Light-Matter Interactions Paul Eastham February 15, 2012 The model = Single atom in an electromagnetic cavity Mirrors Single atom Realised experimentally Theory: “Jaynes Cummings Model” ⇒ Rabi oscillations – energy levels sensitive to single atom and photon – get inside the mechanics of “emission” and “absorption” Where we’re going = One field mode, two atomic states Energy of photon in field mode Ĥ = (∆/2) (|eihe| − |gihg|) + ~ω ↠â + Dipole coupling energy Energy difference between atomic levels ~Ω 2 (â|eihg| + ↠|gihe|). How to get there Show that ∼ Ĥ = Ĥatom + Ĥfield − Ê.(er̂) Write electron position operator r̂ in basis – eigenstates of Ĥatom == atomic orbitals Approximate to one mode of field and two atomic levels Neglect non-resonant “wrong-way” terms (like electron drops down orbital and emits photon) How to get there Show that ∼ Ĥ = Ĥatom + Ĥfield − Ê.(er̂) ←− Write electron position operator r̂ in basis – eigenstates of Ĥatom == atomic orbitals Approximate to one mode of field and two atomic levels Neglect non-resonant “wrong-way” terms (like electron drops down orbital and emits photon) Atom-Field Interaction Energy Hamiltonian for Atom+Field Field X ~ωi âi† âi modes Ĥ = ĤEM + Ĥatom + Ĥint ~2 2 e2 Atom − ∇ − 2me e 4π0 |re − R0 | (nucleus fixed @ R0 ) Interaction energy ? Atom-Field Interaction Energy Interaction energy: classical field Ĥatom = 1 2 p̂ + V (r̂). 2m With vector potential A, p̂ → (p̂ − eA) and scalar potential φ, Ĥatom → Ĥatom + eφ Ĥatom−field = (minimal coupling) 1 (p̂ − eA)2 + eφ + V (r̂). 2m Atom-Field Interaction Energy Interaction energy: A.p form Choose the Coulomb gauge where ∇.A = 0, φ = 0 Ĥatom−field = p̂2 − e A.p̂ + 2m m e2 2 2m A + V (r ) = Ĥatom + Ĥint (Can use this form directly – not in this course) Atom-Field Interaction Energy Interaction energy: dipole approximation Interested in interaction with light waves A = A0 ei(k.r−ωt) + c.c. For an atom the wavefunction extends over about 1Å For light |k| = 2π/λ ≈ (500nm)−1 ∴ A approximately constant in space over the atom, – A(r, t) → A(r = 0, t) Atom-Field Interaction Energy Interaction energy: E.r form Coulomb gauge form: Ĥatom−field = 1 (p̂ − eA)2 + eφ(= 0) + V (r ). 2m Now change gauge : A → A + ∇χ(r, t) ∂χ(r, t) φ→φ− , ∂t so Ĥatom−field = 1 ∂χ (p̂ − e(A + ∇χ))2 − e + V (r ). 2m ∂t Atom-Field Interaction Energy Interaction energy: E.r form 1 ∂χ (p̂ − e(A + ∇χ))2 − e + V (r ). 2m ∂t Choose χ(r, t) = −A.r Ĥatom−field = so that ∇χ = −A ∂χ ∂A and =− .r = E.r ∂t ∂t Ĥatom−field = ∂A ∂A E = −∇φ − =− ∂t ∂t – (A, φ-Coulomb gauge) 1 (p̂2 + V (r )) − er̂.E(t). 2m Atom-Field Interaction Energy Hamiltonian: E.r form Quantum form: E(r) → Ê(r0 ) at the position of the atom So for our cavity quantization + one electron atom: Ĥ = Ĥatom + X ~ωn ân† ân n s + X n,s ~ωn sin(kn zat )(ân + ân† )es .(−er̂). 0 V Atom-Field Interaction Energy How to get there Show that ∼ Ĥ = Ĥatom + Ĥfield − Ê.(er̂) Write electron position operator r̂ in basis – eigenstates of Ĥatom == atomic orbitals ←− Approximate to one mode of field and two atomic levels Neglect non-resonant “wrong-way” terms (like electron drops down orbital and emits photon) Atom-Field Interaction Energy Second quantization: general Generally have Z indistinguishable electrons ⇒ Atomic eigenstates labelled by occupation of orbitals (1s2 2s1 etc) These states – |ii – form a complete set (for Z electrons) This allows us to formally write atomic operators – in terms of “transition operators” |iihj| Atom-Field Interaction Energy Second quantization: Hamiltonian 1̂ = X |iihi|. i Formal representation of Ĥ : Ĥ = 1̂Ĥ 1̂ X X = |iihi|Ĥ |jihj| i = X j |iihi|Ej |jihj| i,j = X i Ei |iihi|. (Ĥ|ji = Ej |ji, hi|ji = δij ) Atom-Field Interaction Energy Second quantization: One-body operators Eigenstates of Ĥ – |ii – form a complete set for Z electrons, so X |iihi|. 1̂ = i Formal representation of D̂ = X i D̂ = 1̂D̂1̂ X X = |iihi|D̂ |jihj| i j X = hi|D̂|ji|iihj| i,j er̂i : Atom-Field Interaction Energy Second quantization: One-body operators D̂ = 1̂D̂1̂ X X = |iihi|D̂ |jihj| i j X = hi|D̂|ji|iihj| i,j If we know the orbitals in real-space, can calculate Z Dij = hi|D̂|ji = dxdydzψi∗ (r)(er)ψj (r). Atom-Field Interaction Energy Dipole matrix elements Z Dij = hi|D̂|ji = dxdydzψi∗ (r)(er)ψj (r). Dij only non-zero between some states ⇒ selection rules i.j different parity. ∆l = ±1 (if l good quantum number) Magnitude |D| ≈ e× 1 Å Atom-Field Interaction Energy Atom-field Hamiltonian So for our cavity problem Ĥ = X ~ωn ân† ân n + X Ei |iihi| i + XX n,s ij En sin(kn zat )(ân + ân† )es .Dij |iihj|. Atom-Field Interaction Energy How to get there Show that ∼ Ĥ = Ĥatom + Ĥfield − Ê.(er̂) Write electron position operator r̂ in basis – eigenstates of Ĥatom == atomic orbitals Approximate to one mode of field and two atomic levels Neglect non-resonant “wrong-way” terms (like electron drops down orbital and emits photon) Atom-Field Interaction Energy Why two levels? Light-matter interactions weak (cf. energy differences in uncoupled problem) ⇒ small effects which can be treated in perturbation theory except: if ~ω ≈ ∆, degeneracy between |n, gi, |n − 1, ei ∴ can focus on the physics of one mode + nearly resonant atomic transition Atom-Field Interaction Energy Rotating-Wave approximation Interaction is ~Ω [ â|eihg| + ↠|gihe| + â|gihe| + ↠|gihe| ]. 2 Energy changes ≈ 0 ≈ ±2∆ ∴ drop these terms Jaynes-Cummings Model in Rotating-Wave Approx Ĥ = (∆/2)(|eihe| − |gihg|) + ~ω ↠â ~Ω + (â|eihg| + ↠|gihe|). 2 Atom-Field Interaction Energy Summary = One field mode, two atomic states Energy of photon in field mode Ĥ = (∆/2) (|eihe| − |gihg|) + ~ω ↠â + Dipole coupling energy Energy difference between atomic levels ~Ω 2 (↠|eihg| + â|gihe|).
© Copyright 2026 Paperzz