.Inmiddle grades,astudentmightapplyproportionalreasoningtoplanaschooleventoranalyzeaprobleminthecommunity.Byhigh school,astudentmightusegeometrytosolveadesignproblemoruseafunctiontodescribehowonequantityofinterest dependsonanother.Mathematicallyproficientstudentswhocanapplywhattheyknowarecomfortablemakingassumptions andapproximationstosimplifyacomplicatedsituation,realizingthatthesemayneedrevisionlater.Theyareabletoidentify importantquantitiesinapracticalsituationandmaptheirrelationshipsusingsuchtoolsasdiagrams,two‐waytables,graphs, flowcharts,andformulas.Theycananalyzethoserelationshipsmathematicallytodrawconclusions.Theyroutinelyinterpret theirmathematicalresultsinthecontextofthesituationandreflectonwhethertheresultsmakesense,possiblyimproving themodelifithasnotserveditspurpose. © Noyce Foundation 2014. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 Unported License (http://creativecommons.org/licenses/by-nc-nd/3.0/deed.en_US). ProblemoftheMonth PartyTime TaskDescription–LevelE Thistaskchallengesstudentstosolve alogicproblemaboutshakinghandswitheachnewsetof arrivingguests.Therearemultipleconstraints,suchastherequirementthateachpersonmusthavea differentnumberoftotalhandshakesattheend.Studentsmustdefendtheirsolutionandexplain howtheysolvedthepuzzle. CommonCoreStateStandardsMath‐ContentStandards StatisticsandProbability Investigatechanceprocessesanddevelop,use,andevaluateprobabilitymodels. 7.SP.8Findprobabilitiesofcompoundeventsusingorganizedlists,tables,treediagrams,and simulation. 7.SP.8bRepresentsamplespacesforcompoundeventsusingmethodssuchasorganizedlists,tables andtreediagrams.Foraneventdescribedineverydaylanguage,identifytheoutcomesinthesample space,whichcomposetheevent. CommonCoreStateStandardsMath–StandardsofMathematicalPractice MP.1Makesenseofproblemsandpersevereinsolvingthem. Mathematicallyproficientstudentsstartbyexplainingtothemselvesthemeaningofaproblemand lookingforentrypointstoitssolution.Theyanalyzegivens,constraints,relationships,andgoals. Theymakeconjecturesabouttheformandmeaningofthesolutionandplanasolutionpathway ratherthansimplyjumpingintoasolutionattempt.Theyconsideranalogousproblems,andtry specialcasesandsimplerformsoftheoriginalprobleminordertogaininsightintoitssolution.They monitorandevaluatetheirprogressandchangecourseifnecessary.Olderstudentsmight, dependingonthecontextoftheproblem,transformalgebraicexpressionsorchangetheviewing windowontheirgraphingcalculatortogettheinformationtheyneed.Mathematicallyproficient studentscanexplaincorrespondencesbetweenequations,verbaldescriptions,tables,andgraphsor drawdiagramsofimportantfeaturesandrelationships,graphdata,andsearchforregularityor trends.Youngerstudentsmightrelyonusingconcreteobjectsorpicturestohelpconceptualizeand solveaproblem.Mathematicallyproficientstudentschecktheiranswerstoproblemsusinga differentmethod,andtheycontinuallyaskthemselves,“Doesthismakesense?”Theycanunderstand theapproachesofotherstosolvingcomplexproblemsandidentifycorrespondencesbetween differentapproaches. MP.4Modelwithmathematics. Mathematicallyproficientstudentscanapplythemathematicstheyknowtosolveproblemsarising ineverydaylife,society,andtheworkplace.Inearlygradesthismightbeassimpleaswritingan additionequationtodescribeasituation.Inmiddlegrades,astudentmightapplyproportional reasoningtoplanaschooleventoranalyzeaprobleminthecommunity.Byhighschool,astudent mightusegeometrytosolveadesignproblemoruseafunctiontodescribehowonequantityof interestdependsonanother.Mathematicallyproficientstudentswhocanapplywhattheyknoware comfortablemakingassumptionsandapproximationstosimplifyacomplicatedsituation,realizing thatthesemayneedrevisionlater.Theyareabletoidentifyimportantquantitiesinapractical situationandmaptheirrelationshipsusingsuchtoolsasdiagrams,two‐waytables,graphs, flowcharts,andformulas.Theycananalyzethoserelationshipsmathematicallytodrawconclusions. Theyroutinelyinterprettheirmathematicalresultsinthecontextofthesituationandreflecton whethertheresultsmakesense,possiblyimprovingthemodelifithasnotserveditspurpose. © Noyce Foundation 2014. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 Unported License (http://creativecommons.org/licenses/by-nc-nd/3.0/deed.en_US). ProblemoftheMonth PartyTime TaskDescription–PrimaryLevel Thistaskchallengesstudentstouselogicandcountingprinciplestofindthenumberofguestsata partyifguestsinviteguestsatagivenratio.Studentsusepeopleandobjectstohelpmakethe mathematicsaccessible. CommonCoreStateStandardsMath‐ContentStandards CountingandCardinality Knownumbernamesandthecountsequence. K.CC.1Countto100byonesandbytens. Counttotellthenumberofobjects. K.CC.4Understandtherelationshipbetweennumbersandquantities;connectcountingtocardinality. K.CC.5Counttoanswer“howmany?”questionsaboutasmanyas20thingsarrangedinaline,a rectangulararray,oracircle,orasmanyas10thingsinascatteredconfiguration;givenanumber from1‐20countoutthatmanyobjects. OperationsandAlgebraicThinking Understandadditionasputtingtogetherandaddingto,andunderstandsubtractionastaking apartandtakingfrom. K.OA.1Representadditionandsubtractionwithobjects,fingers,mentalimages,drawings,sounds, actingoutsituationsverbalexplanations,expressionsorequations. Representandsolveproblemsinvolvingadditionandsubtraction. 1.OA.2Solvewordproblemsthatcallforadditionofthreewholenumbers,whosesumislessthanor equalto20,e.g.,byusingobjects,drawings,andequationswithasymbolfortheunknownnumberto representtheproblem. 2.OA.1Useadditionandsubtractionwithin100tosolveone‐andtwo‐stepproblemsinvolving situationsofaddingto,takingfrom,puttingtogether,takingapart,andcomparing,withunknownsin allpositions,e.g.byusingdrawingsandequationswithasymbolfortheunknownnumberto representtheproblem. CommonCoreStateStandardsMath–StandardsofMathematicalPractice MP.1Makesenseofproblemsandpersevereinsolvingthem. Mathematicallyproficientstudentsstartbyexplainingtothemselvesthemeaningofaproblemandlookingforentrypointsto itssolution.Theyanalyzegivens,constraints,relationships,andgoals.Theymakeconjecturesabouttheformandmeaningof thesolutionandplanasolutionpathwayratherthansimplyjumpingintoasolutionattempt.Theyconsideranalogous problems,andtryspecialcasesandsimplerformsoftheoriginalprobleminordertogaininsightintoitssolution.They monitorandevaluatetheirprogressandchangecourseifnecessary.Olderstudentsmight,dependingonthecontextofthe problem,transformalgebraicexpressionsorchangetheviewingwindowontheirgraphingcalculatortogettheinformation theyneed.Mathematicallyproficientstudentscanexplaincorrespondencesbetweenequations,verbaldescriptions,tables, andgraphsordrawdiagramsofimportantfeaturesandrelationships,graphdata,andsearchforregularityortrends.Younger studentsmightrelyonusingconcreteobjectsorpicturestohelpconceptualizeandsolveaproblem.Mathematicallyproficient studentschecktheiranswerstoproblemsusingadifferentmethod,andtheycontinuallyaskthemselves,“Doesthismake sense?”Theycanunderstandtheapproachesofotherstosolvingcomplexproblemsandidentifycorrespondencesbetween differentapproaches. MP.4Modelwithmathematics. Mathematicallyproficientstudentscanapplythemathematicstheyknowtosolveproblemsarisingineverydaylife,society, andtheworkplace.Inearlygradesthismightbeassimpleaswritinganadditionequationtodescribeasituation.Inmiddle grades,astudentmightapplyproportionalreasoningtoplanaschooleventoranalyzeaprobleminthecommunity.Byhigh school,astudentmightusegeometrytosolveadesignproblemoruseafunctiontodescribehowonequantityofinterest dependsonanother.Mathematicallyproficientstudentswhocanapplywhattheyknowarecomfortablemakingassumptions andapproximationstosimplifyacomplicatedsituation,realizingthatthesemayneedrevisionlater.Theyareabletoidentify importantquantitiesinapracticalsituationandmaptheirrelationshipsusingsuchtoolsasdiagrams,two‐waytables,graphs, flowcharts,andformulas.Theycananalyzethoserelationshipsmathematicallytodrawconclusions.Theyroutinelyinterpret theirmathematicalresultsinthecontextofthesituationandreflectonwhethertheresultsmakesense,possiblyimproving themodelifithasnotserveditspurpose. © Noyce Foundation 2014. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 Unported License (http://creativecommons.org/licenses/by-nc-nd/3.0/deed.en_US).
© Copyright 2026 Paperzz